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Kidney transplantation is the most common solid organ transplant and the preferred

treatment for pediatric patients with end-stage renal disease, but it is still not a definitive

solution due to immune graft rejection. Regulatory T cells (Treg) and their control over

effector T cells is a crucial and intrinsic tolerance mechanism in limiting excessive

immune responses. In the case of transplants, Treg are important for the survival of

the transplanted organ, and their dysregulation could increase the risk of rejection

in transplanted children. Chronic immunosuppression to prevent rejection, for which

Treg are especially sensitive, have a detrimental effect on Treg counts, decreasing the

Treg/T-effector balance. Cell therapy with Treg cells is a promising approach to restore

this imbalance, promoting tolerance and thus increasing graft survival. However, the

strategies used to date that employ peripheral blood as a Treg source have shown limited

efficacy. Moreover, it is not possible to use this approach in pediatric patients due to

the limited volume of blood that can be extracted from children. Here, we outline our

innovative strategy that employs the thymus removed during pediatric cardiac surgeries

as a source of therapeutic Treg that could make this therapy accessible to transplanted

children. The advantageous properties and the massive amount of Treg cells obtained

from pediatric thymic tissue (thyTreg) opens a new possibility for Treg therapies to prevent

rejection in pediatric kidney transplants. We are recruiting patients in a clinical trial to

prevent rejection in heart-transplanted children through the infusion of autologous thyTreg

cells (NCT04924491). If its efficacy is confirmed, thyTreg therapy may establish a new

paradigm in preventing organ rejection in pediatric transplants, and their allogeneic use

would extend its application to other solid organ transplantation.

Keywords: pediatric transplant, immune tolerance, Treg cells, cell therapy, graft rejection, thyTreg

INTRODUCTION

Kidney transplantation is the treatment of choice for pediatric patients with end-stage renal disease.
In children, congenital anomalies of the kidney and urinary tract and glomerular diseases are the
most frequent indications for kidney transplantation (1). Although kidney transplantation is one
of the significant milestones of modern medicine, immune allograft rejection remains the main
obstacle to definitive successful transplants. According to the latest update of the OPTN/SRTR
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Kidney Annual Report, the incidence of acute rejection within
the first year for pediatric kidney transplants is 11.1% (2), and
the occurrence of acute rejection episodes is associated with
poorer survival of the graft along the time. Besides, chronic
rejection is one of the leading causes of graft loss in children.
Therefore, a countdown is settled as soon as a patient receives
a transplant that is hallmarked by the slow degeneration of the
organ due to rejection, giving graft survival rates of 12–15 years
in kidney transplanted children (3). While in adult patients, the
transplanted organ can extend the patient’s lifetime to values close
to the life expectancy of a healthy subject (80 years), when it
comes to pediatric recipients, the viability of transplanted organs
is very far from guaranteeing the average life expectancy.

The existing scientific evidence supports that only the
induction of immunological tolerance, re-educating the
recipient’s immune responses, will allow the indefinite survival
of the graft. In this sense, one of the most promising alternatives
to increase the life expectancy of transplant patients is to
induce tolerance through cellular immunotherapy without using
pharmacological immunosuppression, thus eliminating the toxic
effects of these therapies and maintaining a competent immune
system (4). Along these lines, different approaches to cell therapy
have been explored, being regulatory T cells (Treg), the cells with
the most significant potential and most studied for this purpose.
In this review, we will summarize the current knowledge about
Treg role to prevent graft rejection and emphasize the state of
Treg cell-based therapies in solid organ transplantation, along
with their obstacles and limitations surrounding their access to
the clinic in the pediatric setting. Last, we will also report an
innovative approach that has been developed in our group that
makes this Treg therapy accessible to transplanted children.

MECHANISMS OF TREG SUPPRESSIVE

FUNCTION AND TRANSPLANT

TOLERANCE

There are many cell types involved in the preservation of
tolerance, both of innate and adaptive immunity, such as
tolerogenic dendritic cells (DC) (5), tolerogenic monocytes or
macrophages (6), tolerogenic natural killer (NK) cells (7) and
regulatory B cells (8); together with mesenchymal stem cells (9).
The most studied are Treg cells, a subpopulation of CD4+ T
cells with suppressive capacity that plays a fundamental role in
regulating the immune processes intrinsic to graft acceptance.
Furthermore, an additional role in tissue repair and regeneration
has also been described recently for these cells (10–12).

Tregs are characterized by the high and stable expression of
the α chain of the IL-2 receptor (CD25) and the transcription
factor Foxp3 (forkhead box protein 3), which is critical for the
development and maintenance of the function and the Treg
phenotype (13). Tregs can suppress the effector function of a wide
range of cells, including CD4+ and CD8+ T cells, B cells, DCs,
macrophages, granulocytes, NK cells, and osteoclasts (14). For
that, Treg cells can produce anti-inflammatory cytokines (IL-10,
IL-35 and TGF-β) that directly inhibit effector T cells (Teff). They

can also release perforin and granzyme that damage the target-
cell membrane and cause apoptosis. Due to the high expression
of CD25, Tregs can “sequester” IL-2, decreasing IL-2 reserves in
the microenvironment and thereby reducing the proliferation of
Teff and NK cells, as well as their effector function. Tregs have
been shown to directly affect B cells through the PD-L1/PD-1
interaction and on DC through CTLA-4 (cytotoxic T lymphocyte
antigen 4) and LAG-3 (lymphocyte activation gene 3). The
expression of CD39 and CD73 ectoenzymes on Tregs mediate
the conversion of ATP (pro-inflammatory signal) to adenosine
(anti-inflammatory mediator) and AMP, indirectly reducing
the proliferation of Teff. Tregs can also induce monocytes
toward anti-inflammatory M2 macrophages and prevent their
differentiation to pro-inflammatory M1 macrophages (15).

In animal models, Treg cells have demonstrated their ability
to delay/prevent graft rejection and promote transplant tolerance
and indefinite graft survival (16–19). Specifically, it has been
observed that adoptive transfer of Treg cells in combination with
a short treatment of calcineurin inhibitor (CNI) prevent acute
rejection and induce long-term graft survival in a rat kidney
transplant model (19). Moreover, some studies, the majority
of them in the context of liver transplantation, carried out
in adult and pediatric transplanted individuals with operative
tolerance, showed a significant increase in the number of
circulating Tregs and in graft infiltrates compared to non-
tolerant individuals (20–23). On the contrary, a Treg deficiency
could seriously compromise the main peripheral tolerance
mechanisms, and indeed, decreased Treg values have been
associated with acute rejection and chronic allograft nephropathy
in kidney transplant recipients (24–27). It has been described that
the relationship between Treg cells and Teff cells is crucial for
the induction of tolerance or the development of graft rejection
responses (28–30).

IMMUNOSUPPRESSIVE DRUGS AND

THEIR IMPACT ON TREG

Immunosuppressive treatment of transplant patients aims to
limit the recipient’s immune response against the graft. The
treatment begins in the perioperative period, continues after
transplantation with high levels of immunosuppressants, and
later, the doses can be reduced to a maintenance therapy
administered throughout the patient’s life. There is a wide
variety of immunosuppressive drugs available that allow the
establishment of different treatment combinations that vary
according to the transplanted organ, the patient, the risk of
rejection, and also between countries and institutions (31). In
most cases, kidney transplanted children receive some induction
therapy with basiliximab (BXM) or thymoglobulin (ATG) and
maintenance therapy with tacrolimus (TAC), mycophenolate
(MMF), and corticosteroids (Pred), followed by TAC and MMF
with Pred cessation (2).

The immunosuppressive regimen could affect the Treg
cell population, essential to preserve immune tolerance after
transplantation. BXM is a monoclonal antibody that binds to
the IL-2 receptor (CD25), completely blocking the interactions
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between CD25 and IL-2. Its use aims to block IL-2 uptake
by activated Teff, harmful in the context of transplantation,
thus preventing their proliferation (32). However, Treg cells
also express high levels of CD25 constitutively and can also
be affected by this drug. Indeed, Treg cells are extremely
dependent on IL-2 and the transduction of intracellular signals
related to the IL-2 receptor (33). Although other cytokines can
replace the function of IL-2 in conventional T cells, IL-2 is
essential for Treg development, homeostasis, and function (34).
Moreover, since they do not produce IL-2, they are dependent
on IL-2 secreted by other T cells and dendritic cells. We have
shown that the induction therapy with BXM has an apparent
detrimental effect on Treg cells values, which could negatively
affect the protective role of Treg in transplanted children in
the period of the highest incidence of acute rejection (35).
Regarding the immunosuppressive drugs used as maintenance
therapy, TAC is a CNI drug that directly affects Tregs’ activation,
proliferation and survival, but it can also indirectly affect Tregs
by limiting IL-2 production by Teff (33). Long-term and high
doses of CNI have been related to low Treg numbers, weaker
Treg function and phenotype in children with stable liver
and kidney allografts (36). Concerning the MMF, its effect
on the Tregs remains controversial. On one hand, in vitro
experiments indicate that MMF does not alter the phenotype
of Tregs or can even promote the predominance of Tregs on
Th17 cells (33); and it has also been observed that kidney
transplant patients receiving MMF showed higher Treg levels
than those treated with everolimus (37). However, on the
other hand, in animal models that received cell therapy with
Tregs, the administration of MMF reduced the efficacy of Tregs
in preventing rejection (38). Finally, corticosteroids appear to
benefit the prevalence of Tregs and their activity by facilitating
TGF-β signaling and Foxp3 expression (33). In the case of
heart-transplanted children who are thymectomized before or
during the transplantation procedure, we demonstrated that the
combination of thymectomy, which is the source of new Treg
cells, with the administration of immunosuppressive drugs (TAC,
MMF, and Pred) produce a profound immune dysregulation. It is
characterized by a decrease in Treg cell counts and an imbalance
between Treg cells and Teff cells, which could compromise the
natural or intrinsic tolerance mechanisms (39).

Considering the evidence supporting the role of Tregs
in preventing rejection in transplanted children, monitoring
of Treg and Teff cell values and the imbalance between
both cell subsets could constitute markers of early risk of
rejection that can help to avoid graft damage before it occurs.
New strategies aimed at preventing the decrease in Treg
or restoring their frequencies could impact the prevention
of graft rejection. Interventions such as: (i) the choice of
immunosuppressive drugs with less impact on Tregs; (ii) the
supplementation with vitamin D, which has been shown to
increase Treg survival (40) and reduce the risk of acute
rejection (41, 42); or (iii) even a cellular therapy with Treg
cells (43, 44) could counteract the imbalance between Treg and
Teff cells.

STRATEGIES TO PROVIDE INDEFINITE

GRAFT SURVIVAL: CELLULAR THERAPIES

WITH TREG

One of the most promising alternatives to provide indefinite graft
survival and thus increase the life expectancy of transplanted
patients without morbidity is to induce immune tolerance
by cellular immunotherapy. Establishing tolerance in
transplantation aims to deliberately abate the detrimental
allograft-specific immune response while avoiding the toxicity
of long-term immunosuppression and maintaining a competent
immune system (4).

In the search for this “Holy Grail” of transplantation
tolerance, all efforts are currently directed toward developing
new immunomodulatory approaches with advanced cellular
therapies mainly based on immune regulatory or suppressive
cells to reduce or eliminate immunosuppressants. Among them,
different cell therapy approaches are being explored, such as
mesenchymal stem cells (9, 45, 46) and their exosomes (47),
tolerogenic dendritic cells, myeloid-derived suppressor cells
(MDSC), specifically regulatory macrophages. However, Treg
cells, which are “professional” cells in terms of regulatory
function and have been shown to play a crucial role in the
prevention of immune rejection, could be the strategy with the
greatest potential. Moreover, the tolerance mediated by these
cells is highly antigen-specific and localized (48), being capable
of migrating to sites of inflammation where they exert their
suppressing function (49).

Treg therapies are generally based on Tregs expansion ex
vivo followed by the re-infusion of expanded or induced Treg.
However, others consider the possibility to expand them in
vivo to limit the ex vivo cellular manipulation. Some preclinical
models showed that activating a tumor necrosis factor receptor
superfamily member 25 (TNFRSF25) with or without IL-2
could reduce the graft-vs.-host disease or prevent allergic lung
inflammation in mice recipients (50). The antibody-mediated
agonistic stimulation of TNFRSF25 was also shown to prolonge
islets’ allograft transplantation survival (51), which opens the
possibility that the in vivo Treg expansion could contribute
to reaching immunological tolerance in organ transplantation.
Nevertheless, this possibility can be envisaged only in patients
with slight or no Treg dysfunction.

The therapeutic efficacy of Treg cell transfer in the context of
solid organ transplantation has been demonstrated in preclinical
studies with animal models. Tsang et al. reported that Treg
infusion combined with temporary CD8+ T cell depletion and
a short course of rapamycin-induced indefinite graft survival in
an animal model of heart transplantation (52). Furthermore, in
kidney transplantation models employing non-human primates,
ex vivo expanded Treg therapy has been shown to prolong graft
survival and prevent acute rejection (53–55). In the study by
Duran-Struuck et al. monkeys that received a bone marrow
transplant together with the infusion of polyclonal Treg cells
(from the same donor) were able to accept a kidney graft without
immunosuppression for more than 294 days, in comparison
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with recipients not receiving Treg therapy rejecting transplanted
kidneys at 21–28 days (55).

Along with the experimentation carried out in non-human
primates, humanized animal models are an additional proof of
concept that Treg therapy has a suppressive effect on the immune
system, favoring tolerance of the transplanted organ. Studies
carried out in these animals have shown that mice that receive
only allogeneic peripheral blood mononuclear cells (PBMCs)
reject human skin grafts, while those that also receive Tregs show
stable survival of human skin transplantation together with a
reduction of human CD8+ T cells in the infiltrates of the skin
graft (56). In the work of Wu et al. Treg therapy prolonged
survival of pancreatic islet transplantation in a humanized
diabetic mouse model, resulting in accumulation of Treg in
lymph nodes and suppression of both proliferation and IFN-γ
production by T cells (57). Furthermore, the potential of Treg
cells has also been identified in the study by Nadig et al. in a
clinically relevant humanized mouse model by preventing the
development of atherosclerosis of the transplanted organ, which
is the hallmark of chronic graft dysfunction (58). Ultimately,
these preclinical models reflect the potential efficacy of a therapy
based on the ex vivo expansion of Treg cells and subsequent re-
infusion to achieve indefinite graft survival in transplant patients.

After animal models, the safety and potential efficacy of
the Treg therapy to re-establish the immune tolerance is
being evaluated in clinical trials in adult transplanted patients.
Currently, ongoing clinical trials are using a therapy with Treg
cells obtained from peripheral blood to prevent rejection of the
transplanted organ in adult patients, most of them in the context
of kidney and liver transplantation [reviewed in (15, 43, 59, 60)].
However, few definitive conclusions about these studies have
been published, and most of them are still in phase I or phase
I-II. The main published results, referring to phase I or phase I-II
clinical trials employing Treg cells in the context of adult kidney
transplantation are: the TASK trial (61), the TRACT trial (62) and
the “The ONE Study” consortium (63–65).

In 2017, the results of the TASK trial (NCT02711826)
conducted at the University of California (UCSF) (61) were
published. Three kidney transplant patients were treated with
ex vivo expanded autologous Tregs using a medium rich in
deuterated glucose to label and track cells in vivo. Patients
received a single infusion of 320 × 106 and maintained their
immunosuppressive regimen with TAC, MMF and Pred. The
infused Tregs peaked in circulation the first week after infusion,
with detectable signals during the first month falling at 3 months
after infusion. None of the patients presented infusion reactions,
and no infections or malignancies were observed in the 1-year
follow-up period.

The results of the TRACT trial (NCT02145325) were
published in 2018 by Mathew et al. from the Northwestern
University, Chicago, including a total of 9 kidney transplant
patients that were divided into three groups of 3 patients who
received 0.5, 1, and 5 × 109 ex vivo expanded autologous Treg
cells at 60 days post-transplantation (62). In this phase I safety
trial, the number of infused Tregs increased in the periphery, and
no therapy-related adverse events, infections, or rejection events
were observed up to 2 years post-transplantation.

The “The ONE Study” is an international consortium that
involves eight institutions in five European countries and the US,
investigating the safety and feasibility of different regulatory cell
populations (Treg, tolerogenic DC and regulatory macrophages)
in living donor kidney transplant patients (63). Two autologous
polyclonal Treg cell products (pTreg-1 and pTreg-2) and two
donor antigen-specific Treg products were used. All products
ranged from 0.5 to 10× 106 cells/kg of patient’s weight and were
administered in a single infusion 10 days post-transplantation.
Patients were routinely monitored for the primary endpoint
biopsy-confirmed acute rejection (BCAR) within 60 weeks post-
transplantation. The results were published in mid-2020 and
showed good safety data. However, the efficacy results are not
entirely conclusive, as BCAR rates were comparable between
the standard immunosuppressive and cell therapy groups (12
vs. 16%). Subsequently, results from two more clinical trials
within the ONE Study consortium have been published. The
ONEnTreg13 phase I-IIa trial (NCT02371434) conducted at
the Charité-University Hospital in Berlin compared 11 living
donor kidney transplant recipients who received the autologous
Treg therapy with 9 patients from the reference group (64).
Tregs were infused seven days after kidney transplantation
at escalating doses of 0.5, 1.0, 2.5–3 × 106 cells/kg of the
patient, with no dose-related toxicity observed. Same 100% 3-
year allograft survival was observed in both groups. Importantly,
in eight of 11 patients receiving the Treg therapy, it was
possible to achieve lower TAC’s monotherapy dose compared
to the reference group that remained on standard dual or
triple immunosuppression (TAC, MMF and Pred). The other
published clinical trial part of The ONE Study consortium was
conducted in the United Kingdom as a phase I trial, including
12 living donor kidney transplant recipients divided into four
groups receiving 1, 3, 6, or 10 × 106 Treg/kg at 5 days post-
transplantation, and 19 patients in the reference group (65).
No safety concerns were observed, and in 4 patients who
received the Treg therapy, MMF was withdrawn, remaining on
TAC monotherapy.

A possible risk of Treg therapy could be associated with the
fact that high numbers of Treg cells can suppress antitumor
responses favoring the tumor progression (66). Indeed, higher
numbers of Treg have increased the odds of cutaneous
squamous cell carcinoma appearance in kidney transplant
recipients (67). Nevertheless, no clinical trial employing Treg
in kidney transplanted adults has reported a higher incidence
of cancer in treated patients (61–65). Although we will
have to wait for more long-term results in this clinical
trial and other ongoing clinical trials to have conclusive
evidence, the data so far indicate that Treg therapy in the
context of solid organ transplantation is safe. The infused
cells are well-tolerated by patients, even when administered
at high doses. Many questions in terms of efficacy remain
unanswered regarding the Treg doses, the timing of infusion,
the Treg survival, the in vivo Treg’s mode of action as their
location. However, the clinical efficacy results are not entirely
encouraging, presenting a low/short therapeutic effect that
would be not enough to provide the indefinite survival of
the graft.
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LIMITATIONS OF CURRENT APPROACHES

OF TREG CELL THERAPY TO PREVENT

GRAFT REJECTION

The current Treg therapy strategy used by nearly all trials in the
context of solid organ transplantation consists of: (a) drawing
peripheral blood from the patient; (b) purification of Tregs from
peripheral blood; (c) ex vivo activation/expansion of Tregs to
obtain an appropriate number of cells; and (d) infusion of Tregs
obtained in the patient himself (autologous use) (61–63, 68, 69).
However, this widely used strategy presents a series of limitations
regarding the source and the method used to obtain the Treg cells
that have compromised its effectiveness.

The frequency of Tregs in peripheral blood accounts for only
5–10% of total CD4+ T cells (70). Because Tregs are isolated
from peripheral blood based on the exclusive expression of the
surfacemarkers CD4 and CD25, the final product could contain a
significant percentage of activated Teff that also express these two
markers. Therefore, to gain purity, it is necessary to use additional
markers such as CD127 (71), reducing cell yield and adding
complexity to the good manufacturing practice (GMP) protocol.
Taking as reference the data reported by Balcerek et al. in none
of the 41 therapeutic Tregs, when isolated from peripheral blood,
was possible to obtain more than 11.8 × 106 Tregs (72). For this
reason, it is necessary to carry out a massive ex vivo expansion to
obtain clinically adequate yields.

The quality of Treg cells is closely dependent on the phenotype
or activation/differentiation state of the cells. Most of the Tregs
purified from adults have a memory and more differentiated
phenotype that limits their functionality. As Miyara et al.
demonstrate, Treg cells with a memory phenotype (CD45RA–)
can lose their Treg phenotype due to presenting more methylated
Foxp3 gene regions, so their suppressive capacity is more
limited (73). Furthermore, the limited quality of adult Tregs
is further worsened when they are exhaustively expanded to
reach a sufficient number for their therapeutical use. The work
of Hoffmann et al. reported that repeated expansion of Treg
cells causes a marked loss of suppressive capacity and even
the conversion of Treg into Teff, posing an added risk for the
occurrence of rejection (74, 75).

Some studies consider the population of naïve Treg cells
(CD45RA+) as the optimal subpopulation for therapy since
these cells have more remarkable survival and maintain their
suppressive capacity and phenotype stability (76, 77). While
Treg cells with memory phenotype stimulated and expanded ex
vivo may lose Foxp3 expression and its Treg phenotype, Treg
cells with naïve phenotype can maintain Foxp3 expression and
suppressive capacity after repeated stimulation and expansion
(74). In pediatric patients, it is expected that Treg cells could
present a more naïve phenotype with more remarkable survival
and functional capacity compared to Tregs from adult patients.

Despite the high quality of pediatric Tregs, no clinical trials
have been performed with Treg in transplanted children to
prevent rejection. The usual strategy of isolating Treg from
peripheral blood is not feasible in pediatric patients, especially in
their shortage, since large volumes of blood cannot be drawn due

to their low weight (78). Thus, the amount of Tregs recovered
from peripheral blood would be even more restrictive than in
adults. As an example, in a 13 kg child, the maximum volume of
blood that can be safely extracted would be around 50ml. Taking
into account that Treg represent 5% of the total blood volume,
the available amount of CD45RA+ Treg would be minimal, as
indicated in (78). Based on the reference values reported in the
study by Schatorjé et al. (79), the average Treg count for a 2-
year-old child of that weight is 120,000 cells per ml. Therefore,
the theoretical Treg number that could be obtained from 50ml
of blood would be 6.24 × 106 Tregs. However, since the yield in
cellular isolation is<20% of the theoretical number (16.2%) (72),
only 1× 106 Tregs would be isolated, being clearly insufficient to
administer a single therapeutic dose. This issue could be solved
by doing exhaustive ex vivo expansion cycles, but as mentioned,
this expansion would lead to Treg differentiation, losing the
advantage of their more naïve or undifferentiated phenotype.

Another strategy that has been used with some success is
to obtain Tregs from umbilical cord blood, which shares the
advantage of being mostly CD45RA+ naïve cells (80), but also
has the important limitation in the number of cells. As described
by Riley et al., from a cord blood unit, between 5 and 7 × 106

Tregs can be obtained (81), which would still be an insufficient
number for a therapeutic dose and therefore requires numerous
rounds of expansion. In some trials, those cells were expanded up
to 27,000 times to achieve a single therapeutic dose (82). Despite
the limited number of cells available, the potential efficacy
of umbilical cord blood Tregs has been demonstrated when
used as an allogeneic therapy to prevent graft vs. host disease
(GVHD) in adults (82, 83). However, so far to our understanding,
cord blood Tregs have not been used in the context of solid
organ transplantation.

THYMIC TISSUE AS A NEW SOURCE OF

TREG: AN INNOVATIVE APPROACH THAT

COULD MAKE TREG CELL THERAPY

ACCESSIBLE TO TRANSPLANTED

CHILDREN

Our group decided to explore a new strategy to obtain an
adequate quantity of Treg cells suitable for cellular therapy from
an alternative source to peripheral or cord blood that could be
transferred to the pediatric setting. With this aim, we studied
whether the thymus that is routinely removed and discarded in
pediatric cardiac surgeries could be a source of therapeutic Treg
cells. The thymus is the organ where Treg cells are produced,
like the rest of T lymphocytes. Thus, Tregs obtained from this
tissue are immature and have an undifferentiated phenotype
(84). They also present a greater suppressive capacity and, above
all, greater stability of the Treg-related phenotype. Dijke et al.
previously reported the potential of discarded human thymuses
as an excellent source of Treg to overcome the limitations of
peripheral blood in terms of yield, stability, suppressive capacity
and survival (85). Indeed, we have developed a novel GMP-
protocol to obtain massive amounts of highly pure, suppressive
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and stable Treg from thymuses routinely discarded during
pediatric cardiac surgeries (thyTreg) after a 7-days culture; being
our thyTreg product already approved by the Spanish Drug
Agency (AEMPS) to be administered as cell therapy (86).

The strategy of using the thymus as a source of Treg was
of particular interest in treating children with heart transplants
since, during the transplant, surgeons are forced to remove
the thymus, or part of it, in order to gain access to the
heart. Thus, the thymic tissue would be available in these
patients at the moment of the transplant intervention, and it
would allow the generation of autologous cell therapy. In 2020,
we initiated a pioneering phase I-IIa clinical trial to prevent
rejection in heart-transplanted children through the infusion
of autologous thyTreg cells (NCT04924491). This clinical trial
represents the first Treg cell therapy performed in transplanted
children and, importantly, the first worldwide employing thyTreg
from thymic tissue. In addition, the large number of thyTreg
cells obtained with this strategy opens the possibility for the
administration of successive doses at different time intervals
or when signs of rejection appear to induce graft tolerance.
If its efficacy is confirmed, the thyTreg therapy may establish
a new paradigm in preventing organ rejection in solid organ
transplantation. At present, we are also exploring the allogeneic
use of thyTreg, which would allow us to extend the use of this
therapy to kidney-transplanted children or children transplanted
with other organs.

CONCLUSIONS

Treg cells play a crucial role in the balance between immune
tolerance and graft rejection. Immunosuppressive drugs
addressed to limit the immune responses against the graft
could also impair the intrinsic tolerance mechanism promoted
by Tregs. Restoring the balance between Treg and Teff cells

by increasing Treg reserves through cell therapy can be an

effective strategy to induce immune tolerance and prevent graft
rejection. The ongoing clinical trials employing Treg therapy to
prevent solid organ rejection in adults use autologous Treg cells
obtained from peripheral blood. However, this strategy cannot
be employed in transplanted children due to the limited number
of Treg cells available in peripheral blood. The therapeutic
strategy developed in our group that employs thyTreg purified
from pediatric thymic tissue represents an innovative approach
that could make Treg therapy available in transplanted children.
From here, a wide range of possibilities opens up to exploit the
potential of this therapeutic arsenal that constitutes the thyTreg
in the prevention of organ rejection and the treatment of other
diseases associated with phenomena of hyperactivation of the
immune system.
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