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Salience‑based object prioritization 
during active viewing of naturalistic 
scenes in young and older adults
Antje Nuthmann  1,2*, Immo Schütz3,4 & Wolfgang Einhäuser3

Whether fixation selection in real-world scenes is guided by image salience or by objects has been 
a matter of scientific debate. To contrast the two views, we compared effects of location-based and 
object-based visual salience in young and older (65 + years) adults. Generalized linear mixed models 
were used to assess the unique contribution of salience to fixation selection in scenes. When analysing 
fixation guidance without recurrence to objects, visual salience predicted whether image patches 
were fixated or not. This effect was reduced for the elderly, replicating an earlier finding. When using 
objects as the unit of analysis, we found that highly salient objects were more frequently selected for 
fixation than objects with low visual salience. Interestingly, this effect was larger for older adults. We 
also analysed where viewers fixate within objects, once they are selected. A preferred viewing location 
close to the centre of the object was found for both age groups. The results support the view that 
objects are important units of saccadic selection. Reconciling the salience view with the object view, 
we suggest that visual salience contributes to prioritization among objects. Moreover, the data point 
towards an increasing relevance of object-bound information with increasing age.

Which factors guide where we direct our attention and gaze when viewing a naturalistic scene? In recent years, 
this question has sparked a scientific debate about whether fixation selection is based on image properties such 
as visual salience (hereafter: salience view) or information about objects within the scene (hereafter: object view). 
Here, we attempt to reconcile the two views by comparing effects of location-based and object-based visual sali-
ence, utilizing statistical analyses that allow for assessing the unique contribution of salience to fixation selection 
in scenes. In addition, we explore how eye guidance in scenes changes across the lifespan by comparing young 
and older (65 + years) adults.

Computational models that highlight the role of low-level image features propose that the eyes are mainly 
driven toward image regions that are visually salient. The saliency map algorithms1,2 have become the reference 
models in this regard. Visual salience and saliency maps attempt to define areas that “stand out” from the back-
ground, the idea being that these regions are looked at before others. The saliency map model and its descendants 
indeed predict human fixation selection in free-viewing tasks reasonably well3,4.

The alternative object view stipulates that objects form an important unit of saccadic selection in scene 
viewing. Empirical support for object-based selection was obtained by analysing fixation locations on scene 
images with respect to object boundaries. Nuthmann and Henderson5 found that the distribution of fixations 
within objects is well-described by a 2-dimensional Gaussian distribution. The distribution has a mean close to 
the centre of the object, quantifying the preferred viewing location (PVL). The basic finding that viewers prefer 
to send their eyes to the centre of objects has since been replicated6–10. Additional research has shown that the 
PVL is modulated by low-level visuomotor variables such as object size, the direction of the incoming saccade, 
and launch site distance5,11. For example, saccade landing positions are systematically shifted towards their 
launch site; that is, incoming saccades tend to undershoot the centre of the object5, which is consistent with the 
hypometric bias that has been observed for saccades to single targets in peripheral vision12,13. Object category 
and affordances also play a role10,14. Finally, the PVL was found to be preserved when observers’ central vision 
was strongly degraded15, demonstrating the importance of peripheral vision to fixation selection.

According to the object view, salience does not guide fixation selection directly but through a correlation 
between salient locations and objects. In this view, the saliency map predicts fixations because it provides a 
(coarse) estimate of object locations. Indeed, the original saliency map2,16 has little additional predictive power for 
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fixation locations if object locations are known17. This result has been challenged on the basis of detailed analyses 
of an extended set of more recent salience models18. However, an object-based model that adequately considers 
the object-based PVL5 predicts fixations equally well as the best low-level salience models19. When scenes are 
experimentally manipulated to dissociate objects from regions with high low-level salience, the object-based 
model even outperforms such models19. Pursuing a similar approach as in Stoll et al.19, Borji and Tanner10 found 
that a weighted linear combination of the map generated by the Adaptive Whitening Saliency (AWS) model20 
and a map of object boundaries (adjusted for higher probability of fixations around the object’s centre of mass) 
achieved significantly better gaze prediction than either model alone.

One advantage of salience maps is that they are image computable, which implies that they can be derived 
by exclusively using information contained in the current image. By comparison, in the aforementioned stud-
ies advocating the object view of fixation selection in scenes, the objects were labelled manually by human 
annotators5,19. This is not a principled limitation as computational models for object detection continue to 
improve, especially those based on deep neural networks (DNNs)21. Such models have indeed been successfully 
adapted for fixation prediction22. Moreover, in the modelling literature “proto-objects” have been suggested as 
an image computable alternative to “real” objects23. Although the precise definition of the term varies, in the 
modelling literature “proto-object” typically refers to entities that are potential objects based on their image-
computable properties. Proto-object models can yield improvements to salience map predictions23,24. However, 
one test which we deem critical is typically missing in the evaluation of such models: do fixations of human 
observers within proto-objects show the PVL phenomenon? For the model by Walther and Koch25, in which 
proto-objects are a function of image salience, Nuthmann and Henderson5 showed that no PVL was found for 
proto-objects unless they overlapped with annotated real objects.

Although the object view is supported by experimental and modelling results, a critical question remains: 
once the objects are available for selection, how do observers decide which object, out of several candidate 
objects, to select for fixation? In previous research, we have argued that object-based visual salience contributes 
to such prioritization among objects19. With the present study we extend this research by pursuing a number of 
interrelated goals. First, we set out to replicate our previous findings in an independent sample of young adults 
with different images. Second, we compared effects of location-based and object-based visual salience. Third, we 
investigated the PVL for first fixations on objects in scenes. Moreover, we compared eye movements of young 
and older adults.

It is important to study how well research findings generalize from young to older adults. Most psychology 
research is based on studies with young adults, primarily undergraduate psychology students26. At the same time, 
Western societies have to deal with ageing populations and a considerable demographic redistribution. Basic 
visual and cognitive functions decline with advancing age27–29. Specifically, older age is associated with subtle 
reductions in visual abilities. These include reductions in visual acuity30, contrast sensitivity31, and visual fields32.

Research using the additional singleton paradigm has shown that visually salient stimuli can capture attention 
and trigger an eye movement toward their location reflexively, regardless of an observer’s intentions33. Studies that 
examined age-related changes in capture susceptibility found mixed results. While some studies found greater 
oculomotor capture in aging adults34,35, others did not36. Other research has investigated how eye-movement 
behaviour changes across the adult lifespan. In simple saccade-targeting tasks, older adults showed increased 
saccade latency37,38 while saccade accuracy was found to be preserved39 or to be reduced40,41. Healthy aging also 
affects eye movements during sentence reading42. Older adults make more and, on average, longer fixations43. 
Accuracy in saccade targeting appears to be relatively preserved, as suggested by analyses of the PVL for words 
in reading44.

Açik et al.45 were the first to investigate developmental changes during scene viewing by comparing eye 
movements from young adults, older adults, and children (mean age 7.6 years). During a 5-s viewing period, 
older adults made more saccades than both young adults and children, but with shorter amplitude. At the same 
time, all three age groups showed similar levels of explorative viewing behaviour. Importantly, the influence of 
low-level image features on fixation selection in scenes was found to decrease with increasing age. Subsequent 
studies revealed that image salience can predict fixation locations in young children46 and infants47. The data by 
Helo et al.46 suggest that image salience was a better predictor for children between two and six years old than 
for older children and adults.

In the present study, we set out to replicate Açik et al.’s45 results for local low-level image features on fixation 
selection in scenes. However, instead of individual features we used a composite measure of image salience 
(specifically, the AWS model), and a different analysis method. Going beyond previous research, we additionally 
explored whether there were different effects of object-based visual salience for young and older adults. For both 
types of analyses, we used generalized linear mixed modelling (GLMM). To assess effects of location-based visual 
salience, we combined GLMM with a-priori scene parcellation using a grid with equal-sized, square cells48,49. 
This analysis approach has a number of desirable properties; perhaps most importantly, we can explicitly model 
the central bias of fixation50,51 by including a separate central-bias predictor in the GLMM. This allows us to 
test whether location-based visual salience has an independent effect above and beyond what can be accounted 
for by observers’ tendency to look at the centre of scene images, where high-salience items oftentimes appear. 
In addition, we can investigate age-related differences. In another set of analyses, we extended this approach by 
using object-based scene parcellation instead of a grid. With this object-based GLMM approach, we can analyse 
the independent contribution of object-based visual salience and other object properties (size, eccentricity) to 
object prioritization for gaze guidance19, and how these effects depend on age group. We extended our open-
source Python toolbox GridFix49 to include the data processing steps for the object-based analyses presented here.

In sum, our approach enables us to compare age-related changes in the effects of object salience on fixa-
tion guidance (object GLMM) to those of local, object-agnostic scene salience (grid GLMM). For older adults, 
location-based visual salience should have a smaller effect on fixation probability than for younger adults45. If the 
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influence of visual salience on fixation guidance generally decreases with age, effects of object salience on object 
prioritization should decrease as well. Alternatively, if older observers rely more heavily on objects and high-level 
structure, effects of object-based and location-based scene salience should be differentially modulated by age.

Results
Data from 42 young and 34 older adults were analysed. Every participant viewed 150 colour photographs of 
natural scenes (see Fig. 1 for an example) for 6 s each.

Memory test performance and basic eye‑movement measures.  In a first step, we analysed par-
ticipants’ responses to the memory test questions that occurred after 20% of the trials. The questions were yes/
no questions that were related to objects in the scenes (e.g., “Was there an oven mitt?”). All observers had a 
positive d’, which is indicative of above-chance performance (young: M = 1.54, SD = 0.45, range: 0.67 to 2.33; 
old: M = 1.33, SD = 0.47, range: 0.27 to 2.13). There was no significant difference between the two age groups, 
t(69.8) = 1.97, p = 0.053. Observers in both groups applied conservative criteria c; that is, they had the tendency 
to rather classify a present item as absent (miss) than vice versa (false alarm). On average, older observers 
applied a more conservative criterion (M = 0.67, SD = 0.38, range: − 0.44 to 1.32) than young observers (M = 0.45, 
SD = 0.34, range: − 0.33 to 1.19), t(66.8) = 2.68, p = 0.009.

To characterize the eye-movement behaviour of young and older adults at a basic level, we calculated their 
mean number of fixations per trial, along with their mean fixation durations and saccade amplitudes (Table 1). 
There were no significant differences between the age groups on number of fixations (t(66.5) = 0.29, p = 0.773), 
fixation duration (t(57.18) = − 0.6, p = 0.553) or saccade amplitude (t(71.23) = 1.28, p = 0.204). However, the dis-
tributions of fixation durations and saccade amplitudes (Fig. 2) showed subtle differences between young and 
older adults, which suggests that there may be systematic differences in viewing behaviour which are not well 
captured by mean-level analyses.

Effects of object‑based visual salience on fixation selection.  The aim of the next analysis was to 
examine the effects of object eccentricity, size, and salience on fixation probability, and whether these effects 
differed between young and older adults. First, object eccentricity was included to account for observers’ cen-
tral fixation bias. Based on our previous investigations49, an anisotropic Euclidean central-bias predictor was 
included in the GLMM (see “Methods” for details). Second, object size was defined as the log-transformed area 
(number of pixels) of the object’s bounding box (Fig. 1b). Third, object salience was defined as the mean over the 
normalized saliency map’s values within the object’s bounding box (Fig. 1c). Figure 3 shows the distribution of 
object properties for 1032 annotated objects (see “Methods” for additional details).

The three object-related input variables were measured on a continuous scale. Age group is a categorical 
variable, which was treatment-coded (reference category: young adults). Differences between young and older 
adults were tested through interactions between age group and a given continuous predictor. Thus, the GLMM 
included eight fixed effects (intercept, three main effects, four interaction coefficients).

Figure 1.   Real-world scene with all fixations from all 76 observers overlaid as yellow dots (a) and with tagged 
object bounding boxes represented by yellow rectangles (b). The salience map (Adaptive Whitening Saliency) 
for this image is shown in (c), where brighter colours correspond to higher visual salience; the object bounding 
boxes from (b) are additionally displayed. The depicted photograph was taken by George L. Malcolm.

Table 1.   Mean (and standard deviation) general scanning behaviour per participant for young and older 
adults.

Number of fixations per trial Fixation duration (ms) Saccade amplitude (°)

Age group
Young adults 21.03 (1.91) 248.39 (23.76) 4.68 (0.56)

Older adults 20.9 (2.16) 252.49 (33.91) 4.52 (0.55)
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The GLMM results are summarized in Table 2, and the fixed-effects estimates are visualized in Fig. 4 (red 
bars in both panels). Dependent variable is the probability of object fixation (1 yes, 0 no) in logit space. The 
intercept in the GLMM represents the overall fixation probability. Compared to the reference group of young 
adults (b = − 0.2278, SE = 0.071, z = − 3.207, p = 0.001), the model intercept was significantly lower for older adults 
(b = − 0.208, SE = 0.0865, z = − 2.406, p = 0.016). The fact that the intercept for the group of young adults is signifi-
cantly different from zero has no interpretative meaning. The logit value of − 0.23 corresponds to a probability of 
0.44. For the older adults, the actual coefficient for the intercept can be derived by summing the coefficient for 
young adults (− 0.2278) and the interaction coefficient (− 0.208). The interaction coefficient is a difference score, 
describing the difference between older and young adults. Converting the summed value to a probability value, it 
becomes clear that the overall fixation probability was reduced to 0.39 for the group of older adults. These seem-
ingly low probability values for both participant groups do not imply that more than half of the annotated objects 
were never fixated; instead, these values indicate that not every participant fixated every object. The question 
then arises: what object properties determine whether some objects are prioritized over others?

Owing to the central bias, fixation probability was influenced by object eccentricity. Thus, young adults fixated 
centrally located objects more frequently than distant objects (b = − 0.1795, SE = 0.0434, z = − 4.131, p < 0.001), 
and this effect did not differ between age groups (b = 0.033, SE = 0.0409, z = 0.807, p = 0.420). Even if saccades 
were generated randomly, we would observe more fixations on large objects than on small objects. Therefore, it is 
not surprising that young adults’ probability of fixating objects significantly increased with increasing object size 
(b = 1.028, SE = 0.0403, z = 25.485, p < 0.001). However, this effect was stronger for older adults, that is they fix-
ated larger objects disproportionally more often than smaller objects (b = 0.1567, SE = 0.032, z = 4.901, p < 0.001). 
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saccade amplitudes (b) are shown. The vertical lines represent the corresponding means.
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Importantly, object salience predicted gaze guidance above and beyond object size and eccentricity. Young adults 
fixated highly salient objects more frequently than objects with low visual salience (b = 0.3823, SE = 0.0384, 
z = 9.949, p < 0.001). Interestingly, this effect was significantly stronger for older adults (b = 0.0523, SE = 0.0219, 
z = 2.387, p = 0.017).

Object‑based fixation times.  According to the previous analysis, older adults had a reduced overall 
probability of fixating objects, without having a stronger central bias. Possibly, older adults engage longer with 
selected objects than young adults. To test this, we analysed two measures of fixation times. First-fixation dura-
tion is the duration of the initial fixation on the object, whereas first-pass gaze duration is the sum of all fixation 
durations from first entry to first exit52,53. Thus, gaze duration includes the duration of all immediate object 
refixations. The linear mixed model for each measure had the same fixed-effects structure as the object GLMM. 
Fixation times were log-transformed. The results are summarized in Table 3, and the fixed-effects estimates are 
visualized in Fig. 5.

For young adults, all three object variables had significant effects on first-fixation durations. There was a 
significant effect of object eccentricity with longer first-fixation durations for more distant objects (b = 0.0221, 
SE = 0.0055, t = 4.003). Moreover, there was a significant negative effect of object size with shorter first-fixation 
durations for larger objects (b = − 0.0122, SE = 0.0045, t = − 2.726). Interestingly, there was also a significant posi-
tive effect of object salience with longer first-fixation durations for higher-salience objects (b = 0.0225, SE = 0.0046, 
t = 4.933). None of the interactions with age group were significant (Table 3), indicating that there was no evidence 
for significant differences between young and older adults for first-fixation durations.

Gaze durations for young adults were longer for more eccentric objects (b = 0.0314, SE = 0.0075, t = 4.176). 
They were also longer for larger objects and for higher-salience objects (object size: b = 0.0599, SE = 0.0079, 
t = 7.579, object salience: b = 0.039, SE = 0.0075, t = 5.207). The results for the intercept show that gaze durations 
were significantly longer for older adults compared with young adults (b = 0.1046, SE = 0.026, t = 4.025). Moreover, 
the effect of object eccentricity was significantly larger in older adults (b = 0.0153, SE = 0.0071, t = 2.165). The size 
effect was significantly larger in older adults too (b = 0.043, SE = 0.0078, t = 5.478), whereas the salience effect did 
not differ for young and older adults (b = − 0.0008, SE = 0.006, t = − 0.128).

Distributions of within‑object fixation locations: preferred viewing location.  With the object 
GLMM we examined variables that affect whether objects are selected for fixation and found age-related dif-
ferences in this regard. In addition, we analysed where viewers fixate within objects, once they are selected. 
Analyses considered initial fixations in first-pass viewing; that is, cases in which a saccade was launched from 
outside the object and led to a within-object fixation, irrespective of whether it was followed by an immediate 
refixation or not. Annotated objects differed in their sizes (width, height). Moreover, individual fixations differed 
with regard to the direction from which the eyes entered the object, though it has previously been demonstrated 
that most saccades enter the object from the left or from the right5. For analyses, landing positions within objects 
were normalized according to the size of the object5,9 and according to where the saccade originated8. These 
normalized x- and y-coordinates ranged from − 0.5 to 0.5, with 0 corresponding to fixations at the centre of the 
object and negative and positive values representing undershoots and overshoots of object centre, relative to the 
previous fixation location.

Table 2.   Object GLMM. Age-related effects on fixation probability during scene viewing are modelled relative 
to annotated objects in scenes. Standardized coefficients (b), standard errors (SE), z- and p-values for fixed 
effects and variances and correlations for random effects are provided.

Fixed effects  Description B SE z p

Intercept Young − 0.2278 0.071 − 3.207 0.001

Intercept Old–young − 0.208 0.0865 − 2.406 0.016

Central bias Young − 0.1795 0.0434 − 4.131  < 0.001

Central bias Old–young 0.033 0.0409 0.807 0.420

Object size Young 1.028 0.0403 25.485  < 0.001

Object size Old–young 0.1567 0.032 4.901  < 0.001

Object salience Young 0.3823 0.0384 9.949  < 0.001

Object salience Old–young 0.0523 0.0219 2.387 0.017

Random effects

Groups Name Variance Correlation

Subject

Intercept 0.13466 Intercept

Central bias 0.02521 0.73 Central bias

Size 0.01161 − 0.09 0.14 Size

Salience 0.00288 0.12 − 0.28 0.17

Object Intercept 1.03523 – – –

Scene Intercept 0.09261 – – –
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The distributions of normalized landing positions are depicted in Fig. 6; for visualization purposes, the data 
were collapsed across all object sizes. First, the horizontal and vertical components of within-object fixation loca-
tions were considered separately, which allows for a direct comparison of densities for young and older adults 
(Fig. 6a). To accommodate the two-dimensional nature of the data, 2D density plots are additionally presented 
(Fig. 6b). The data revealed a peak (Fig. 6a) and/or a “hot spot” (Fig. 6b) close to the centre of the object, with 
a slight tendency to undershoot the centre. This PVL for objects in scenes was found for both young and older 
adults.

For statistical evaluation, two linear mixed models were specified, one each for horizontal and vertical normal-
ized landing positions. Each model included the intercept, object size and their interactions with age group as 
fixed effects. As in the other object-based mixed models, object size was included as log-transformed object area, 
rather than including object width/height in the models testing normalized horizontal/vertical landing positions, 
respectively. The amplitude of the incoming saccade was not included as additional fixed effect because launch 
site, landing site and object centre do not in general fall on a single straight line. This would make the choice of 
an appropriate projection in 2D space a non-trivial endeavour, which is further complicated by the distortion 
of the objects’ aspect ratio when mapping it to the normalized coordinate frame used for representing the PVL.

The results are summarized in Table 4. For the reference group of young adults, the intercept was signifi-
cantly smaller than 0 for both horizontal (b = − 0.0509, SE = 0.0051, t = − 9.952) and vertical landing positions 
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(b = − 0.0294, SE = 0.0069, t = − 4.232). Due to the way landing positions were normalized, these results imply 
that the eyes tended to undershoot the centre of the object both horizontally as well as vertically. Interestingly, 
there were no significant differences between young and older adults (horizontal: b = 0.0102, SE = 0.007, t = 1.456, 
vertical: b = − 0.0109, SE = 0.0095, t = − 1.144). Moreover, there was a significant negative effect of object size such 
that larger objects were associated with smaller normalized landing positions, for both horizontal (b = − 0.0113, 
SE = 0.0027, t = − 4.238) and vertical dimensions (b = − 0.0173, SE = 0.0033, t = − 5.227). Thus, larger objects were 
associated with a stronger tendency to undershoot the centre of the object. Again, there was no evidence for 
significant differences between young and older adults (horizontal: b = − 0.0023, SE = 0.0027, t = − 0.861, vertical: 
b = 0.0053, SE = 0.0031, t = 1.728).

Effects of location‑based visual salience on fixation selection.  To compare effects of object-based 
and location-based visual salience, the object GLMM was complemented by a grid GLMM48. To this end, we 
applied an 8 × 6 grid such that each image and each AWS map was divided into 48 square patches. The grid 
GLMM allowed us to assess the effect of image salience across the entire scene, and without recurrence to 
objects. For this analysis approach, fixations were assigned to cells of an arbitrary grid rather than objects. Since 
all cells in the grid were of equal size, the GLMM did not include a fixed-effect for size. Otherwise, the fixed-
effects structure for the grid GLMM was identical to the object GLMM.

The GLMM results are summarized in Table 5, and the fixed-effects estimates are visualized in Fig. 4 (blue 
bars in both panels). As before, the intercept in the GLMM represents the overall fixation probability, for which 
there was no significant difference between young and older observers (Table 5). On the probability scale, mean 
fixation probabilities were 0.220 and 0.224 for young and older adults, respectively. Reflecting the central bias, 
fixation probability was influenced by grid cell eccentricity. Specifically, young adults fixated distant cells less 
frequently than centrally located cells (b = − 0.5665, SE = 0.0364, z = − 15.564, p < 0.001), with no significant dif-
ference between age groups (b = 0.0424, SE = 0.0425, z = 0.996, p = 0.319). Importantly, cell salience influenced 
fixation probability beyond physical cell location in the scene in that cells with higher average AWS saliency were 
fixated more often (b = 0.6830, SE = 0.0289, z = 23.617, p < 0.001). As in the object GLMM, the effect of visual sali-
ence on fixation probability was differentially modulated by age, but now in the opposite direction. Thus, older 
adults showed a reduced effect of location-based visual salience (b = − 0.0399, SE = 0.0150, z = − 2.653, p = 0.008).

Discussion
When inspecting images of real-world scenes, we move our eyes in a systematic manner. A key question regarding 
eye-movement control in scenes concerns the unit of saccadic selection. In principle, this selection can be based 
on localized features or on objects. A popular approach has been to extract various features at image locations 
and to investigate how these features drive the eyes in a bottom-up manner54. However, in recent years there 
have been a number of studies investigating the role of object-based selection5,17,19.

In the present study, we compared effects of location-based and object-based visual salience for young and 
older adults. The grid GLMM allowed us to assess the effect of image salience across the entire scene. For the 
sample of young adults, we had previously shown that location-based visual salience has an independent effect 

Table 3.   Fixation times for objects in scenes. Significant coefficients are set in bold (|t|> 1.96). Results from 
two linear mixed models, fitting log-transformed first-fixation durations and gaze durations on objects. 
Standardized coefficients (b), standard errors (SE), and t-values for fixed effects and standard deviations (SD) 
for random effects are provided.

First fixation duration Gaze duration

Fixed effects B SE t B SE t

Intercept: young 5.4532 0.0181 301.878 5.609 0.0187 300.298

Intercept: old–young 0.0398 0.0265 1.5 0.1046 0.026 4.025

Eccentricity: young 0.0221 0.0055 4.003 0.0314 0.0075 4.176

Eccentricity: old–young 0.0056 0.007 0.801 0.0153 0.0071 2.165

Size: young − 0.0122 0.0045 − 2.726 0.0599 0.0079 7.579

Size: old–young 0.004 0.0051 0.781 0.043 0.0078 5.478

Salience: young 0.0225 0.0046 4.933 0.039 0.0075 5.207

Salience: old—young − 0.0097 0.005 − 1.939 − 0.0008 0.006 − 0.128

Random effects

Groups Name SD Name SD

Subject

Intercept 0.11310 Intercept 0.10987

Object eccentricity 0.02193 Object eccentricity 0.01710

Object size 0.00610 Object size 0.02234

Object salience 0.00237 Object salience 0.00174

Object Intercept 0.08463 Intercept 0.17556

Image Intercept 0.02023 Intercept 0.03719
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above and beyond what can be accounted for by the central fixation bias49. Here, we demonstrate that this effect 
is significantly smaller in older adults, which accords with previous research45. The object GLMM allowed us to 
test the hypothesis that visual salience aids prioritization among objects19. Both young and older adults selected 
highly salient objects more frequently for fixation than objects with low visual salience, while this effect was 
somewhat larger for older adults. In addition, we analysed where the first fixation on an object was placed within 
the object; a PVL close to the centre of the object5 was found for both young and older adults alike.

The question of what exactly an object is turns out to be less straightforward than our daily experience with 
objects may suggest. What constitutes an object depends on physical properties of the stimulus; however, it also 
depends on how we parse a scene in line with our behavioural goals55. Generally put, objects can be described as 
entities that can be individuated within a scene and potentially carry meaning. Object-based effects on eye guid-
ance in scene perception have long been known to exist56. For example, research has shown how easily humans 
search for common objects in complex real-world scenes57,58. Moreover, a classic way to explore the influence 
of overall scene semantics on fixation selection has been to compare eye movements to objects that are either 
semantically consistent or inconsistent within a given scene context53,59–61.

Cognitive relevance theory is a theoretical account that emphasizes the importance of scene and object 
meaning62,63. In this view, the scene image is (only) needed to generate a visuospatial representation of potential 
saccade targets. Importantly, image features are thought to provide a flat (i.e., unranked) landscape of potential 
targets rather than a peaked salience map. Instead, potential saccade targets are ranked on the basis of relevance 
to the observer’s task and behavioural goals. The present results suggest that (object-based) visual salience does 
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Figure 5.   Fixed-effects results for linear mixed models fitting log-transformed fixation times for objects in 
scenes. One model evaluated first-fixation duration (green bars), the other one gaze duration (orange bars). Both 
models compared data for young and older adults. (a) Effects that were estimated for the young adults; the large 
coefficients for the intercept were not visualised (but see Table 3). (b) Difference scores, describing the difference 
between older and young adults. Error bars indicate 95% confidence intervals. Stars denote coefficients that were 
significantly different from zero (* |t|> 1.96, ** |t|> 2.576, *** |t|> 3.291).
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contribute to this ranking process, along with other variables, thereby challenging the assumption of a “flat” 
landscape of saccade targets.

Early presentations of the cognitive relevance account put emphasis on objects as saccade targets5,63. More 
recently, the cognitive relevance approach has been complemented by the meaning map approach64,65. Con-
ceptually, a meaning map is analogous to a salience map, the difference being that it represents the spatial 
distribution of semantic rather than visual features. To create a meaning map, the image is divided into circular 
overlapping patches64. To measure the meaningfulness of these scene patches, human observers provide ratings 
which are then combined into a meaning map. Since meaning maps and salience maps are coded in the same 
format, researchers can assess the relative contributions of visual and semantic salience to fixation selection in 
scenes. The key result of several studies is that meaning as defined by meaning maps is more important for this 
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Figure 6.   Preferred viewing location for objects in scenes. Analyses were based on initial fixations on objects. 
(a) Distributions of the horizontal (left panel) and vertical (right panel) components of normalized within-
object landing positions are directly compared for young adults (solid line) and older adults (broken line). In 
both panels, the vertical red dotted line marks a landing position at the centre of the object. (b) Corresponding 
smoothed two-dimensional viewing location histograms for young adults (left panel) and older adults (right 
panel). The frequency information is displayed as variations in colour, with colours ranging from blue (few 
fixations) to yellow (many fixations) and passing through green and orange. The intersection of the two red 
dotted lines marks the centre of the object. See text for details on the normalization procedure.
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selection process than visual salience65. It is important to note that the patches were presented independently of 
the scenes from which they were taken and independently of any task besides the rating itself. The correlation 
between such context-free meaning and visual salience is high64. Challenging the meaning map approach in its 
current form, results from a recent study suggest that meaning maps index the distribution of high-level visual 
features rather than meaning66.

The larger problem is that meaning can be defined in many ways60. Complicating things further, the meaning 
maps for young and older adults may be different. Young and older adults may also disagree on how meaningful 
or important an object is with respect to the global context of the scene. Therefore, we chose to remain agnostic 
about scene semantics but acknowledge that future work should take scene and object meaning into account. 
Being agnostic about semantics also provides one major rationale for using the AWS20,67 model rather than a 
more recent DNN-based model68. As the DNN-based models usually pre-train their lower layers on object clas-
sification tasks, it is likely that they carry some implicit semantic representation in these layers. In contrast, AWS 
implicitly carries information about objectness, but this is rather related to their “Gestalt” (in a broad sense) 
than to their meaning.

When dividing scene images into arrays of either circular patches64 or quadratic grid cells48 for data analysis 
reasons, researchers use procedures that are indifferent to an important theoretical question: What is the unit 
of the selection process? This is particularly evident in the context of meaning maps which, by design, decouple 
meaning from objects.

The object-based effects on fixation probability and analyses of within-object fixation locations reported here 
lend further support to the view that objects are important units of saccade targeting and, by inference, atten-
tional selection in scene perception5,11,17. The results also allow for reconciling the salience view with the object 
view: although objects dominate over visual salience in selecting regions to be fixated19, objects themselves are 

Table 4.   Preferred viewing location for objects in scenes. Significant coefficients are set in bold (|t|> 1.96). 
Results from two separate linear mixed models, fitting horizontal and vertical landing positions for initial 
fixations on objects. Standardized coefficients (b), standard errors (SE), and t-values for fixed effects and 
standard deviations (SD) for random effects are provided.

Horizontal Vertical

Fixed effects B SE t B SE t

Intercept: young − 0.0509 0.0051 − 9.952 − 0.0294 0.0069 − 4.232

Intercept: old–young 0.0102 0.007 1.456 − 0.0109 0.0095 − 1.144

Object size: young − 0.0113 0.0027 − 4.238 − 0.0173 0.0033 − 5.227

Object size: old–young − 0.0023 0.0027 − 0.861 0.0053 0.0031 1.728

Random effects

Groups Name SD Name SD

Subject
Intercept 0.02793 Intercept 0.03965

– – Object Size 0.00665

Object Intercept 0.06035 Intercept 0.08033

Table 5.   Grid GLMM. Age-related effects on fixation probability during scene viewing are modelled with 
reference to equal-sized, square cells in a grid. Standardized coefficients (b), standard errors (SE), z- and 
p-values for fixed effects and variances and correlations for random effects are provided.

Fixed effects B SE z p

Intercept: young − 1.2669 0.0333 − 38.084  < .001

Intercept: old–young 0.0223 0.0406 0.549 0.583

Central bias: young − 0.5665 0.0364 − 15.564  < .001

Central bias: old–young 0.0424 0.0425 0.996 0.319

Salience: young 0.6830 0.0289 23.617  < .001

Salience: old–young − 0.0399 0.0150 − 2.653 0.008

Random effects

Groups Name Variance Correlation

Subject

Intercept 0.02995 Intercept

Central bias 0.03294 0.80 Central bias

Salience 0.00323 0.32 0.32

Scene

Intercept 0.05510 Intercept

Central bias 0.07648 0.38 Central bias

Salience 0.10889 − 0.32 0.30
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prioritized by salience. Moreover, complementary analyses of fixation durations suggest that object salience did 
not only affect saccade target selection but also object encoding during fixation.

In previous studies, evidence for object-based selection in scenes was found for different task instructions5,19. 
In addition, studies in which a scene memorisation task was compared with an aesthetic preference judgement 
task have revealed only subtle differences in eye-movement behaviour64,69–71. Nevertheless, we cannot exclude the 
possibility that our object-related memory questions have biased participants toward fixating individual objects in 
the scenes. Moreover, it is known that effects of image salience differ for different tasks72,73. We leave it as a ques-
tion for future research to determine whether the pattern of results reported here is modulated by task demands.

From a computer vision perspective, an apparent disadvantage of the object view, which it shares with the 
meaning map approach, is that it requires human annotators and/or raters. By contrast, both salience maps 
as well as proto-objects are image computable. Therefore, from a computer vision perspective it may be suf-
ficient to establish correlations between salient locations and, for example, subjective interest points74, or to use 
proto-objects as proxy for objects23. However, from a cognitive science perspective, what constitutes the unit of 
selection during scene perception is an important question for theory building that should not be deferred for 
computational convenience.

In the present study, we also investigated age-related effects by comparing eye movements of young and older 
adults. Whereas there were no mean-level differences between young and older adults for number of fixations, 
fixation durations, and saccade amplitudes, the mixed-model analyses revealed systematic differences in viewing 
behaviour. The results from both grid and object GLMMs suggest that age does not modulate the central bias 
of fixation. This is in agreement with the previously reported finding that young and older adults show similar 
levels of explorative viewing behaviour overall45. The object-based results showed that, on average, observers 
fixated less than half of the annotated objects during the 6-s scene viewing period. Compared with young adults, 
older adults fixated significantly fewer of the annotated objects, but showed stronger effects of object size and 
salience on fixation probability.

In the GLMMs, the intercept represents the overall probability of fixating an object and/or a grid cell, and 
a smaller intercept should be associated with a larger central bias48. Why did we not observe this in the object 
GLMM? Object-based analyses of first-pass fixation times revealed that gaze durations, but not first-fixation 
durations, were longer for older adults than for young adults. This implies that older adults made more imme-
diate object refixations than young adults. Thus, older adults engaged longer with selected objects than young 
adults, which may explain the finding that older adults fixated fewer of the annotated objects without exhibiting 
a stronger central bias.

Effects of visual salience on fixation probability showed an age-related dissociation: compared with young 
adults, older adults showed a reduced effect of location-based salience, but an increased effect of object-based 
salience. While a reduced effect of location-based visual salience is compatible with the idea that older adults 
rely more strongly on top-down as opposed to bottom-up control45,75, the object-based effects are less intuitive. 
Objects can be considered as high-level cues for selection. According to cognitive guidance models, selecting 
objects for fixation is a top-down process. Based on the present results, we argue that low-level variables like 
object size and salience also contribute to this selection process. Interestingly, older adults were more strongly 
guided by object size and salience than young adults.

The spatial analyses were complemented by temporal analyses related to objects that were fixated. In scene-
perception research, gaze duration has been used as a measure of object encoding53,59. For young adults, gaze 
durations were longer for larger objects76. There was also an independent effect of object salience, with longer 
gaze durations for higher-salience objects. First-fixation durations were also modulated by object salience. In 
principle, the salience effects are consistent with previous location-based fixation-duration analyses77,78. Older 
adults showed a stronger effect of object size on gaze duration, whereas the effect of object salience did not differ 
between age groups.

Since the selection of the next fixation target is driven by information in parafoveal and peripheral vision15,79, 
effects of object size and salience may be associated with age-related changes in visual information processing. 
When arbitrary targets were embedded at 10° eccentricity in images of everyday scenes, older adults’ detection 
performance decreased with increasing age80. Moreover, using simple stimuli and fixation tasks it has been shown 
that older adults have a smaller useful field of view81 and are more susceptible to visual crowding82. However, 
whether and how these effects generalize to active scene perception is currently an open research question.

Research on scene perception has established a PVL for objects in scenes5. In previous research, the PVL 
was modulated by object size and launch site distance11, whereas it was unaffected by the lack of high-resolution 
information in central vision15. Therefore, in a sense, the PVL can be seen as a marker of extrafoveal processing 
abilities. The present data revealed a general tendency to undershoot the centre of objects, which was more pro-
nounced for larger objects. The undershoot tendency observed for objects in scenes5 is consistent with findings 
from basic oculomotor research12,13. No differences between young and older adults were found. In future work, 
object width and height could be experimentally manipulated to investigate whether older adults are impaired 
in targeting objects that are particularly small or far away.

The present study focused on mean differences between young and older adults. Notably, the GLMM 
approaches used here also allow for investigating individual differences, by estimating variance/covariance 
components of subject-related random effects49. Hence, our method can readily be extended to the emerging 
question of individual differences in gaze behaviour when viewing naturalistic scenes83,84.
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Methods
Participants.  Analyses were based on data from a corpus of eye movements during scene viewing and sen-
tence reading. Forty-two young adults who were students at the University of Edinburgh and 34 older adults 
from the community participated in the eye-tracking experiment. The young adults (8 men and 34 women) 
averaged 22.1 years of age (range = 18 years to 29 years), and the older adults (17 men and 17 women) averaged 
72.1 years of age (range = 66 years to 83 years). All participants had normal or corrected-to-normal vision by 
self-report. Participants’ visual abilities were not independently assessed. Whereas this is a potential limitation 
of our study, meta-analytical results suggest that age-related differences in visual acuity do not moderate age-
related differences in higher cognitive processing85,86. Participants gave written informed consent and received 
monetary compensation for their participation. The study was conducted in accordance with the Declaration of 
Helsinki and approved by the Psychology Research Ethics Committee of the University of Edinburgh.

The present analyses were based on the scene-viewing data. The data from the young adults were previously 
used to demonstrate how computational models of visual salience can be evaluated and compared by combining 
a-priori parcellation of scenes with GLMM49.

Experimental setup and paradigm.  Eye movements were recorded using an EyeLink 1000 Desktop 
mount system (SR-Research, Ottawa, ON, Canada). It was equipped with the 2000 Hz camera upgrade, allowing 
for binocular recordings at a sampling rate of 1000 Hz for each eye. Data from the right eye were analysed. The 
experiment was implemented with the SR Research Experiment Builder software.

Each participant viewed 150 colour photographs of real-world scenes (Fig. 1a), which were presented in 
random order. The scene images were displayed on a 21-inch CRT monitor at a screen resolution of 800 × 600 
pixels (width × height). Head position and viewing distance were fixed at 90 cm from the screen using a chin 
rest. Accordingly, scenes subtended 25.78° × 19.34°. Before the onset of each scene, a central fixation check was 
performed. Afterwards, the scene was displayed for 6 s during which participants were free to move their eyes. To 
provide a common task across participants, they were informed that, on a given trial, they would view a real-life 
scene and that this may be followed by a question asking them to recall a specific detail of the scene. On 30 trials, 
a test question asking about the presence or absence of a particular object appeared after scene presentation to 
probe participants’ scene encoding.

Evaluation of memory test performance.  To evaluate participants’ responses to the memory test ques-
tions, we calculated signal detection theory measures87; that is, observers’ sensitivity (d’) and criterion (c). To 
avoid numerical issues with perfect false-alarm or hit rates, we applied the correction introduced by Hautus88 in 
all participants.

Gaze data processing.  Raw gaze data were converted into fixation sequence reports using the SR Research 
Data Viewer software. The initial, central fixation in a trial was excluded from all analyses. The last fixation in a 
trial happened when we removed the scene stimulus. The participant determined the location of the last fixation 
prior to the start of that fixation. Therefore, we included the last fixation in all analyses involving fixation posi-
tions, whereas we excluded it from analysis of fixation durations. Data processing was originally programmed 
in MATLAB (The MathWorks, Natick, MA, USA) and then re-implemented and generalized in Python (version 
3.4; http://pytho​n.org) as an extension to our open-source toolbox GridFix (version 0.3; http://doi.org/10.5281/
zenod​o.40429​96).

Computation of salience maps and object properties.  Salience maps were computed using the AWS 
model20,67. The AWS model relies on simple visual features, such as local colours and edge orientations, to predict 
fixations. In addition, it includes a statistical whitening procedure to improve performance. The AWS model was 
chosen because it performed well in previous model evaluations4 and because it was used in some of our previ-
ous studies19,49. The saliency maps from the AWS model were generated using the MATLAB code provided by 
the authors at http://perso​al.citiu​s.usc.es/xose.vidal​/resea​rch/aws/AWSmo​del.html. Parameters were kept at the 
authors’ default values, with the exception of the output scaling factor which was set to 1.0 instead of the default 
value of 0.5 to compute maps at full image resolution (Fig. 1c). By design of the AWS algorithm, maps are nor-
malized to unit integral (i.e., the sum over all pixels equals 1).

An independent annotator labelled objects in the scenes by providing object bounding boxes and object names 
using custom-made software. Whereas the bounding boxes were used for object-based eye-movement analyses, 
the names of the objects were used to construct the memory test questions. For a given object, a bounding box 
was drawn as the smallest possible rectangle encompassing the object (Fig. 1). The annotator was instructed 
to select objects that were of moderate size and were not occluded by other scene elements. Moreover, objects 
were chosen such that their spatial extension did not include the vertical midline of the scene. A total of 1032 
objects were tagged across the 150 scene images. The mean width and height of annotated objects were 2.5° 
(SD = 1.4°) and 2.6° (SD = 1.5°), respectively. The mean Euclidean distance from object centre to scene centre was 
8.6° (SD = 2.6°). Figure 7a shows the distribution and size of object bounding boxes across all scenes. Figure 7b 
additionally presents a summed object map. For a given image, all image pixel locations that belonged to an 
annotated object were coded with 1, whereas all other locations were coded with 0. These pixel-based maps were 
summed across all images to obtain a single object map. In Fig. 7b, this map is shown as heat map, with colours 
ranging from blue (no objects) to yellow (many objects).

To quantify the arrangement of objects within scenes, inter-object distances were determined. The distance 
between objects was calculated as the Euclidean distance between object centres (in pixels). For k objects in 
a scene, there are k(k-1)/2 unique distances between objects. Next, for each scene we computed the mean 

http://python.org
http://doi.org/10.5281/zenodo.4042996
http://doi.org/10.5281/zenodo.4042996
http://persoal.citius.usc.es/xose.vidal/research/aws/AWSmodel.html
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inter-object distance (Fig. 7d). For most images, the mean distances are of the order of 300 to 400 pixels, which 
indicates a fairly homogeneous spread of the annotated objects per scene.

The number of annotated objects varied across scenes (Fig. 7c); on average, there were 6.9 objects per scene 
(SD = 2.1). We did not aim at an exhaustive object annotation. To approximate the density of objects in the scene, 
we used the Feature Congestion measure of visual clutter89. For each image, a scalar representing the clutter of 
the entire image was computed, with larger values indicating more visual clutter. Whereas our scenes varied 
in clutter, there was no systematic relationship between the number of annotated objects in a scene and scene 
clutter (Fig. 7e).

Given that the AWS map values are normalized to sum to 1, the mean salience for each scene is 1/(800 × 600). 
The mean salience values for the annotated objects exceed the scene mean for 753 out of 1,032 objects (73%). 
A one-sample t test showed that object-based mean salience was significantly larger than scene-based mean 
salience, t(1031) = 21.37, p < 0.001. Moreover, we determined the maximum salience value for each scene and 
computed how often this maximum was part of an annotated object; this was the case for 39 out of 150 scenes 
(26%). Overall, this agrees with results from previous studies which showed that annotators tend to label “inter-
esting” objects that coincide with salient locations in the image17,90. It is important to note that our objects showed 
appreciable variability in their salience (Fig. 3c).

Bounding boxes for each image were imported into GridFix and converted into binary masks, allowing for 
easy selection of all pixels corresponding to a bounding box in both images and salience maps. The GridFix tool-
box also allows for using more fine-grained outlines of objects, such as tight object boundary polygons. When 
comparing the PVL for objects in scenes for annotations using polygons vs. boxes, Borji and Tanner10 found no 

Figure 7.   Objects in scenes. (a) Distribution and size of 1,032 object bounding boxes (black) across 150 scene 
images, with the scene grid (blue) overlaid as reference. (b) Pixel-based object map representing the distribution 
of all annotated objects across all scenes. (c) Histogram of the number of objects per scene. (d) Histogram of 
the mean inter-object distances per scene. (e) Scatter plot depicting the relationship between the number of 
annotated objects in a scene and the clutter associated with the scene; a linear regression line is added in blue. 
See text for details.
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qualitative differences. Therefore, we used object bounding boxes. Favouring conservative hypothesis testing, 
we refrained from adding a buffer around the object for data analysis10.

Statistical analysis.  Statistical analyses were conducted using the R system for statistical computing (ver-
sion 3.6.0; R Core Team 2019). (G)LMM were fit to the data using the (g)lmer programme of the lme4 
package91 (version 1.1–21), with the bobyqa optimizer (lmer) or a combination of Nelder-Mead and bobyqa 
(glmer). GLMMs were fit by Laplace approximation. LMMs were estimated using the restricted maximum 
likelihood (REML) criterion, which is the default model-fitting approach.

Fixation probability was measured by a binary response variable: for a given observer and image, we coded 
whether a given object and/or grid cell was fixated (1) or not fixated (0). The data were analysed with binomial 
GLMMs for which we used the logit link function as the default for glmer. In binomial logit mixed models, 
the parameter estimates are obtained on the log-odds or logit scale, and thus represent the log odds of selecting 
a particular competing object or grid cell92.

Data were modelled at the level of individual observations. For grid-based analyses, the number of matrix 
entries is determined by the number of participants × number of scene images × (number of grid cells − 1); the 
grid cell on which the very first fixation fell was excluded48,49. The GridFix toolbox creates the observation matrix 
based on trials for which fixation data are available. Given that there were 10 missing trials in the data set, the 
observation matrix contained 535,330 rows for the grid-based analyses. For the object-based analyses of fixation 
probability, the number of entries in the observation matrix is determined by the number of participants × num-
ber of annotated objects. For object-based analyses of fixation times and landing positions, the data matrix was 
reduced to fixated objects only. If the first visit to an object included the last fixation in a trial, this object was 
excluded from the analysis of fixation times. Cases in which the initial, central fixation coincided with the first 
fixation on an object were excluded from all object-based analyses (N = 15).

LMMs were used for analysing continuous response variables, specifically measures of fixation time and of 
horizontal and vertical normalized within-object landing positions.

For the (G)LMMs we report regression coefficients (b) and their standard errors (SE) along with the cor-
responding z-values (GLMM: z = b/SE) or t-values (LMM: t = b/SE). For GLMMs, p-values based on asymptotic 
Wald tests are additionally provided. For LMMs, a two-tailed criterion (|t|> 1.96) was used to determine signifi-
cance at the alpha level of 0.0593.

A mixed-effects model contains both fixed-effects and random-effects terms. For the fixed-effects structure, 
three stimulus-related input variables were considered. To account for observers’ central bias of fixation, an 
anisotropic Euclidean central-bias predictor was included49. To this end, the distance between the centre of each 
object and/or grid cell to the centre of the scene was determined, whereby vertical distances were scaled by a 
factor of 0.45. The scaling factor was applied because fixation positions in scene viewing typically show a greater 
spread of fixations horizontally than vertically94. Visual salience was defined as the mean over the saliency map’s 
values within the object’s bounding box and/or grid cell. For object-based analyses, object size was defined as 
the log-transformed area of the object’s bounding box. Stimulus-related input variables were measured within 
participants on a continuous scale. For the (G)LMM analyses, they were centred and scaled (z-transformed). 
Age group is a categorical variable. Moreover, it is a between-participants factor, since each participant can only 
belong to one age group. To include age group as predictor in the statistical models, we used treatment coding 
(aka dummy coding) with the group of young adults as the reference category. Age-related differences were 
tested through interactions between “age group” and a given continuous predictor. To give an example, for the 
fixed effect of visual salience the GLMM will first test the effect of object-based and/or grid-based salience on 
fixation probability for the young adults (simple effect). In addition, the GLMM will test whether this effect was 
significantly different for the group of older adults (interaction). The actual coefficient for the effect of salience 
in older adults can be derived by summing the simple effect coefficient and the interaction coefficient.

Inclusion of random factors allows for estimating the extent to which mean responses vary across levels of 
the random factor. Detailed considerations regarding the inclusion of random factors are provided in our previ-
ous publication49. For a given type of analysis, the random-effects structure of the mixed model was determined 
according to the study design and underlying theory. In our data, the random factor “subject” is naturally nested 
under “age group”. The random factor “object” was nested under the random factor “scene”. Subjects and scenes 
were crossed. All (G)LMMs were set up to include the “maximal” structure95 for the random factor “subject”. 
Thus, a by-subject random intercept was included along with all possible random slopes and correlation param-
eters. This way, we acknowledge that subjects may differ in their responses above and beyond belonging to their 
age group, which was modelled as a fixed effect. For object-based analyses, an additional random intercept for 
objects nested within scenes was included. By-object random slopes were not included as each individual object 
had exactly one eccentricity, one size and one salience value. Compared with objects, grid cells are arbitrarily 
chosen units. Therefore, the grid GLMM did not include a random intercept for grid cell. However, all models 
were designed to include a by-scene intercept. In the object GLMM, by-scene random slopes were not included 
as there were no compelling reasons to expect additional by-scene varying effects of object-based variables. In 
the grid GLMM, by-scene random slopes for central bias and salience as well as the correlation parameters were 
included, consistent with our previous work49.

Using Wilkinson notation96, the model formula for the grid GLMM was:

The model formula for the object-based mixed models fitting either fixation probability or fixation times was:

(1)
Fixated ∼ 1+ Age+ CentralBias+ CentralBias:Age+ Salience+ Salience:Age

+ (1+ CentralBias+ Salience|Subject)+ (1+ CentralBias+ Salience|Scene)



15

Vol.:(0123456789)

Scientific Reports |        (2020) 10:22057  | https://doi.org/10.1038/s41598-020-78203-7

www.nature.com/scientificreports/

For the analysis of within-object landing positions, object size was the only object-related input variable. 
The random-effects structure of these LMMs was further simplified in a stepwise manner by removing random 
effects for which the estimated variances were particularly small (see Table 4 for the final models that were sup-
ported by the data).

Figures 2, 3, 4, 5, 6, 7 were created with the ggplot2 package97 (version 3.2.1) supplied in R. The smoothed 
density estimates in Fig. 2 and Fig. 6a were created with the geom_density function. The smoothed two-
dimensional density estimates in Fig. 6b were created with the stat_density2d function, which uses the 
kde2d function from the MASS package; the normal reference bandwidth was used.

Data availability
The datasets analysed during the current study are available from the corresponding author on reasonable request. 
The updated open-source Python toolbox GridFix is available at https​://githu​b.com/ischt​z/gridf​ix.
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