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A B S T R A C T

Genomics having a profound impact on oncology drug development necessitates the use of genomic signatures
for therapeutic strategy and emerging medicine proposals. Since its advent in the arena of clinical trials bio-
marker-related predictive methods for the identification and selection of patient subgroups, with optimal
treatment response, are widely used. Genetic signatures which are accountable for the differential response to
treatments are experimentally recognizable and analytically validated in phase II stage of clinical trials. The
availability of robust and validated biomarkers in phase III is limited. Hence, the development of a clinical trial
design without the availability of biomarker identity for treatment-sensitive patients becomes indispensable.
Adaptive Signature Design (ASD) is a design procedure of developing and validating a predictive classifier
(diagnostic testing strategy) when the signature of subjects responding differentially to treatment is remote in
the context of the study. This review provides a detailed methodology and statistical background of this pio-
neering design developed by Freidlin and Simon (2005). In addition, it concentrates on the advances in ASD
regarding statistical issues such as predictive assay identification, classification techniques, statistical methods,
subgroup search, choice of differentially expressed genes, and multiplicity correction. The statistical metho-
dology behind the design is explained with the intent of building the ground steps for future research ap-
proachable, especially for beginning researchers. Most of the existing research articles give a microcosmic view
of the design and lack in describing the details behind the methodology. This study covers those details and
marks the novelty of our research.

1. Introduction

The diversity and dynamic nature of cancerous tumors due to DNA
alterations, and oncogenic mutations create their uniqueness [1]. Pre-
dictive biomarkers have the capability to distinguish patients influ-
enced by treatment and are a great catalyst in the development of ef-
fective drugs. With the fast pacing research in the field of personalized
medicine, genomic sequencing technologies and molecular targeted
therapy, the inclusion of the personal entities need to be highly prior-
itized. This includes demographic factors such as age, sex, education,
marital status, knowledge of biological influences, genetic aspects, and
biomarkers. The dawn of gene-based approaches such as single nu-
cleotide polymorphism (SNP) and the ground-breaking scientific ad-
vancement of the Human Genome Project (HGP) [2] modified the
pathway of drug development and channelized it in a direction focusing
on molecular and cellular variations in clinical response to therapy. The

traditional randomized clinical trials (RCTs) give importance to a sin-
gled-out query about the average treatment effect in the overall po-
pulation, and thus this conventional approach needs personalization
and re-designs. Presumption of homogeneity in the targeted population
corresponding to treatment efficacy does not have an adequate scien-
tific basis. Thus clinical trial designs consistent with modern hetero-
geneous tumor biology are destined to reshape the fundamentals of
today's medicines, with drug targeted to disease [3]. Effective assess-
ment of treatment effect requires the identification and validation of
predictive biomarkers that can not only accurately measure the overall
treatment effect but can assist in strongly inhibiting the target having
the capability of recognizing the subgroup effect. Personalized medi-
cine and single patient (N-of-1) trial [4] accurately determines the right
drug to the right patient by accommodating individual needs, thereby
saving time and resources. The ultimate goal of the development of
molecularly targeted therapy is to improve the efficacy and selectivity
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of cancer treatment by exploiting the differences between cancer cells
and normal cells [5]. In summary, the lack of a promising candidate
signature before initiating phase III trials brings substantial complexity.
To address this situation, adaptive signature design (ASD) [6] involving
the partitioning of patients in training and validation sets for devel-
oping and confirming of a predictive classifier in a single (pivotal) trial,
has been proposed. This article is a review of the research on adaptive
designs in clinical trials and a comprehensive review of the research on
ASD, along with its selected extensions. The review has a constructive
flow with the sequence being: a) the role of adaptive design; b) defi-
nition of critical terms like biomarker; c) distinction between different
types of biomarkers; d) biomarker-guided adaptive designs in phase III
clinical trials; and e) statistical background of ASD; The discussion
section focuses on recent advancements in ASD concentrating on gene-
based classifiers, multiplicity issues, and subgroup effects.

2. Methods

A comprehensive review with keywords such as ‘adaptive signature
design’, ‘precision medicine’, ‘biomarker-guided adaptive’, ‘subgroup
effect in adaptive signature design’ identified the articles that have a
direct contribution in extending and addressing the statistical issues in
ASD by searching the internet mostly in Google Scholar database with a
year restriction of 2005–2018. The remaining articles were mostly
identified from the reference list of these previously included articles.
The initial search was conducted by reading the abstract and discussion
section of the articles. Those which mentioned ASD and its extensions,
statistical aspects of the designs were studied thoroughly to extract
information on the definition of the trial design(s), treatment group
randomization, and design methodology, real-life clinical trial example
of the design, leverage and limitations. We have considered 25 articles
in the year 2016–2018, of which reference nos. 53, 54, 61, 62, and 66
(2017–2018) are the ones concentrated on ASD and its advancements
described in Table 1. Also, these designs are explained in the discussion
section of the article.

2.1. Role of adaptive design in clinical trials

We discuss the pre-specified and pre-planned modifications in the
form of sample size, cost, and duration of the trial, the advantages, and
the disadvantages of the prominent modern adaptive designs in clinical
trials. The current draft of the Guidance for Industry provided by FDA
defines adaptive design as the one that “includes a prospectively planned
opportunity for modification of one or more specified aspects of the study
design and hypotheses based on analysis of data (usually interim data) from
subjects in the study. Analyses of the accumulating study data are carried
out at prospectively planned time points within the study, can be performed
in a fully blinded manner or in an unblinded manner, and can occur with or
without formal statistical hypothesis testing” [7]. Adaptive designs in
phase II and phase III provide the flexibility and modulations on
gathering analytically and clinically validated information, which can
be in the form of patient inclusion/exclusion criteria, schedule of pa-
tient evaluations, clinical trial endpoints, and the number of interim

analyses, as well as the selection of treatment regimens. Adaptive de-
signs are flexible to incorporate during-study modifications, such as a
change in sample size, the primary endpoint, the null hypothesis like
shifting from superiority to inferiority trial and primary to secondary
endpoint [8], treatment re-allocation, stratification changes, as there
might be limited knowledge regarding these decisions at the initial
stage and requires ‘edit-as- study-progress’ and thus is efficient than
traditional phase III designs like group sequential designs, where the
trial stops as soon as there is sufficient evidence to reach a conclusion
[9]. However, these modifications need pre-specified planning, and
implementing these changes need to be done in a prospective manner to
ensure data integrity. Adaptive clinical trials are more efficient in terms
of time required and the number of participants. This modifications
during the trials facilitate the likelihood of detecting treatment effects
in clinical trials [10,11]. Table 2 gives a brief illustration of the pre-
valent types of adaptive designs and helps to understand the basic
differences: Response Adaptive, Group Sequential, Sample-size Re-es-
timation, Seamless Design, and Biomarker-Adaptive [11–14].

Since the focus is on biomarker-guided adaptive designs and hence
ASD, the definitions and demarcation of biomarkers have been ac-
counted for in the next section.

2.2. What is a biomarker?

The Biomarkers Definitions Working Group defined a biomarker as
“a characteristic that is objectively measured and evaluated as an indicator
of normal biological processes, pathogenic processes, or pharmacologic re-
sponses to a therapeutic intervention”. Biomarkers contribute knowledge
and provide guidance about clinical pharmacology and form the basis
of designing clinical trials, with additional benefits of evaluating the
safety and efficacy [24]. As an example, reduction of elevated arterial
blood pressure have been used as a biomarker condition, which sig-
nifies the ability of antihypertensive drug depreciating the risk of
nonfatal and fatal (total) stroke in isolated systolic hypertension, cog-
nitive failure, etc. [25]. Biomarkers are one of the most critical features
in enhancing the accuracy of diagnosis, prognosis assessment, and
therapeutic targeting. The phase III clinical trial objective is to evaluate
if the new treatment validated in phase II is beneficial to that targeted
broader section of the patient population, and thus a comparison of
outcomes between treatment and control group is undertaken to judge
these benefits. A biomarker has the advantage of detecting the treat-
ment effect in a subpopulation. However, the development and its va-
lidation involve complications in time and resources, so it lags the
therapeutic development of the agent [26]. Biomarkers can be de-
termined in numerous ways. For example, easily obtainable body fluids,
such as plasma, serum, or urine, serve as a surrogate biological assay.
Well known biomarkers of significant relevance are oestrogen receptor
(ER), progesterone receptor (PR), and HER2/neu in breast cancer;
BCR–ABL fusion protein in chronic myeloid leukemia (CML); c-KIT
mutations in gastrointestinal stromal tumors (GIST); and epidermal
growth factor receptor 1 (EGFR1) mutations in non-small cell lung
cancer (NSCLC) [27]. The biomarkers are classified mostly into three
categories: diagnostic, prognostic, and predictive.

Table 1
Summary of research on ASD (2017–2018).

Reference Nos. (2017–2018) Details

53 Avoiding subgroup analysis when a lack of statistical significance for a subgroup is indicated by overall test, thus saving resources for future
research

54 Novel methods for subgroup selection and estimation treatment impact.
61 Different classification algorithms with gene-main effect and gene-treatment interaction effect, predicting the efficacy of ASD.
62 early-phase proof-of-concept (POC) studies for cytotoxic oncology drugs such as single-arm adaptive signature design (ASD), single-arm

Biomarker-adaptive threshold (BAT) design, designed for exploring the anti-tumor activity and to target biomarker-relevant topics, e.g., subgroup
selection, biomarker threshold evaluation.

66 enhancement of ASD to improve robustness, and impact of allocation ratio between learning and confirm stage on the power of the design.
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i) Diagnostic Biomarkers: Diagnostic Biomarkers help in the diag-
nosis of the disease and development of new therapeutics by
monitoring disease progression in a population. The biomarker
projects its benefits in disease assessment when the trial initiates.
Testing of an individual with an internal, patient-specific control is
more important than comparing to a “normal reference sample”.
For example, plasma-based microRNA (miRNA) diagnostic assay
was developed in the study for colorectal cancer (CRC) where seven
miRNAs (miR-21, miR-29c, miR-122, miR-192, miR-346, miR-372,
and miR-374a) were selected based upon p-value, depending on
ANOVA or t-test as specified in the design phase for multiple-
comparisons, or two-way. Area under the curve (AUC), fold change,
and biological plausibility produced on an average 77% accuracy in
the validation cohort for the respective comparisons [28]. Plasma
NfL and CSF biomarkers have a good diagnostic performance to
detect Alzheimer's disease in adults with Down syndrome [29].

ii) Prognostic Biomarkers: Prognostic Biomarkers are used to detect
disease recurrence or progression in patients who have the disease
or medical condition of interest, regardless of the therapy which
helps in the selection of patient groups for a specific treatment. For
example, biomarkers providing information about a relapse of dis-
ease in patients undergoing treatment and those with progression-
free survival in patients with metastatic disease. A prognostic bio-
marker is also a baseline patient characteristic independent of

therapy or treatment which categorizes patients on the basis of the
degree of the outcome [30]. Studies to identify prognostic gene
signatures such as sentinel lymph node (SLN) to aid in risk strati-
fication of patients with melanoma tumor-positive SLNs, are carried
out with the application of Quantitative reverse-transcriptase
polymerase chain reaction (RT-PCR) assay for validation of the gene
expression with de-identified human subject data from the Sunbelt
Melanoma Trial (SMT), involving enrollment of about 3600 patients
over 79 centers throughout North America in a randomized, pro-
spective trial, with disease-free survival (DFS) as the primary end-
point. Two SLN genes (PIGR and TFAP2A) provided high prognostic
accuracy, i.e. these biomarkers can detect the progression of the
disease regardless of the treatment in SLN positive melanoma pa-
tients, with the area under the receiver operating characteristic
curve (AUC) technique, along with comparing it with the current
American Joint Committee on Cancer (AJCC) staging system. This
study was conducted with a goal of contributing towards in-
dividualized patient risk measurement, and this SLN gene signature,
when combined with clinico pathological features, serves aptly the
purpose of better guiding treatment decisions in the near future
[31].

iii) Predictive Biomarkers: Predictive Biomarkers provides informa-
tion about the favorable and unfavorable effect of therapeutic in-
tervention. A predictive biomarker is a baseline characteristic

Table 2
Summary of adaptive designs.

Types of Adaptive Design Main Concept & Adaptation Examples

1. Response-Adaptive Design Alteration of the allocation ratio depending on the interim analysis. BATTLE 2a [15], ASTINb [16,17]
Advantages:

• Novel approach with increment in the accrual of patients leading to high success.
Disadvantages:

• Possibility of incorrect decisions, and the introduction of bias.

• Statistical inefficiency due to an unequal number of patients in different treatment arms.

• Bias due to time-trends in the prognostic mixture of subjects.
2. Group-Sequential Design Early stopping rule for safety, futility or efficacy. DEVELOP-UKc trial [18], CAPTUREd trial

[19,20]
Advantages:

• Flexible approach, with room for sample size modification in a blinded manner, number, and spacing of interim analysis.
Disadvantages:

• Parameter estimates, and confidence intervals are non-conventional.

• Data and safety monitoring demand attention for premature termination.
3. Sample-Size Re-estimation Design The interim analysis determines the targeted sample size and may escalate or de-

escalate.
DEVELOP-UK trial [18], NCT00103168e [21]

Advantages:

• Small sample size upfront commitment; and adjustments due to unknown treatment effect, variance, lesser regulatory difficulties.
Disadvantages:

• potential investigator-oriented bias introduction

• Interim treatment estimate can be misleading.
4. Seamless Design Sequential and immediate continuation from one phase to subsequent phase

provided overlapping information.
NCT00543543f [22]

Advantages:

• Information from dual phases.

• Time and cost saving; and no wait time for transition.
Disadvantages:

• Elimination of the flexibility of modifying phase III based on phase II.

• Inadequate dose-response modeling leading to risk.

• Heterogeneity in data from two phases may cause issues.
5. Biomarker-Adaptive Design Adaption on the collection and validation of biomarker information. FOCUS4 [23]
Advantages:

• Biomarker status helps in channelizing treatment towards biomarker positive (MK+) or biomarker negative (MK-) group; eligibility criteria modified depending on futility
monitoring of MK- group.

• Identification of the natural course of a disease and achieving early detection of disease.
Disadvantages:
•Demands clinical and analytical validity of biomarkers, statistical challenges, operational complexity.

a Biomarker-Integrated Approaches of Targeted Therapy for Lung Cancer Elimination.
b Acute Stroke Therapy by Inhibition of Neutrophils.
c Donor Ex Vivo Lung Perfusion in UK lung transplantation.
d c7E3 Fab antiplatelet therapy in unstable refractory angina.
e European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group Intergroup Randomized Trial.
f 9-valent HPV vaccine trial against infection and intraepithelial Neoplasia.
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which categorizes patients by their degree of response to treatment.
A predictive biomarker is utilized to detect the treatment effect
between a biomarker-positive (MK+) and a biomarker negative
(MK-) group. However, the use of the predictive biomarkers in
phase III poses challenges, when the inclusion of MK- patients is
halted in the absence of strong biological evidence of treatment
effectiveness in that group [32]. For example, certain cystic fibrosis
transmembrane conductance regulator (CFTR) mutations may be
used as predictive biomarkers in clinical trials for treatment re-
sponse evaluation for cystic fibrosis [33].

There is a subtle difference between prognostic and predictive
biomarker; a prognostic biomarker detects the path of disease irre-
spective of treatment, and predictive biomarker determines the re-
sponse to treatment when the disease is already present. Biomarkers
may have both prognostic and predictive characteristics. For example,
the estrogen receptor (ER) can be prognostic in breast cancer, where
patients diagnosed with ER-negative have a higher risk of relapse than
ER-positive patients with a similar disease stage. Also, ER can be pre-
dictive of benefit from tamoxifen [34], where antiestrogen tamoxifen is
more effective in preventing breast cancer recurrences in ER-positive
patients than in ER-negative patients.

2.3. Biomarker guided adaptive Phase-III clinical trials

An encompassing review of biomarker-guided trial designs has been
provided in these two articles, one focusing on adaptive trial designs
[35] and the other on non-adaptive trial designs [36]. One can also
refer to their website for a detailed user-friendly approach where each
of the designs is explained in a graphical manner, with pros and cons
[37]. Adaptive designs target all patients with the plan of treatment
efficacy determination in all of them, if not significant initiates’ sub-
group finding with treatment benefits. In settings where a single con-
tinuous candidate biomarker is available, but its positivity threshold is
not predefined, adaptive threshold plans try to find such a threshold.
Adaptive biomarker designs have been proposed to evaluate multiple
binary biomarkers defined in advance. We are mostly dedicated to
describing ASD among the many biomarker-guided designs. ASD comes
in six identical and interchangeable versions [38]:

i) General Adaptive Signature Design; ii) Adaptive Signature Design;
iii) Adaptive Threshold Design, iv) Cross-validated Adaptive Signature
Design; v) Molecular Signature Design; vi) Adaptive Signature Design
with Subgroup Plots. We have also focused on giving a detailed over-
view of the statistical integrities of the logistic regression model used in
ASD.

In most of the biomarker dependent adaptive designs, it is assumed
that we know the number and identity of differentially expressed genes.
However, in reality in a large pool of evaluated genes, the significant
ones need to be determined initially by high throughput screening
methods, and then we can proceed to the estimation of gene-treatment
interaction effect like in ASD. Also, the choice of significance level
(alpha) for differentially expressed gene selection by Bonferroni ad-
justment and False Discovery Rate (FDR) need to be assessed by our
proposed design Unknown Genes Adaptive Signature Design (UKG-
ASD). A schematic diagram of Known Genes Adaptive Signature Design
(KG-ASD) and (UKG-ASD) is given in Fig. 1.

This section depicts the Adaptive Signature Design (ASD) and its
major role as a biomarker-guided design. The design and the statistical
formulations behind it are well-defined here along with its equivalent
extensions with the purpose of increment in efficiency and statistical
power.

2.4. General Adaptive Signature Design

In this design, the candidate biomarkers are selected from a large set
of biomarkers, and the threshold point is optimized using a training set,

and the assessment of the signatures is carried out in the validation set
[38]. Power restriction in the biomarker-defined subset imposes a
major setback for the design. This approach finds its use when there are
a number of available candidate biomarkers, but data from a Phase III
setting is required for choosing the most appropriate biomarkers [39].

2.5. Adaptive signature design (ASD)

ASD was proposed by Freidlin and Simon [6], also known as Bio-
marker Adaptive Signature Design, Two-stage ASD, or Adaptive Two-
stage Design is a design for randomized clinical trials of targeted agents
in settings where an assay or signature that identifies sensitive patients
is not available at the outset of the study. The trial, upon having no
indications for overall treatment effect, proceeds to divide the patient
population in two mutually exclusive groups. One group is used to set
up a parameter to identify the subset of patients where the treatment is
most likely to be effective – the parameter designated as “indication
classifier”. The other group of patients is used to see the efficacy of the
treatment in that particular subset [40]. The fundamental structure of
the design relies on subgrouping the population into two com-
plementary cohorts, after the completion of the trial. Potential bio-
markers are selected and treatment efficacy is investigated in the
overall population and the biomarker-qualified subpopulation within
the validation cohort. Upon validating and standardizing the biomarker
assay, ASD is thoroughly designed and crafted in a statistically enriched
way so that it preserves the type-I error rate, simultaneously identifying
an optimally targeted design [41]. Recent application of ASD includes
evaluation of efficacy of the MAGE-A3 immunotherapeutic in patients
with stage IIIB or IIIC melanoma in the adjuvant setting with disease-
free survival as the outcome. Median disease-free survival was 11.0
months (95% CI 10.0–11.9) in the MAGE-A3 group and 11.2 months
(8.6–14.1) in the placebo group (hazard ratio [HR] 1.01, 0.88–1.17,
p=0.86). However, treatment-related adverse events of grade 3 or
worse were reported within a month from the start of the treatment
barring the development of the MAGE-A3 immunotherapeutic for use in
melanoma [42]. The design is explained in a graphical format in Fig. 2.

The three main steps of the design:

i) Statistically valid identification, dependent on the first stage of the
trial, of the subset of patients who are most likely to benefit from
the new agent;

ii) Properly powered test of overall treatment effect at the end of the
trial with all randomized patients; and

iii) Test of treatment effect for the subset identified in the first stage but

Large pool of genes 
100,000 (say)

known DE genes 
KG-ASD, k=3

unknown DE 
genes, k= ?
UKG-ASD

Stage 1

Stage 2

Estimate GTI effect 
with no GME

Confirm and validate DE 
genes with & without 

GME, k=10, Estimate GTI

Change patient AR 

t-test/ANOVA 
with FDR

Change patient AR

Stage 1

Stage 2

Fig. 1. Summary of Known Gene Adaptive Signature Design (KG-ASD) and,
Unknown Gene Adaptive Signature Design (UKG-ASD)
AR: Allocation Ratio; FDR: False-Discovery Rate; DE: Differentially Expressed;
GME: Gene Main Effect; GTI: Gene Treatment Interaction.
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only with patients randomized in the remainder of the trial [6].

The results of the trial influence the primary plan for the final
analysis, so the design is adaptive and is at par with the definition
provided by the FDA Guidance draft.

2.6. Statistics behind Adaptive Signature Design (ASD)

i) There is an accrual of N patients who are subjected to the new
proposed treatment to determine its effect, i.e. outcomes for all
patients randomized to receive the proposed new drug is compared
with outcomes for all patients randomized to receive placebo. The
overall test of treatment effect over control is done by the Pearson
Chi squared test when the response variable is binary and declares
that the test is significant at a two-sided significance level
α1= 0.04 (say). This methodology though explained in case of bi-
nomial outcomes, with minute modifications, have its applicability
to time-to-event end points, such as survival or disease-free sur-
vival.

ii) If the overall test is found non-significant, a subset analysis ap-
proach is undertaken where the patient set is randomly partitioned
into a training set and a validation set consisting of n1 and n2
patients, n1+n2=N, and conducting the signature development
and its validation in a two-stage process. Here, the randomization
ratio is 1:1, simple unbiased randomization. It is obvious that the
subjects with overexpressed sensitive genes will respond to treat-
ment more than the subjects with non-sensitive genes. This in-
dicator of sensitivity is the biomarker information that is unknown.
It is assumed that there are L evaluated genes out of which k genes
are assumed to be sensitive; however, the identities of them are
unknown. Dimension reduction method such as principal compo-
nent analysis, partial least squares, and LASSO can also be used to
select these k differentially expressed genes. The scenario of the
presence of numerically large candidate genes can summon various
variable selection methods to include only variables that can dis-
tinguish outcome on treatment arm from that of the control arm.
However, it was suggested that accurate classification of patients
should be the foremost priority instead of the statistical significance
of the individual variables [41]. The methodical approach to clas-
sify patients as sensitive/non-sensitive based on this unknown
hidden label, is to develop an “indicative classifier” that identifies
the subset of patients who are profitable from the new treatment
compared to control out of these n1 patients in the training set,

where the treatment-gene interaction estimates for each single gene
corresponding to each individual is tested to see if they are sig-
nificant at level η=0.025 (say). Let m genes be significant out of
these k sensitive genes.

iii) Finally, with thesem genes, the model is validated with the re-
maining n2 patients, since the training set of n1 patients have been
utilized to build the classifier. The odd's ratios with gene-expression
data from the validation set and estimated coefficients from the
training set are calculated and compared to see if they exceed a pre-
specified threshold R, for at least G genes out of these m sensitive
genes, for every subject which can eventually declare that in-
dividual to be sensitive.

iv) To investigate the effect of changing the randomization ratio in a
group of patients who are more sensitive to the treatment arm over
the control arm, the subset treatment effect test is conducted at the
reduced significance level of α2= 0.05−α1= 0.01. The type-I
error rate can be partitioned, and the split ratio can be optimized to
minimize the total sample size, constrained on the statistical power
of the overall analysis and subset analysis.

v) The power is calculated =
+

+p,
P P z P P( )

2

t c
p p

N
Pt Pt

N
Pc Pc

N

t c
1

(1 )4 0.5

(1 )2 (1 )2 0.5

Where, Pt: the expected probability of response in treatment & Pc: the
expected probability of response in control where, Φ () is the normal
probability function, and Z1−α is the

(1-α) th percentile of the normal distribution.
For simplicity, we are explaining the statistical model, when the

response is binary.
y Ber p(1,i i), where yi is the outcome variable, yi=1with prob-

ability pi and
= = …E y X p i N( | ) , 1,i i , X is the matrix of covariates consisting of

fixed treatment effect, gene main effects and gene-treatment interaction
effects, zij is the gene expression value corresponding to ith individual
and jth gene. yi= μi+εi, where, μi is the mean effect and εi is the error.

= +pi
X

X
exp( )

exp( ) 1 , where B is set the coefficients, N is the total no. of pa-
tients, β0 is the intercept term, β1 is the treatment main effect. Thus,

= = + + + …+ +

+ …+ + + …+ + … + …

+ + …+ = …

+ +

+ +

logit p
p

p
t z z z

z t z t z t z

t z t z i N

( ) log
1

, 1

i
i

i
i i m im m i m

k ik i i m i im m i im

m i i m k i ik

0 1 1 1 1 ( 1)

1 1

1 ( 1)

The probability of response is p and the treatment status is ti,
where t {0,1}i . The gene main effects of the sensitivity and non-sen-
sitivity genes (δ1, δ2,…,δk) and the interaction effects of the non-sen-
sitivity genes (γm+1,…, γk) are assumed to be zero. So, the model re-
duces to

= + + + …+ = …logit p t t z t z i N( ) , 1i i i i m i im0 1 1 1

In stage 1, with the training set for each ith individual single gene
logistic model is fitted, which implies fitting m models for each of the
n1 individuals, i.e.

= + + … = + +logit p t t z logit p t t z( ) , , ( )i i i i i i m i im0 1 1 1 0 1

Classification development in this design is not restricted to the
covariates considering gene expression measurements, and hence can
be extended with a proportional hazard model in survival data analysis,
where the algorithm of classifier development is being described in
detail considering overall survival as the primary endpoint for new drug
approval of castration-resistant prostate cancer (CRPC) [41]. As power
is a monotonically increasing function of sample size, the simple con-
cept of signature development and validation restricts the power in
cases where large sample size is required for signature development in
high dimensional data and enough screening needs to be done to

Fig. 2. Adaptive signature design (ASD) R: Randomize; NT: New therapy; MK+:
Biomarker positive.
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increase the proportion of sensitive patients reducing efficiency.
Following the guidelines of Antoniou et al. [35], a short overview of

the five equivalent labels of ASD are described and presented in
Table 3.

2.7. Adaptive Threshold Design

This is a type of design in which a putative biomarker is measured
on a continuous or graded scale. The treatment effect comparison is
tested over the broad population by establishing and validating a cut-off
point for a pre-specified signature assay. Thus, the levels of the con-
tinuous biomarker can be converted into a dichotomous (positive/ne-
gative) variable and enables detecting a treatment sensitive sub-
population. This design first tests the treatment effect in the overall
population, whose statistical significance claims the treatment to be
effective in the broad eligibility population. Otherwise, this design
provides a statistically rigorous assessment of the presence of a cut-off
point that can identify a subgroup of patients that would benefit from
the treatment without relying upon any arbitrary pre-specified cut-off

value. ASD has the objective of developing and validating a biomarker.
On the other hand, this variant tries to identify and validate an optimal
threshold point for a pre-specified biomarker, and converts the sig-
nature value into a binary classifier along with providing confidence
interval of the cut-off point [40,43,44]. With no significant treatment
effect in the broad population during, the entire population is divided
into two parts. One half is utilized in developing a biomarker signature
that can be predictive and obtain the sensitive population, and the other
half is used in validating the claim. This design focusses on the estab-
lishment and validation of a cut-off points/threshold for a pre-specified
biomarker for characterization of the sensitive population subset, upon
finding no treatment effect in the entire population. One of the major
differences between this design and ASD is the utility of human samples
for measuring a pre-specified biomarker. However, it is not targeted as
the eligibility criteria for patient inclusion. This design has two varia-
tions in conducting the analysis:

2.7.1. Plan A
It is a three-step process of confirming: 1) the benefits of experiment

Table 3
Summary of adaptive design using biomarkers.

Types of ASD Modifications Examples

1. Adaptive-Signature Design (ASD) Identification and validation of biomarker and utilizing the information to propose an MK + subset. MAGE-A3-DERMA trial
[42]

Advantages:

• Distinguishing and validating of genomic signature in a single trial.

• Finding the optimal group of patients benefiting from the proposed new treatment.

• The significance level is preserved without inflating it as the design takes a split-sample approach and uses a different sample set of patients for predictive biomarker identification
and validation.

• A novel methodology, with no weights for randomization ratio, without statistical adjustment, making the design-unbiased, increasing the efficiency and the expediting the
treatment approval.

Disadvantages:

• Minimal difference between MK+ and MK- patient group demands a large sample size.

• Since only the validation group of patients is utilized for biomarker validation, due to the split-sample technique, achieving the desired power for the design is somewhat restricted.

• The trial must come to closure before the treatment comparison can be carried out.
2. Adaptive Threshold Design The treatment effect comparison is tested over the broad population with establishing and validating a

cut-off point for a pre-specified signature assay, so that the levels of the continuous biomarker can be
converted into a dichotomous (positive/negative) variable, thus, detecting treatment sensitive
subpopulation.

VACURGa trial [48]

Advantages:

• Pre-specified cut off point is not essential for candidate biomarker validation increasing efficiency.

• Identification of an optimal cut-off point for detecting sensitive patients (i.e., biomarker-positive patients).

• Moderating dependency on Phase II data for establishing test cut-off point.
Disadvantages:

• The requirement of a quantitative biomarker before the design is applied.

• Power analysis and treatment comparison are done at the end of the trial.

• Accrual of patients is biomarker status independent.

• Inadequate power if the treatment effect is restricted to a relatively small fraction of the study population.

• Larger sample size may be required and can cause power redundancy. Data from the same study for defining and validating cut-off point may generate bias.
3. Cross-validated Adaptive Signature

Design (CV-ASD)
Like ASD, sensitive patient classifier development and validating with a cross-validation method
ignored.

EORTC 10,994 [49]

Advantages:

• Enhances the performance of ASD with the increase in power and efficiency, permitting the maximization of the portion of study patients contributing to the development of the
diagnostic signature.

• Maximizes the sensitive subgroup size.
Disadvantages:

• Multiplicity problem and similar challenges as ASD.
4. Molecular Signature Design A similar approach to that of ASD with a survival endpoint. No real-life example

found
Advantages:

• Considered as a promising strategy for drug development as it takes advantage of the use of an end-point with clear clinical gain.
Disadvantages:

• No information.
5. General Adaptive Signature Design A similar approach of ASD to identify and validate the biomarkers chosen. No real-life example

found
Advantages:

• Optimizes the test based on randomized data for patients in the Phase III setting.
Disadvantages:

• Power restriction on the MK + subgroup.

a Veterans Administration Cooperative Urologic Research Group.
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treatment arm over placebo in the overall population; 2) subset of pa-
tients having biomarker values greater than a threshold c (say) are
prone to greater effectiveness in the treatment arm than the control;
and 3) no detection of treatment effect. This method is at par with ASD
with overall and subset test being carried out at a significance level
of α1= 0.04 (say), α2= 0.01 (say); α1+α2= α=0.05 (say). Using all
possible cutoff values, the test statistic is calculated as the maximum of
the log-likelihood ratio statistic for treatment effects having biomarker
values above the cutoff value.

2.7.2. Plan B
This is considered as a generalization of Plan A where the differ-

ential treatment effect in the population is detected in the first stage.
The second stage devotes in obtaining the biomarker threshold above
which the treatment effect demonstrates beneficial acts towards the
patient population. In this method, test statistic using the maximum
overall cut-off values as in Plan A is recommended. The efficiency is
administrated by indulging the correlation structure of the test statistics
in combining the overall and subset tests, with the test statistic as the
larger of the test statistic for Plan A and the log-likelihood ratio statistic
for treatment effect in the entire population. A bootstrap re-sampling
approach was undertaken for the point and interval estimates of the
cut-off value, as Plan B being more productive than Plan A but with
slightly larger sample size and redundant power.

2.8. Cross-validated adaptive signature design (CV-ASD)

This design was proposed to increase the power and efficiency of
ASD. The approach is similar to that of ASD with the objective of
identifying the genomic signatures in the training set, and validating in
the test set if the overall treatment effect is not significant [45]. The
main factor that differentiates CV-ASD from ASD is the use of a K-fold
cross-validation procedure, so that the entire study population is uti-
lized in both signature development and validation steps with the su-
periority monitoring in the MK + group. The accrued population after
the completion of the trial is divided into two non-overlapping cohorts:
a predictive signature development cohort and a validation cohort,
having N1 and N2 patients respectively. With K=10 (say) cross-vali-
dation, the development cohort has 10 divisions each with N /101 pa-
tients forming d1,d2,…,d10 groups. Similarly, …v v v, , ,1 2 10 groups are
formed out of the validation cohort each with N /102 patients. With each
dk;k=1,2,…, 10, a predictive signature is developed whose application
entails the identification of sk, a subset of sensitive patients out of each
vk set. This process has a major contribution in utilizing all the patients,
and the union of all the sensitive set of patients forms the total sensitive
population. The design enhances the performance of ASD in terms of
maximizing the population engagement in signature development and
justification and increasing the power.

2.9. Molecular Signature Design

This is a Phase III design with the motive of comparing the new drug
with a standard of care and is on the similar lines as of ASD, except that
the primary endpoint is overall survival instead of binary [46]. The
accumulation of tissue samples from patients is done at baseline.
However, the analysis of them is expected to be performed at the near
end of the trial, when all possible biomarker combinations are utilized
to propose a classifier that can distinguish the patients sensitive to the
new regimen with overall survival as the outcome. The trial is designed
as follows:

i) Collect biomarker tissue samples on all individuals when the trial
begins.

ii) Randomize patients to new therapy versus placebo, and if the effect
of treatment is significant at the level 0.04 with the survival out-
come, the trial stops.

iii) If the test is not statistically significant, combinations of gene sig-
natures are utilized to form a biomarker-based classifier to identify
subjects sensitive to new care in the training set with a certain
proportion of patients, and the performance of the classifier is de-
termined in the validation set with the remaining proportion of
patients.

2.10. Adaptive signature design with subgroup plots

Adaptive Signature design with Subgroup Plots [47] is an extension
of ASD, which brings flexibility and uses a tail-oriented or sliding
window subgroup plots for subset identification by assessing several
cut-off points of the benefit score obtained by the subgroup plots. The
subsets consist of patients responsive to the treatment. The benefit
threshold is defined as the difference in effect between the new and the
standard mode of care. In this way, it provides broader confidence in-
tervals of the estimated treatment benefit. No statistical consideration
has been found for this approach. The method is explained by gen-
erating a hypothetical dataset of 10,000 markers from a normal dis-
tribution and 400 patients, however, no real-life example has been
found. Expression levels for each marker were generated under in-
dependent normal distributions. For each of the treatment and control
groups, the binary outcome is generated, and can be extended with
survival outcome. The estimated treatment benefit and its confidence
intervals showed that they are within the pre-specified benefit
threshold of experiment vs control, and thus can proceed for subgroup
analysis. 99% confidence intervals and confidence bands are con-
structed, which makes up part of the sliding window and tail-oriented
subgroup plots. A subgroup is identified when it has a lower bound of
simultaneous 99% confidence intervals greater than the benefit
threshold.

3. Discussion

Cancer research is reaching a new epitome with the advancement of
implementing biomarkers in accurate diagnosis, prevention, and ther-
apeutic treatment of diseases. One of the key landmarks in the ex-
ponential rise in research of melanoma studies is the precision medi-
cine, which considers variability in genes, environment, and lifestyle
per individual. The use of predictive biomarkers for the identification of
the patient population benefiting from the treatment makes the drug
development process complicated and expensive. However, it is scien-
tifically and fundamentally authenticated that with an increase in the
probability of success rate of oncology drugs, reducing the number of
patients exposed finally to these expensive drugs, and avoiding adverse
effects can curb the public health care expenditure [50].

Among the several challenges in biomarker validation, the following
areas were identified which need attention in ASD and in general bio-
marker adaptive designs.

Subgroup Finding: Subgroup analysis is referred to as an evalua-
tion of treatment effects in specific subgroups of patients defined by
baseline characteristics, where there is heterogeneity of treatment ef-
fects across a subset of patients. Detection of subgroup effect helps in
directing patients to the treatment arm, as they will be profitable from
treatment exposure. An interaction test between the treatment and
subgroup is a commonly used statistical method for assessing the het-
erogeneity of treatment effects among subgroups of a baseline (pre-
dictive) variable. Also, the prevalence of minimal sensitive genes can
lead to miscalculation of the treatment and subgroup effect [51].

Recent researches with ASD include extensions in the subgroup
analysis arena where inclusion of futility or decision rule can contribute
to the prevention of cost and complications of defining subgroups based
on complex and expensive biomarkers, such as multivariate
Quantitative polymerase chain reaction (qPCR). Frequentist and
Bayesian approaches based on conditional power and predictive power
respectively, with continuous efficacy endpoint restricts conduction of
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subgroup analysis, if the overall test confirms lack of statistical sig-
nificance in the subgroup [52]. New techniques of subgroup selection
based on utility function whose formulation includes the subgroup size
and clinical indicator with the objective of maximizing power for
treatment effect in the selected subgroup with baseline covariates such
as age, gender, systolic blood pressure, heart rate, a simple risk index
and binary endpoints is addressed. There is no overall treatment effect
evaluation as the test with the utility function is sufficient for the se-
lected subpopulation cohort which could be the entire population as
well [53]. Specific inclusion criteria defining the boundaries of clinical
trial designs, with an eye on the comparison of the size of treatment
effect inside and outside the subpopulation, and a balance between the
size of the treatment effect and the subpopulation should be considered
in defining the adaptive designs with subgroup selection in mind [54].

Choice of Gene Signatures: The choice of differentially expressed
gene signatures before the ASD trial and the effect of it on the empirical
power of the design need to be evaluated. There may be a single or no
significant gene signature selected by the variable selection methods
like PCA or LASSO, though the main purpose is the classification of
patients in a treatment benefiting and non-benefiting groups. The
process of identification of diagnostic [28] and prognostic [31] bio-
markers is being addressed. The outlined objective is to predict the
specific therapeutic outcomes, and the presence of complicated struc-
ture of thousands of genes in an experiment necessitates the selection of
a subgroup of differentially expressed genes, which can be done by an
appropriate test statistic like t-, U-(Mann-Whitney), M-statistics and
calculating the p-values for gene ranking. Family-wise error and false
discovery rate (FDR), false-positive error-controlled procedures, and
receiver-operating characteristic (ROC) approach help in identifying
significant number of genes [55].

Multiplicity Correction: The level of significance for multiple hy-
pothesis testing can be adjusted by methods such as Bonferroni ad-
justment and FDR [56]. Correction of multiplicity technique, by finding
the risk of false-positive findings in case of different scenarios of CVASD
is considered. This addresses the drawbacks of biomarker-stratified and
biomarker-enriched designs in which more than one potential pre-
dictive biomarker is being proposed. Inflation of type-I error is a major
issue in “testing-in-all-direction" approach (TIADA) and CV-ASD. Ac-
cordingly, tweaking the pre-specified significance level with recalibra-
tion can be an appropriate substitute to handle the multiplicity issue
which arises due to the inclusion of several biomarkers [57].

Classifier Development: It is well claimed that cancer therapies
produce significant effects in a subgroup of patients, and hence the
requirement of a well-validated predictive classifier with accurate re-
producible predictions is inevitable. Performance of a classifier depends
on the prevalence proportion, sample size, and the identified biomarker
set. There can be multiple biomarker classifiers which can produce a
similar effect in classification between sensitive and non-sensitive pa-
tients, and choosing the ideal and optimal one becomes difficult. A
detailed review of the parametric [58] and nonparametric [59]
methods of classification and dimension reduction of clinical outcomes
using high-throughput informatics can form a basis for applications in
melanoma studies. These classification algorithms can be applied in
ASD. The extension of ASD with scenarios of solely gene expression
main effect, treatment main effect, gene-treatment main effect, gene
expression-treatment interaction effect using 10-fold cross-validation
for dividing the data into training and testing sets is undertaken. The
odd's ratio technique of classification is replaced by: i) Weighted Voting
Kernel density analysis (KDA); ii) Weighted Voting Quadratic dis-
criminant analysis (QDA); and iii) Weighted Voting Linear Discriminant
Analysis (LDA) methods. The empirical power for QDA outperforms
other methods [60].

Other research areas include developing ASD for single arm studies
in phase I. For scenarios having strong biological reasoning and pre-
clinical evidence to bolster the fact that molecular targeted therapy
(MTA) may be differentially beneficial to a general population, early-

phase proof-of-concept (POC) studies for cytotoxic oncology drugs such
as single-arm adaptive signature design (ASD), single-arm Biomarker-
adaptive threshold (BAT) design, and Maximum Test Statistics ap-
proach can be designed for exploring the anti-tumor activity, and to
target biomarker-relevant topics, e.g., subgroup selection, biomarker
threshold evaluation [61].

Simon and Wang [62] focus on the development and use of classi-
fiers based on biomarkers in tumors in oncology. Conditional bias
correction problem was given in case of non-significant overall treat-
ment effect, and no pre-defined assay based on polynomial functions
were considered in treatment effect estimation in the MK+ group [63].
This concept was however argued as the marker is constructed using the
training sample, and a potential chance of correlation between log
hazard ratio estimator on the training sample and the log hazard ratio
estimator on the MK+ subgroup is probable. Thus concentrating on the
unconditional bias of estimators of the treatment effect for MK + pa-
tients is suggested [64]. Two important decisions in ASD i.e. the split of
the significant level and the optimal allocation of patients in learn and
confirm stage, and their impact on the power, supported by extensive
simulations are also being addressed. In oncology drug development,
there are set of biomarkers which modify the path of drug development
as well as influence the prediction of biomarkers, resulting in mean-
ingful patient sensitivity prediction. However, many a times, the
availability of patients and biomarkers are limited. This leads to the
need for conducting ASD. The design is implemented with a Cox-Pro-
portional Hazard model and is available in an open-source R package
“simASD” [65]. Relevant statistical aspects of interaction test for pre-
dictive biomarker identification, sample size, and power, validation of
the classification model, etc. are described with ASD as a supplemen-
tary test when the test for overall treatment effect is not significant
[66]. Future research scope includes: study of the effect of the choice of
gene signatures on the power of ASD; incorporation of multiple gene
effects by multigene penalized logistic regression models; study of ef-
fects of violation of the assumption of the normality of the genes; ap-
plication to real data scenarios; and proper identification of the tuning
parameters R and G. Thus, this study along with the recent advance-
ment in ASD will help to extend the research in this arena.
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