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Summary

Lymphoid neogenesis is traditionally viewed as a pre-programmed process

that promotes the formation of lymphoid organs during development.

Here, the spatial organization of T and B cells in lymph nodes and spleen

into discrete structures regulates antigen-specific responses and adaptive

immunity following immune challenge. However, lymphoid neogenesis is

also triggered by chronic or persistent inflammation. Here, ectopic (or ter-

tiary) lymphoid organs frequently develop in inflamed tissues as a

response to infection, auto-immunity, transplantation, cancer or environ-

mental irritants. Although these structures affect local immune responses,

the contribution of these lymphoid aggregates to the underlining pathol-

ogy are highly context dependent and can elicit either protective or delete-

rious outcomes. Here we review the cellular and molecular mechanisms

responsible for ectopic lymphoid neogenesis and consider the relevance of

these structures in human disease.
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Secondary and ectopic lymphoid organs

Secondary lymphoid organs (SLOs) are responsible for

immune homeostasis and the development of adaptive

immune responses to invading pathogens.1 Here, the

accumulation of foreign antigens within the highly orga-

nized cellular architecture of SLOs facilitates antigen pre-

sentation to T and B cells and the establishment of

adaptive immunity. Encapsulated SLOs form at predeter-

mined locations during embryonic development and

include the spleen and lymph nodes. Lymph nodes are

strategically located throughout the body to monitor self

and non-self antigens displayed by antigen-presenting

cells as they are trafficking from peripheral organs and

tissue. The spleen is also important for protection against

pathogens carried in the blood. SLOs also include the

non-encapsulated mucosal-associated lymphoid tissues

that feature at barrier surfaces and include Peyer’s

patches, tonsils, nasal-associated lymphoid tissue and

bronchus-associated lymphoid tissue (BALT). These latter

types of SLOs are found in the sub-mucosal epithelium

and are responsible for preserving tissue integrity at bar-

rier surfaces by ensuring the maintenance of immune tol-

erance against protective commensal microbiota and host

responses to pathogenic insult.2

To generate fast and efficacious anti-pathogen

responses, lymphoid organs have evolved to maximize

encounters between lymphocytes and antigen-loaded anti-

gen-presenting cells. Consequently, lymphoid organs share

a cellular organization that includes a germinal centre

comprising antibody secreting and proliferating B cells

together with follicular dendritic cells (DCs); a T-cell

zone including naive cells recruited from the blood; high

endothelial venules (HEV) for lymphocyte extravasation;

and a network of stromal cells that provide chemokines

and extracellular matrix for cellular migration and struc-

tural integrity.1,3

Inflammation is the consequence of our immunological

response to infection, autoimmunity, cancer, injury and

allograft transplantation.4 Appropriate control of inflam-

mation ensures competent host defence and is governed

by cellular communication between non-haematopoietic

stromal cells, tissue-resident leukocytes and infiltrating

immune cells.4–7 However, inappropriate control, for

example during autoimmunity, results in sustained

immune responses causing chronic inflammation. With-

out therapeutic intervention, over time this inflammation

drives clinical symptoms that culminate in tissue destruc-

tion and loss of function.8 Leukocyte infiltration is classi-

cally viewed as a random, diffuse accumulation of cells

within affected tissues. However, there is emerging appre-

ciation that during chronic inflammation, infiltrating

immune cells can form highly organized aggregates of

lymphoid cells that resemble SLOs. These ectopic
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lymphoid follicles (ELFs), also known as tertiary lym-

phoid structures, can propagate local antigen-specific

responses within tissues.9,10 Occasionally, these ELFs are

named according to their site of development (e.g. indu-

cible bronchus-associated lymphoid tissue; iBALT).

Whereas SLOs develop during ontogeny, ELFs are ‘in-

duced’ in response to an inflammatory insult within tar-

get tissues. This is particularly the case where there is a

perceived need for sustained leukocyte extravasation due

to the failure to clear antigen. Such responses often occur

at sites of infection, autoimmunity, cancer, allograft rejec-

tion or continued insult from environmental irritants.

Consequently, ELFs are ‘transient’ structures, and often

resolve upon successful antigen clearance. So what con-

trols the development of these structures in inflamed tis-

sues? While the molecular signatures associated with ELFs

resemble those involved in SLO formation, the develop-

ment or maintenance of ELFs in these sites is significantly

influenced by the nature of the local tissue microenviron-

ment. For example, various novel immune subsets have

recently been identified as inducers of ELF development

that are distinct from the lymphoid tissue inducer (LTi)

cells involved in secondary lymphoid organogenesis. The

discovery of these subsets now provides new opportuni-

ties and therapeutic strategies for targeting ELF-driven

pathologies with biological drugs.

Here we review the cellular and molecular regulators

that govern ELF development, their functional impor-

tance in disease and how ELFs impact the application of

biological drug interventions in chronic disease and can-

cers.

Cellular initiators of ectopic lymphoneogenesis

Given that only a proportion of patients suffering any

particular inflammatory condition will develop ELFs – for

example, approximately 40% of patients with rheumatoid

arthritis develop synovial ELFs11 – ectopic lymphoid neo-

genesis must be controlled by a specific set of inflamma-

tory signals. Likewise, as some tissues and tumours are

more permissive to ELF development than others, the tis-

sue microenvironment must contribute defined signals

that are conducive to lymphoid neogenesis. In this regard,

the development of ELFs mimics many of the mecha-

nisms underpinning the organogenesis of SLOs (for a

comprehensive review of SLO development see refs 1,

12). Here, initiation of SLO development centres on an

interaction at the lymph node anlagen between

haematopoietic derived CD4+ CD45+ CD3� LTi cells and

lymphoid tissue organizer (LTo) cells of mesenchymal

origin. Here, LTi cells accumulate in response to the local

expression of CXCL13, interleukin-7 (IL-7) and receptor

activator of nuclear factor-jB ligand (RANKL; also called

TNFSF11), owing to the cell surface expression of CXCR5

and the IL-7 receptor (also called CD127). In response to

IL-7 and RANKL, LTi cells secrete lymphotoxin (LT)

a1b2, which engages the LTb receptor (LTbR) expressed

on LTo cells. In turn, LTo cells release the homeostatic

chemokines CXCL13, CCL19 and CCL21 in order to

recruit haematopoietic cells and up-regulate the expres-

sion of the adhesion molecules vascular cell adhesion

molecule 1, intercellular adhesion molecule 1 and muco-

sal addressin cell adhesion molecule-1 to ensure lympho-

cyte retention during SLO development.13,14 LTo cells

also secrete vascular growth factor-C, fibroblast growth

factor-2 and hepatocyte growth factor, which promote

the development of the lymphatic vasculature and

HEVs.12,14 Stromal LTo cells also differentiate into stro-

mal cell lineages including follicular DCs, fibroblastic

reticular cells and marginal reticular cells, which populate

lymph nodes and contribute to SLO function.12,15,16

There is increasing evidence that immune cells

recruited to inflammatory lesions initiate ELF develop-

ment (Fig. 1). For example, IL-17-secreting CD4 T helper

(Th17) cells have been extensively linked with ELF devel-

opment in experimental models of chronic inflamma-

tion.17 Here, the development of iBALT as a consequence

of pulmonary inflammation was dependent on the Th17

signature cytokine IL-17, which caused an LTa-indepen-
dent induction of the lymphoid chemokine CXCL13.18

This demonstrates the ability of this effector T helper cell

to initiate ELF development. Notably, the adoptive trans-

fer of in vitro generated Th17 cells into mice is also suffi-

cient to drive ELF development in a model of multiple

sclerosis.19 The expression of the cell surface glycoprotein

podoplanin (also called gp38) by Th17 cells was required

for the development of these lymphoid follicles in the

central nervous system. Indeed, mice deficient in podo-

planin, or its receptor CLEC-2, display a defect in the

development and maintenance of lymph nodes.13,19,20

Our recent study of synovial ELF development in IL-27R-

deficient mice with inflammatory arthritis identified

podoplanin-expressing T cells within synovial lymphoid

aggregates and described IL-27 as a negative regulator of

podoplanin-expressing Th17 cells.21

Recently, other cytokines linked with the IL-17/Th17

cell axis have also been associated with control of lym-

phoid neogenesis (Fig. 2). For example, IL-23 is linked

with ectopic lymphoid neogenesis in rheumatoid arthri-

tis.22 Through control of lymphoid chemokine produc-

tion in epithelial and fibroblastic stromal cells, IL-22 also

drives lymphoid neogenesis in mice following salivary

gland cannulation with adenovirus.23 Podoplanin and IL-

17 have also been linked with ectopic lymphoneogenesis

in human diseases.21,24,25

It has recently emerged that Th17-type responses are

not solely restricted to conventional T helper cells. Adult

LTi cells, a group-3 innate lymphoid cell subset, bear

many of the features of Th17 cells, which suggests an

ancestral link between these cell types.26,27 Both cells
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express the transcriptional regulator retinoic acid recep-

tor-related orphan receptor c; are responsive to IL-23 and

aryl hydrocarbon receptor ligands; and can produce IL-

17, IL-22 and granulocyte–macrophage colony-stimulating

factor.28–30 Like Th17 and fetal LTi cells, innate lymphoid

cells have been linked with lymphoid organogenesis. The

adoptive transfer of adult CD4+ CD3� LTi cells into

Cxcr5�/� mice induces the development of intestinal lym-

phoid tissues.31 Similarly, the increased availability of IL-

7 in transgenic mice has been associated with the LTi

cell-dependent development of additional Peyer’s patches,

caecal patches and de novo formation of ectopic lymphoid

organs.32 A recent study has also shown that IL-17

induces CXCL12 and iBALT development in response to

Pseudomonas aeruginosa infection, where the main source

of IL-17 was cd T cells (Tcd17 cells).33 The similarities in

effector characteristics between Th17, LTi cells and cd T

cells may therefore account for the ability of these popu-

lations to drive ELF development (Fig. 1).

T follicular helper (Tfh) cells promote B-cell activities

and support the generation of high-affinity antibodies at

germinal centres.34,35 Plasticity among effector T helper

cells may also contribute to ELF development. For exam-

ple, Th17 cells are linked with ELF development in the

central nervous system, lungs and inflamed joint tis-

sue.18,19,21 Interestingly, in the central nervous system

Th17 cells develop a ‘Tfh-like’ phenotype that may con-

tribute to ELF development and function.19 ELF develop-

ment during inflammatory arthritis is also linked with the

local expression of Th17 and Tfh effector cytokines and

transcription factors.21 Similarly, Th17 cells that home to

Peyer’s patches can acquire Tfh-like effector characteris-

tics that support antigen-specific IgA responses at germi-

nal centres.36 Here, Th17 cells recruited to the intestine

express podoplanin. Therefore, lineage plasticity may pro-

vide the ability for effector T cells to develop Tfh-like

properties that support the development, maintenance

and function of ELFs. Indeed, T helper cell plasticity is

not solely confined to Th17 cells, and both Th1 and Th2

cells retain the ability to acquire the IL-21, CXCR5, Bcl-6,

programmed cell death-1 and inducible T-cell co-stimula-

tor expression that are characteristic of Tfh cells

(Fig. 1).19,36–38 Therefore, other subsets beyond Th17 cells

may soon emerge as initiators of ELFs.

Inflammatory cells may substitute for LTi cells in ecto-

pic lymphoneogenesis, but there is increasing evidence that

stromal tissue cells also display LTo-like properties39–41. In

rheumatoid arthritis, synovial fibroblasts contribute to ELF

formation through the secretion of homeostatic chemoki-

nes such as CXCL13, CCL21 and CXCL12.5,23,42–44

Interestingly, synovial fibroblasts can also contribute to

other aspect of ELF activity, where they can produce

B-cell-activating factor and a proliferation-inducing

ligand (known as APRIL).45 These factors support
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Figure 1. Novel immune cell subsets implicated in the regulation of ectopic lymphoid follicles (ELFs). Novel innate and adaptive immune cell

subsets have recently been implicated in ELF regulation. These include the adult lymphoid tissue inducer (LTi) -like or innate lymphoid 3 cells,

interleukin-17 (IL-17) -producing cdT (Tcd17) cells, T helper type 17 (Th17) cells and follicular T helper (Tfh) cells. Here we highlight the simi-

larities in their phenotype including the cytokines involved in their development, proliferation and effector function, the receptors expressed on

the cell surface and the effector cytokines produced by these cells. Similarities in the effector characteristics of these cells may account for their

common ability to regulate ELF development or activity. TSLP, thymic stromal lymphopoietin; SCF, stem cell factor; GM-CSF, granulocyte–

macrophage colony-stimulating factor; TNF, tumour necrosis factor; PD-1, programmed cell death-1; ICOS, inducible T-cell co-stimulator.
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activation-induced cytidine deaminase (AID) expression,

which drives somatic hypermutation and antibody class-

switching in B cells.45 Here, it is important to understand

the relationship between the stromal tissue compartment

and the nature of the inflammatory infiltrate because ELFs

are not a universal feature of synovitis in inflammatory

arthritis and only occur in a certain cohort of patients.

Homeostatic chemokines in ELF development

The expression of homeostatic chemokines is increased in

tissues where ELFs have emerged in response to foreign

or auto antigens.1,9,10,12 Chemokines such as CXCL13,

CCL19, CCL21 and CXCL12 are involved not only in the

initiation of ELF development, but also in the mainte-

nance of the highly organized cellular architecture of

established ELFs and SLOs. Given that the early clustering

of LTi cells within the embryo is dependent on CXCL13,

and that CXCL13 is detected early in the developing

lymph nodes of LTa-deficient mice,46,47 this chemokine

represents a key initiator of lymphoid organogenesis that

functions upstream of LTbR signalling. At ELFs, CXCL13

and CCL21 regulate B-cell and T-cell infiltration and seg-

regation at ELFs.48–50 Similarly, chemokines CCL19 and

CXCL12 drive lymphocyte recruitment and the position-

ing of follicular DCs, B cells and plasma cells at germinal

centres.48 Here, an elegant cooperation between CXCL12

and CXCL13 directs the movement of B cells from the

dark zone into the light zone as they mature into anti-

body-secreting plasma cells.51 Hence homeostatic and cer-

tain inflammatory chemokines contribute to both the

initiation of ELF development, the cellular organization

required for their function as germinal centres.

In addition to their chemotactic properties, homeo-

static chemokines promote the secretion of LTa1b2 by B

cells and T cells, which establishes a feedback loop to per-

petuate lymphocyte recruitment and positional organiza-

tion.49,50,52 Interestingly mice lacking CXCL13, or its

receptor CXCR5, fail to develop peripheral lymph nodes,

underlining the importance of this chemokine in
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Figure 2. Novel cytokine regulators of ectopic lymphoid follicle (ELF) development and function. The formation of ELFs at sites of chronic

inflammation mirrors the pre-programmed development of conventional secondary lymphoid organs (SLOs). During secondary lymphoid

organogenesis, the cytokines interleukin-7 (IL-7), receptor activator of nuclear factor-jB ligand (RANKL) and lymphotoxin (LT) ab initiate the

chemokine-directed positive feedback loop that drives B-cell, T-cell and follicular dendritic cell (DC) recruitment during lymphoid neogenesis.

Recent studies have implicated novel T helper cell subsets as initiators of ELF formation. Given the role that cytokines play in the regulation of T

helper cell differentiation and effector function, a number of cytokines have now been linked with the control of ELFs. For example, cytokines

involved in the regulation of T helper type 17 (Th17) cell responses (IL-6, IL-21, IL-23, IL-27, IL-2, IL-22, IL-17)23,137,139,145,148,152 and follicular

T helper (Tfh) cell responses [IL-6, IL-21, Type I interferons (IFNs), IL-27, IL-2]137,139,146,147,150 are emerging as regulators of lymphoid neogene-

sis. Here we highlight cytokines that may positively (red) and negatively (blue) control ELFs based on their ability to regulate effector T-cell pop-

ulations involved in ELF development or function. These cytokines, as well as their downstream signalling pathways and transcription factors,

have the potential to serve as therapeutic targets in clinical conditions where ELFs feature.
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lymphoid organogenesis.50,52,53 Transgenic overexpression

of Cxcl13 in the pancreas induces the production of

LTa1b2 by B cells that is required for the development of

ELFs that feature T-cell and B-cell segregation with HEV

formation.49 CCL19 and CCL21 similarly drive the

expression of LTa1b2 on naive CD4 T helper cells.48

Hence, homeostatic chemokines are an integral feature of

ELF development, organization and function. Neverthe-

less, there appears to be some hierarchy among these

chemokines in their ability to drive ectopic lymphoneoge-

nesis. For example, transgenic overexpression of Ccl21

promotes the development of larger lymphoid follicles

than those that emerge in response to Ccl19.48 Transgenic

Ccl21 expression also promotes the development of ELFs

that display higher cellular organization than Ccl19. Inter-

estingly, ectopic Cxcl12 expression induces ELFs that con-

tain few T cells but are enriched for follicular DCs, B

cells and plasma cells.48 Therefore, as well as determining

the size and degree of cellular organization within ELFs,

the relative expression of homeostatic chemokines at

inflammatory lesions will also determine the cellular com-

position of ELFs.

It is clear that some chronically inflamed tissues are

more permissive to ELF development than others. For

example, transgenic expression of Ccl21 in the pancreas

promotes ELFs that display T-cell and B-cell segregation,

HEV and stromal reticulum. However, this response is

context dependent and Ccl21 in the skin fails to initiate

lymphoneogenesis.54,55 Histological features of ELFs are

seen in various chronic inflammatory diseases and are

clinically observed in the lung, joint synovium, liver, thy-

mus, and salivary and thyroid glands (for a comprehen-

sive review of ELFs in human disease refer to Pitzalis

et al.10). Structurally mature ELFs are not, however, seen

in skin conditions despite local expression of Ccl21, which

suggests that the immune setting and the interaction of

the stromal compartment with resident and infiltrating

cells has to be conducive for ELF development to

occur.56,57 This may reflect differences in innate sensing

responses or a differential stromal response to chemoki-

nes and cytokines necessary for the initiation, expansion

and maintenance of tissue ELFs.

High endothelial venules at ELFs

The function of SLOs depends on HEV that express

peripheral node addressin and mucosal addressin cell

adhesion molecule, which regulate the entry of naive T

cells into the lymph node. Similarly, HEVs are also

observed in ELFs that develop in response to autoim-

mune disease, allograft rejection and cancers.41,58–64 How-

ever, HEVs also develop in tissues that do not feature

ELFs,65–67 which infers that HEV neogenesis occurs before

the recruitment of peripheral T and B cells and the emer-

gence of ELFs. In peripheral lymph nodes, LTbR

signalling in DCs and endothelial cells promotes HEV

formation and maturation.68,69 However, the mechanisms

responsible for HEV development in inflamed tissues are

less clear. In human breast cancer, HEVs correspond with

a heightened expression of LTb by mature DCs.66 Here,

high densities of HEVs are associated with a reduced fre-

quency of FoxP3+ regulatory T (Treg) cells. Similar data

have also been obtained in an experimental model of car-

cinogen-induced fibrosarcoma, where Treg cell depletion

caused reduced tumour growth and increased HEV for-

mation.65 Indeed, HEVs in solid tumours are regarded as

positive prognostic indicators and patients are often dis-

ease free for longer, show reduced evidence of tumour

metastasis and display improved survival rates.9,65–67,70 In

primary and metastatic tumours, HEVs are associated

with increased infiltration of naive, central memory and

activated T cells that display a Th1 effector pheno-

type.66,67,70 A high density of extra-tumoral and intra-

tumoral Th1 cells correspond with improved survival,71

where it is proposed that their local priming, possibly

within ELFs, promotes antigen-specific tumour

responses.72,73 In murine models of melanoma and lung

carcinoma, the development of lymph node-like vascula-

ture allows naive T-cell entry into tumours that delay

tumour outgrowth.74 Therefore modulation of HEV

development or function through targeting LTa1b2 to the

tumour or by inhibiting Treg activity may provide oppor-

tunities for novel immunotherapies.

ELFs as inductive sites for anti-pathogen immune
responses

Chronic bacterial and viral infections can trigger inflam-

mation that results in the development of ELFs (compre-

hensively reviewed elsewhere75,76). For example,

Helicobacter spp. and Mycobacterium tuberculosis bacteria,

as well as influenza and hepatitis C viruses, have been

linked with ELF development in mice and humans.77–84

Interestingly, ELF formation in response to infection fea-

tures at mucosal sites including lung, gastric and salivary

gland tissues.78,82,85 ELFs that develop in response to

microbiota are also important for maintaining intestinal

homeostasis.86 There is considerable evidence linking

ELFs with anti-microbial and viral immunity. For exam-

ple mice lacking spleen, lymph nodes and Peyer’s patches

mount robust B-cell and T-cell responses to influenza

virus at sites of iBALT formation.82 Notably, in the

absence of peripheral lymphoid organs, these mice toler-

ate higher virus doses than wild-type mice, suggesting

that the anti-viral response generated at iBALT is not

only protective but may also be less pathogenic than

those generated in the periphery. Mice were able to show

effective primary and memory responses to viral challenge

via ELFs, associated with the emergence of influenza-spe-

cific CD8 T cells and anti-influenza nucleoprotein-specific
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antibodies.81,82 Development of iBALT in response to

infection was again linked to CXCL13 and CCL21 expres-

sion locally,82 but was also dependent on CD11chi DCs.80

Here, DCs were required for the maintenance of iBALT,

and DC depletion resulted in the regression of the ELFs

resulting in a reduction in germinal centre reactions, the

number of class-switched plasma cells and anti-viral

serum antibodies.

Similar ELF-associated anti-pathogen responses are also

described for M. tuberculosis and murine cytomegalovirus

infection in mice. In pulmonary M. tuberculosis infection,

ELF development was associated with CXCL13, CCL21

and CCL19 expression and the recruitment of functional

CXCR5+ T cells.77,79 T cells expressing CXCR5 displayed

Tfh- and Th1-like effector characteristics and were impor-

tant for host survival, M. tuberculosis clearance, T-cell

localization within ELFs, and lymphoid follicle forma-

tion.79 In murine cytomegalovirus infection, lymphoid

follicles that form in the salivary glands participate as

inductive sites in oral mucosal immunity.85 Development

of these salivary follicles was accompanied by a local

expression of homeostatic chemokines and molecular

markers such as AID and IlCa (the non-excised rear-

ranged DNA of IgA class-switching), which regulate ger-

minal centre activities including somatic hypermutation

and class-switch recombination.85

Development of ELFs is therefore an integral part of

anti-microbial and anti-viral immunity. Although the reg-

ulation of these ELF-driven responses can occur indepen-

dent of SLOs, their presence in infected tissues supports

adaptive immunity and the activities of SLOs. In humans,

ELF involvement is often associated with persistent infec-

tions. Here, a failure to eradicate pathogens may lead to

aberrant adaptive immune responses at ELFs that, when

inappropriately controlled, drive the onset of tissue dam-

age and chronic inflammation and transition to autoim-

munity or cancer.

ELFs as regulators of anti-tumour immunity

Current cancer immunotherapies aim to enhance the

adaptive immune response to tumour antigens to over-

come the immunosuppressive microenvironment of the

tumour.87 In this context, it is therefore surprising that

ELFs arise in tumours at all. However, ELFs have been

described in numerous cancers including colorectal,60,88

rectal,89 breast,67,90,91 ovarian67,92 and germ cell93 cancers,

as well as melanoma,62,67,94 mucosal-associated lymphoid

tissue lymphoma39 and non-small cell lung carcinoma95,96

(NSCLC; see Dieu-Nosjean et al. for a comprehensive

review of ELFs in cancer9).

Structures resembling lymphoid follicles are reported at

all stages of cancer, including primary tumours and

metastases,97,98 and in tumours removed after chemother-

apy.9,96 A number of studies have reported a correlation

between the density of ELFs and the degree of T-cell and

B-cell infiltration in tumours.94–97 This is interesting,

given that the frequency of T-cells displaying Th1 and

cytotoxic effector characteristics are linked with improved

patient survival in cancer.9,71 Indeed, ELFs in melanoma

and NSCLC are associated with favourable patient out-

comes and represent prognostic indicators of disease pro-

gression.94,95 In lung tumour-associated ELFs, a high

proportion of mature DCs correlate with gene signatures

linked with Th1 cell activation and improved long-term

patient survival.97 Similar observations have been

reported for B-cell densities in NSCLC, where follicular B

cells correlate with long-term survival both in early-stage

disease and in advanced disease treated with chemother-

apy.96 Therefore, ELF development may facilitate the

recruitment of naive T and B cells from the peripheral

pool via HEVs and homeostatic chemokines. Once estab-

lished, T-cell and B-cell priming within ELFs may provide

a local source of antigen-specific effector cells to drive

anti-tumour immunity.

Of course it is also possible the ELFs develop as a conse-

quence of cancer-associated inflammation, and are simply

spectators of the inflammatory process rather than partici-

pants in tumour-specific immune responses. However, in

experimental mouse models, effective T-cell priming at

tumour-associated ELFs have been demonstrated, that

occur independently of SLOs.72,99 Similarly in human

NSCLC tumour-associated ELFs, the density of germinal

centre B cells correlates with the number of antibody-

secreting plasma cells specific for endogenous tumour-

associated antigens.96 A recent study has also shown that

Treg cells in lung adenocarcinoma suppress anti-tumour

responses within tumour-associated ELFs.100 These studies

support a role for ELFs as sentinels for the propagation of

adaptive immunity against cancer antigens. Immunothera-

pies that support the activities of ELFs therefore represent

promising anti-cancer treatments. These may include deliv-

ery of regulatory homeostatic chemokines and cytokines or

interventions that block Treg involvement at ELFs.65,100

ELFs as perpetuators of inflammation-driven
pathology

Ectopic lymphoid follicles are associated with various

autoimmune and chronic inflammatory diseases including

rheumatoid arthritis,11,101,102 Sj€ogren syndrome,103 multi-

ple sclerosis,104 experimental diabetes,105 atherosclero-

sis,106,107 inflammatory bowel disease108,109 and chronic

obstructive pulmonary disease110,111 (for a comprehensive

review of ELFs in autoimmunity see refs 10,76). In con-

trast to their roles in infection and cancer, ELFs in

chronic inflammatory diseases are primarily associated

with disease exacerbation.

Rheumatoid arthritis is an example of an autoimmune

disease where ELFs impact the course of disease and the
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response to therapy. In rheumatoid arthritis, synovitis is

classed into three distinct pathotypes based on cellular

and molecular signatures of inflammation – termed

pauci-immune (or fibroblast-rich disease), diffuse and fol-

licular.11,101 Synovial ELFs are a prominent feature of the

follicular form of synovitis and are described in approxi-

mately 30–50% of patients with rheumatoid arthri-

tis.11,43,102,112,113 Notably, ELFs are described at all stages

of the disease and include patients with early active dis-

ease who have not received biological agents, patents with

more progressive forms of rheumatoid arthritis, and those

that have already received biological intervention.43,112,113

Although the mechanisms contributing the development

of this form of pathology are largely unclear, ELFs in

rheumatoid arthritis are associated with heightened syn-

ovial expression of CXCL13, CCL21, CCL19 and

CXCL12, and cytokines LTa1b2 and IL-7.21,44,114,115

Importantly, these structures correlate with disease sever-

ity and are associated with local T-cell priming and

autoantibody production.43,116–118 Plasma cells in

rheumatoid synovitis produce autoantibodies against

citrullinated protein/peptides (ACPA/anti-CCP).116 Using

an elegant human rheumatoid arthritis–severe combined

immunodeficient (HuRA–SCID) mouse chimera model,

Humby et al. demonstrate that the synovial microenvi-

ronment determines the functional maintenance of ELFs

and that control of this process is independent of further

leukocyte infiltration.116 In this context, grafted synovial

tissues containing ELFs continued to secrete ACPA and

express AID.116 Although ACPA is a prognostic marker of

rheumatoid arthritis in patients with early/undifferenti-

ated disease, detection of serum ACPA is not indicative

of ELF-associated synovitis.113 The presence of synovial

ELFs is however associated with severe synovitis and

patients with this form of disease remain challenging to

treat and display a poor response to anti-tumour necrosis

factor (anti-TNF) therapy.112,119 Here synovial IL-7 recep-

tor expression also predicts a negative response to anti-

TNF intervention.112 Although ELFs frequently correlate

with the degree of synovitis and the infiltration of T cells

and B cells,21,113 it is still unclear whether their presence

reflects increased clinical severity or more rapidly pro-

gressing forms of rheumatoid arthritis.113 Importantly,

ELFs have been linked to an inferior clinical response to

anti-TNF therapy.112 However, in patients with ELFs that

showed favourable responses to anti-TNF treatment,

regression of synovial ELFs correlated with improved clin-

ical outcome.112 Further studies are therefore required to

better define how ELFs relate to clinical severity and ther-

apeutic response to biological agents in rheumatoid

arthritis.

Ectopic lymphoid follicles often form in transplanted

human tissues where chronic inflammation is associated

with allograft rejection. Tissues derived from kidney

transplantation demonstrate that ELFs contribute to ger-

minal centre reactions, local B-cell maturation and

alloimmune responses (anti-HLA antibody generation).

Whereas these observations support a role for ELFs in

chronic terminal rejection,120 two studies suggest that

ELFs may actual elicit beneficial outcomes.121,122 These

findings in experimental models of kidney and cardiac

allografts emphasize that ELF development promotes the

recruitment of T cells and B cells displaying inhibitory or

regulatory phenotypes.121,122 Such activities would be pre-

dicted to suppress destructive alloimmune responses and

promote graft tolerance.

Although lymphoid neogenesis is typically associated

with exacerbation of chronic inflammatory processes, a

recent study demonstrates a protective role for ELFs in

atherosclerosis.107 ELFs develop in the aorta of aged

Apoe�/� mice where they correlate with disease sever-

ity.123 These structures were typically located adjacent to

atherosclerotic plaques where they control immune cell

trafficking, antigen presentation and T-cell priming and

differentiation.107 Hence, aortic ELFs may play an impor-

tant role in establishing local T-cell immunity during age-

ing in atherosclerosis.

Concluding remarks and future perspectives on
the therapeutic targeting of ELFs

Based on the current literature it is envisaged that two

immunotherapeutic strategies are required to target ELFs.

In infection and cancer it would be desirable to bolster

the development and activity of ELFs to support antigen-

specific responses. In contrast, the neutralization of ELFs

in chronic inflammatory diseases and transplantation

would limit tissue damage and rejection. However, to

date the number of clinical studies targeting ELF-asso-

ciated pathology remains limited.

One potential strategy is to disrupt the spatial arrange-

ment of T and B cells in ELFs. In chronic renal allograft

rejection, B-cell depletion with rituximab (anti-CD20

monoclonal antibody) had a limited impact on the main-

tenance of ELFs and biological intervention promoted

expression of the B-cell survival factor, B-cell-activating

factor.124 In rheumatoid arthritis, patients with ELFs

show an inferior clinical response to anti-TNF therapy,

which typically targets macrophage and stromal cell

responses.112 Other licensed biological therapies including

IL-6 or IL-6 receptor-specific monoclonal antibodies (e.g.

tocilizumab), T-cell activation antagonists (e.g. abatacept)

and Janus kinase inhibitors (e.g. tofacitinib) are likely to

target pathways linked with ELF activity. However,

although effective in attenuating inflammatory processes

that reflect their broader modes of action, their efficacy

in controlling ELF activity are untested.10,125 Given their

prominent roles in lymphoid neogenesis, targeting LTab
(e.g. baminercept and pateclizumab) may prove effective

in blocking ELF activity. Although clinically untested for
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ELF-associated inflammation, targeting LTb has shown

promise in pre-clinical experimental models of dis-

ease.126–129 Similarly, CXCL13 blockade has shown some

promise in pre-clinical studies for the treatment of exper-

imental inflammatory arthritis, diabetes and Sj€ogren syn-

drome.130–132 Finally, given the role of IL-21 in

regulating Tfh cells and germinal centre reactions, a

monoclonal antibody against IL-21 (NNC0114-0006) is

currently in clinical trials for rheumatoid arthritis and

systemic lupus erythematosus. These trials follow encour-

aging evidence for amelioration of disease following

blockade of IL-21 signalling in experimental inflamma-

tory arthritis, systemic lupus erythematosus and graft-ver-

sus-host disease.133–135

In cancer, promoting ELF activity may support the

development of protective antigen-specific responses. As

such, targeting cytokines such as LTab to tumours may

have therapeutic potential as demonstrated in experimen-

tal melanoma.72,99 Recent studies also suggest that inhibi-

tion of Treg cell activities could promote endogenous

anti-tumour immune responses at ELFs.65,100 In support

of such approaches, a suppressive role for Treg cells in

iBALT development has also recently been reported.136

In recent years, we have seen an increasing appreciation

for the importance of ELFs as inducible sites within tis-

sues for generating immune responses to infections,

tumours, autoantigens and alloantigens. Here, experimen-

tal models of disease provide greater insight into the

mechanisms that govern the development, function and

maintenance of ELFs. These studies have led to the iden-

tification of novel immune cell subsets and stromal cell

populations and new regulatory mechanisms that reflect

potential therapeutic targets for immunomodulation of

ELF activity. Significantly, molecular signatures of ELFs

also have the potential to yield biomarkers capable of

stratifying patients into defined classes of disease based

on pathology. These are likely to facilitate clinical deci-

sions regarding the most appropriate therapy for patients

with ELF-associated disease. Although experimental ani-

mal models have been the frontrunners in defining mech-

anistic aspects of ELF development, clinical studies in

human conditions have validated many of these findings

and shed light on the likely efficacy of current biologicals.

Our capacity to stratify patients for the presence of ELFs

in early disease is improving.11 The challenge is to under-

stand when and how to target drugs against these impor-

tant structures, and to adapt clinical trials in accordance

with the activities of ELFs in cancer, infection, autoim-

munity and transplantation.
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