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Abstract

Background

RNA sequencing has been proposed as a means of increasing diagnostic rates in studies of

undiagnosed rare inherited disease. Recent studies have reported diagnostic improvements

in the range of 7.5–35% by profiling splicing, gene expression quantification and allele spe-

cific expression. To-date however, no study has systematically assessed the presence of

gene-fusion transcripts in cases of germline disease. Fusion transcripts are routinely identi-

fied in cancer studies and are increasingly recognized as having diagnostic, prognostic or

therapeutic relevance. Isolated reports exist of fusion transcripts being detected in cases of

developmental and neurological phenotypes, and thus, systematic application of fusion

detection to germline conditions may further increase diagnostic rates. However, current

fusion detection methods are unsuited to the investigation of germline disease due to perfor-

mance biases arising from their development using tumor, cell-line or in-silico data.

Methods

We describe a tailored approach to fusion candidate identification and prioritization in a

cohort of 47 undiagnosed, suspected inherited disease patients. We modify an existing

fusion transcript detection algorithm by eliminating its cell line-derived filtering steps, and

instead, prioritize candidates using a custom workflow that integrates genomic and tran-

scriptomic sequence alignment, biological and technical annotations, customized categori-

zation logic, and phenotypic prioritization.

Results

We demonstrate that our approach to fusion transcript identification and prioritization

detects genuine fusion events excluded by standard analyses and efficiently removes
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phenotypically unimportant candidates and false positive events, resulting in a reduced can-

didate list enriched for events with potential phenotypic relevance. We describe the suc-

cessful genetic resolution of two previously undiagnosed disease cases through the

detection of pathogenic fusion transcripts. Furthermore, we report the experimental valida-

tion of five additional cases of fusion transcripts with potential phenotypic relevance.

Conclusions

The approach we describe can be implemented to enable the detection of phenotypically rel-

evant fusion transcripts in studies of rare inherited disease. Fusion transcript detection has

the potential to increase diagnostic rates in rare inherited disease and should be included in

RNA-based analytical pipelines aimed at genetic diagnosis.

Introduction

The uptake of next-generation sequencing for clinical testing has brought about a surge in the

diagnosis of rare genetic disease. Approximately 18–40% of cases originally escaping a diagno-

sis with traditional genetic assays are now solved by exome-based DNA sequencing [1–3].

Despite such advances, a clear need remains for novel and improved methods that will further

increase diagnostic rates and improve patient care. While whole-genome sequencing will likely

lead to higher diagnostic rates, it remains less cost effective than exome sequencing and signifi-

cant advances in understanding are required before its non-coding data can be harnessed for

clinical practice [4].

Recently, RNA-Seq has been promoted as a versatile clinical tool capable of distilling

diverse genetic variation into more readily interpretable transcriptional manifestations [5].

RNA-based profiling of genetic disease has traditionally occurred in targeted assays, with lim-

ited assessment of transcriptome-wide applications. Three recent studies reported on the util-

ity of RNA-Seq as a complement to exome-based sequencing in inherited muscle pathologies

[6], mitochondriopathies [7] and broad-spectrum rare disease [8]. Cummings et al. studied

aberrant splicing patterns and allele-specific expression (ASE), achieving a diagnostic

improvement of 35%, while Kremer et al. and Fresard et al. evaluated splicing, ASE, and gene

expression quantification, increasing diagnostic yields by 10% and 7.5% respectively. These

studies concluded that RNA-Seq represents an essential component of the diagnostic toolkit

for rare genetic disease testing.

One transcriptional phenomenon not considered by these previous studies is the expression

of fusion transcripts. This is the occurrence whereby genetic material from mutually distinct

genes is aberrantly conjoined and transcribed. It can occur by translocation, inversion, dele-

tion, and duplication, potentially leading to gained, lost or altered gene function. Human

gene-fusion transcripts are known to occur in hematological and solid tissue cancers where

their oncogenic, diagnostic and therapeutic relevance are well-documented [9]. However, the

systematic application of fusion transcript detection in germline genetic disease is absent from

the literature. This is despite the fact that mechanisms commonly responsible for fusion tran-

script formation, including deletions, inversions and translocations, often underlie inherited

conditions [10]. Indeed, case studies have reported fusion transcripts in disease including

brain malformation [11] [12] [13], intellectual disability [14] [15] [16] [17] [18], schizophrenia

[19] [20], spastic paraplegia [21], autism spectrum disorder [22], Gille de la Tourette
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Syndrome [23] and more [24] [25] [10]. These sporadic cases suggest that the systematic inclu-

sion of fusion transcript detection in RNA-based analysis of rare undiagnosed disease may

lead to improved diagnostic rates.

Despite the availability of fusion-detection software, its practical application to transcrip-

tome-wide rare disease studies in germline samples is challenging. Current solutions show lim-

ited agreement in the putative fusion candidates they output and none generate fully inclusive

results. An appropriate fusion caller should be selected to match the data type under analysis.

However, current tools were trained using cell line, tumor, or in-silico datasets and are not

applicable to germline data. Filters empirically derived from mismatched training data lead to

low sensitivity when profiling unrelated sample types [26]. Another obstacle to fusion detec-

tion in germline samples is the abundance of false-positive findings arising from bioinformat-

ics alignment artifacts, PCR artifacts, DNA fragments or unprocessed mRNA [27]. Equally,

the potential remains for the detection of genuine mRNA species, commonly originating from

currently unrecognized single genes, or more rarely, from trans-splicing mechanisms [27–31].

Furthermore, non-pathogenic constitutive fusions may be detected [32] [30], or fusions occur-

ring transiently in subclonal cell populations [33]. Thus, any attempt to systematically apply

fusion transcript detection in inherited disease studies using germline samples will require

methods to detect meaningful fusion candidates and deprioritize phenotypically inconsequen-

tial results.

Here, we describe the systematic application of fusion transcript detection to a cohort of 47

individuals with undiagnosed rare genetic disease. By applying a custom annotation and cate-

gorization process to fusion candidates, we demonstrate the presence of diagnostic fusion tran-

scripts in a subset of patients. Our findings provide an analytical framework for others in the

field and provide justification for the routine application of fusion transcript identification in

genetic disease patients who eluded a diagnosis with existing assays.

Materials and methods

Ethical compliance

This study was approved by the Mayo Clinic institutional review board and all participants

provided written informed consent for genetic testing.

Study subjects

All patients were clinically referred to Mayo Clinic’s Center for Individualized Medicine, seek-

ing genetic diagnosis of a suspected rare inherited disease. Patients and parents underwent

genetic counselling and a full case history and family pedigree were constructed. Patients not

fully diagnosed by exome sequencing were selected for whole-transcriptome RNA sequencing.

RNA-sequencing

Sequencing was conducted on blood for 46 patients and cultured fibroblasts for 1 patient due

to sample availability. Blood-derived RNA was obtained by collecting peripheral whole blood

in PAXgene blood RNA tubes and using the QIAcube system (Qiagen) according to the manu-

facturer’s protocol for RNA extraction. RNA was isolated from fibroblasts as previously

described [34].

Sequencing libraries were prepared with either the TruSeq RNA Sample Prep Kit v2 or the

TruSeq RNA Access Library Prep Kit (Illumina, San Diego, CA). Paired-end 101-basepair

reads were sequenced on an Illumina HiSeq 2500 using the TruSeq Rapid SBS sequencing kit

version 1 and HCS version 2.0.12.0 data collection software. A median of approximately 200
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million reads was generated per individual. Base calling was performed using Illumina’s RTA

version 1.17.21.3.

RNA fusion analysis

Candidate fusion events were initially detected using TopHat Fusion (TopHat release 2.1.0)

[35]. Minimal depth filtering was applied to candidate fusions. Each fusion candidate was

required to be supported by a single split read pair (one read-pair member mapping across the

breakpoint) and a single spanning read pair (one read-pair member mapped to each side of

the breakpoint). Ultimately this enabled us to maintain a strategy that was more inclusive than

the default filters (3 split, 2 supporting) while still requiring supporting evidence from both

classes of fusion-defining read pairs. To further increase candidate inclusiveness in this germ-

line dataset, we omitted the cancer-cell-line-derived TopHat Fusion post-processing filter

steps (tophat-fusion-post) and began with the unprocessed fusion calls as input into a candi-

date categorization workflow. We performed sequence alignment to the human genome and

transcriptome using BLASTN (v2.6.0) [36]. A word size of 7 and e-value threshold of 1 was

used to enable the BLAST alignment of short sequences. Alignments with less than 90%

sequence identity and 75% sequence length coverage were filtered. Top scoring alignments

were individually selected for (i) full length fusion candidates including conjoined 5‘and 3‘seg-

ments and (ii) decoupled 5‘and 3‘fusion candidate segments. Alignment results were anno-

tated with Ensembl gene models [37] to identify putative gene involvement, exon-intron

composition and coding-frame status, where applicable. Subsequent candidate classification

rationale is detailed in Fig 1. Standard TopHat Fusion-filtered outputs were generated along-

side custom categorized outputs to enable the comparison of results.

Population frequency-based filtering

As our patient cohort suffered from rare disease, we assumed that any causative event would

occur with extremely low frequency in a normal population. To control for event frequency

and recurrent artifacts, we compared our putative fusion candidates to a fusion-event database

generated using normal samples from our institution, the Illumina Human BodyMap and the

Genotype-Tissue Expression (GTEx) project (dbGaP accession phs000424.v7.p2) [38]

(approximately 11688 RNA-Seq samples from 500+ individuals and 53 tissue types in total).

Most fusion candidates in normal controls were detected with only one supporting read (S1

Fig) and we theorized that the artefactual candidates were likely overrepresented close to this

level of support. We therefore considered fewer than two supporting reads as insufficient evi-

dence of a genuine fusion event in our control database. Putative fusion candidates were

removed from consideration if they were identified more than two supporting reads in a nor-

mal control specimen. Candidates were not considered further if they appeared in another

sample from our rare disease cohort, since the patients were unrelated and expected to suffer

from rare and distinct genetic disorders.

Phenotype-based prioritization of events classified as potential fusions

Putative fusion transcripts were evaluated with manual and automated approaches to ascertain

potential relevance to each patient’s phenotype. The manual review of fusion transcripts was

carried out to identify links to patient phenotype based on case notes, medical records, Online

Mendelian Inheritance in Man (OMIM) [39], Genecards [40] and relevant literature. We also

applied an automated in-silico method called PCAN: Phenotype consensus analysis to support

disease-gene association [41] to predict the relevance of fusion-forming genes to phenotypes.

PCAN uses semantic similarity scoring to measure relationships between the phenotypic
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terms mutually associated with a patient and a gene. Scores are ranked by simultaneously mea-

suring semantic similarity for all disease-associated genes in the ClinVar database [42] versus

each patient’s phenotype and producing a rank-score (rank/number of genes in Clinvar e.g.

0.01 indicates that a gene produces a score in the top 1% of all disease-linked ClinVar genes).

PCAN also measures the phenotypic relevance of all genes sharing Reactome pathways [43] or

STRING [44] protein-protein interaction networks with the fusion-forming genes, producing

a p-value score and enabling indirect phenotypic-link discovery.

Confirmation of fusion candidates

A selection of fusions passing filtering and phenotypic prioritization steps were selected for

PCR validation. Fusion transcripts were amplified from cDNA generated from patient RNA

using the Invitrogen Super-Script II RT Kit (Cat. No. 18064022) with random hexamer prim-

ers. PCR was performed with primers detailed in S1 File using Bioline MiTaq Polymerase

(Cat. No. BIO-25043). Reaction conditions included an annealing temperature of 55˚C for 30–

34 cycles.

Droplet Droplet digital PCR (ddPCR) was also performed for all fusion sequences selected

for validation. gBlock constructs (Integrated DNA Technologies) were synthesized as positive

controls. ddPCR primers and gBlock sequences are described in S2 File. ddPCR reactions con-

tained 11 μL of ddPCR EvaGreen Supermix (Bio-Rad), 2.2 μL of primer mix (100nM final con-

centration of each primer) and 8.8 μL of cDNA. Separate reactions were assembled for each

fusion candidate using a corresponding primer set. The QX-100 Droplet Generator (Bio-Rad)

generated droplets with 20 μL of sample mix and 70 μL of QX200 droplet generation oil Drop-

lets were transferred to a semi-skirted plate and sealed at 180˚C for 4 sec. Thermocycling con-

ditions were as follows: enzyme activation at 95˚C for 5 min, 40 cycles of denaturation at 95˚C

for 30 sec, annealing and extension at 60˚C for 1 min, and signal stabilization at 4˚C for 5 min

and 90˚C for 5 min. Plates were measured on a QX200 Droplet Reader (Bio-Rad).

Further validation work was performed for select fusion events. Agilent 44k and 180k array

comparative genome hybridization (aCGH), fluorescence in-situ hybridization (FISH), multi-

plex-ligation probe analysis (MLPA) and Molecular Inversion Probe (MIP) Analysis were

Fig 1. Fusion candidate BLAST categorization rationale. Putative fusion sequences were BLASTN aligned to the human

genome and transcriptome to enable categorization. A) Candidates aligning to abundant hematological genes (Globins, T-

cell receptors) were not considered further due to their overrepresentation in blood samples and observed

overrepresentation in fusion analysis results. These might represent artifacts or transient biological events. B & C) Full

length candidates producing unbroken alignments against the human transcriptome or genome were classified as likely

known transcripts or genomic sequence respectively. D) When the candidate produced no alignment against the human

genome or transcriptome or only a part alignment was possible, the candidate was classified as a likely artifact, potentially

containing low quality or non-human sequence including adapters. E) When the candidate produced multiple alignments

within the gene boundaries of a single gene but did not align completely to a known transcript, it was classified as a potential

novel transcript of a known gene. This category has the also potential to capture aberrant single-gene events. F) When the

candidate produced two hits to separate immunoglobulins the event was classed as potentially representing immune

diversity. Alternatively these may be generated by alignment artifacts due to high homology between immunoglobulin

genes. G) When two distinct alignments were produced against two different chromosomes, the candidate was defined as a

potential interchromosomal fusion. Fused genes with known homology were flagged to enable additional checking for

alignment artifacts. H) When the candidate aligned to two distinct genes or regions on a single chromosome, it was

classified as a potential intrachromosomal fusion. Fused genes with known homology were flagged to enable additional

checking for alignment artifacts. Intrachromosomal candidates occurring between neighboring genes were annotated as

potential read-through events. These events could represent true fusions or aberrant transcriptional events but might also

represent biologically normal events that occur due to co-transcription of neighboring genes that have yet to be re-classified

as single genes. Interchromosomal and intrachromosomal candidates were annotated as homologous when the two hits

occurred against known homologous genes based on the Duplicated Genes Database (http://dgd.genouest.org/). Such

instances might represent artifacts due to misalignment between closely homologous genes or might equally represent true

aberrant events, preferentially occurring due to homology at the genomic sequence level.

https://doi.org/10.1371/journal.pone.0223337.g001
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performed as previously described by Oliver et al. [45]. Flow cytometry, long range PCR,

Pacific Biosciences (PacBio) sequencing, targeted PCR and Sanger sequencing were performed

as previously described by Cousin et al. [34].

Results

Patient cohort

RNA-Seq was performed on 47 patients with an incomplete diagnosis following prior testing,

including exome sequencing. The cohort consisted of 23 males and 24 females. Ages at initial

referral ranged from 9 months to 68 years with a mean age of 18 years and median of 11 years.

Clinical presentations varied widely and comprised a spectrum of neurological, immune, mus-

cular, gastrointestinal, connective tissue and skeletal disorders (S1 Table).

Genes of prior interest

Of 47 cases, 19 had genes or variants of potential interest identified by exome sequencing and

clinical review (S2 Table). Two patients had variants or genes considered to be of exceptionally

high interest. Patient 6 carried a single pathogenic variant in ATM with strong links to pheno-

type, but a second variant was required to fully explain the phenotype based on an autosomal

recessive mode of inheritance. In patient 37, a pathogenic variant was actively sought in EXT1
or EXT2. These genes of exceptionally high prior interest were determined to have expression

levels suited to analysis in available tissue. Four further patients (Patients 21, 36, 42 and 44)

carried variants with predicted pathogenicity and observed zygosity that was suspected to be

fully explanatory of some element of their phenotype. It was theorized that fusion profiling for

these patients might yield further phenotype-relevant events in other genes. The thirteen addi-

tional cases carried a selection of variants of unknown significance (VUS). Six of the thirteen

patients carried a total of eight VUS in genes that displayed low expression (< 1 TPM in the

GTEx [38] database) in whole blood, however, six of these showed correspondingly low

expression in fibroblasts. Ultimately it was decided to proceed with sequencing of readily avail-

able blood samples for investigative purposes (S2 Table). The remaining 28 cases were

unsolved and without candidates following exome sequencing, and were consequently

included for exploratory analysis.

Fusion candidate classification workflow

The fusion candidate selection workflow with the median number of candidates per category

is shown in Fig 2. This workflow was designed to remove suspected artifacts or recurrent

fusions and to classify remaining candidates into biologically meaningful categories. The

median number of unfiltered fusion candidates entering the workflow was 31,138 per patient.

The minimal read-depth filter removed a median of 27,824 likely spurious events per patient.

Removal of putative fusions previously observed in normal samples further reduced candidates

by a median of 2,553 per patient. Remaining filtering and categorization steps reduced fusion

candidates by a median value of 97, achieving a tractable median of 12 events per patient

which were classified as potential fusions and subjected to manual review for links to pheno-

type. The number of candidates categorized per patient at each stage is detailed in S3 Table

while all candidates classified as potential fusions are included in S4 Table. A total of 16 fusion

candidates in 13 patients (including 1 reciprocal event) passed phenotypic review, with poten-

tial links between genes and phenotype identified based on a combination of PCAN analysis

and manual curation (Table 1). Extended descriptions and rationale for inclusion of fusion

candidates passing manual review are provided in S5 Table.
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Confirmation of fusion candidates

Eleven candidate fusions with strong phenotypic relevance to the patient were selected for con-

firmation using orthogonal methods. Table 2 describes each of the fusions as well as the ratio-

nale for their selection and the status of their experimental confirmation. Eight fusions were

successfully confirmed, with 2 clinically classified as diagnostic of the patients’ phenotype.

Fusion confirmation images are included in S3 File. A selection of the confirmed fusion prod-

ucts are discussed in detail, as follows.

SAMD12-EXT1 fusion in a patient with multiple exostoses

Patient 37 is a male child who presented with a phenotype including pachygyria, epilepsy,

developmental delay, short stature, failure to thrive, facial dysmorphisms, and multiple exosto-

ses [45]. Trio-based clinical exome sequencing identified a maternally inherited, X-linked loss-

of-function variant in Doublecortin (DCX), which was classified as pathogenic and diagnostic

of the patient’s neurological phenotype. However, the cause of the patient’s multiple exostoses

remained unknown. Hereditary multiple exostoses is an autosomal dominant disorder, caused

Fig 2. Fusion categorization workflow and median number of fusion candidates per category. Unfiltered results from TopHat fusion were BLASTed, annotated and

input into the candidate classification workflow. The median number of events per sample in each category is shown. All candidates classified as potential fusions or

read-through events, proceeded into a final review stage that determined phenotypic relevance of the genes to the patient condition using both automated PCAN

analysis and manual review. Candidates classified as most phenotypically relevant were selected for follow-up validation.

https://doi.org/10.1371/journal.pone.0223337.g002
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by pathogenic variants in EXT1 or EXT2 in 70–95% of cases, with EXT1 affected twice as fre-

quently as EXT2 [46] [47]. Mosaic pathogenic events have been reported in numerous

instances [48] [49]. No variant was identified in either gene despite extensive clinical testing,

including array comparative genome hybridization (aCGH), metaphase karyotyping, multi-

plex ligation-dependent probe amplification (MLPA) and exome sequencing. RNA-Seq and

subsequent fusion analysis discovered a candidate intrachromosomal fusion between SAMD12
and EXT1 (Fig 3A). The fusion was observed at the 3’ boundary of SAMD12 exon 2 and the 5’

boundary of EXT1 exon 2 forming a transcript predicted to be out-of-frame, leading to loss-

of-function. The fusion was supported by 17 sequence reads and was not identified in our nor-

mal control database. SAMD12 lies upstream of EXT1 on Chromosome 8 and both genes are

oriented on the reverse chromosomal strand. Intuitively, the fusion transcript could be

expected to result from a rare interstitial deletion of genomic sequence between the two genes,

however, prior clinical testing did not report this. The clinical aCGH results were re-inspected

for evidence of a deletion in this region and a 604 kb genomic region intervening the fused

exons (chr8:118960168–119569348) showed evidence of mosaic loss of EXT1 exon 1 and

SAMD12 exons 3–5, but did not meet clinical-reporting thresholds. The mosaic loss was subse-

quently confirmed by an increased density aCGH (S2 Fig), MIP analysis (S3 Fig), PCR and

Table 1. Technical details of 16 fusion candidiates passing phenotypic review.

Patient

ID

Fusion Supporting vs

Non-

Supporting

Reads

Fused at Exon

boundaries?

Fusion

preserves

reading

frame?

Inter/

Intrachromosomal

Genomic coordinates (hg19) Separation on

chromosome

(bp)

Transcripts Strand Detected by

Standard

TopHat Fusion

Filters?

Patient

3

ABCC2-CUTC 10 vs 18 Exon-Exon Yes Intrachromosomal chr10:101554225-chr10:101515382 38843 NM_000392 Exon 6—

NM_015960 Exon 9

Forward–

Forward

No

Patient

5

NARS2-TENM4 23 vs 22 Exon-Exon No Intrachromosomal chr11:78239888-chr11:78369861 129973 NM_001243251 Exon 6

—NM_001098816

Reverse-

Reverse

No

Patient

6

ATM-SLC35F2 14 vs 6 Exon-Exon Yes Intrachromosomal chr11:108129802-chr11:107663526 466276 NM_000051 Exon 16—

NM_017515 Exon 8

Forward–

Reverse

Yes

SLC35F2-ATM 43 vs 2 chr11:107673727-chr11:108137898 464171 NM_017515 Exon 7—

NM_000051 Exon 17

Reverse—

Forward

Patient

7

NKAPD1-DLAT 26 vs 33 Exon-Exon No Intrachromosomal chr11:111951282-chr11:111907997 43285 NM_001301019 Exon 4

—NM_001931 Exon 6

Forward—

Forward

No

Patient

12

C18orf32-DYM 19 vs 5 Exon-Exon No Intrachromosomal chr18:47009954-chr18:46956817 53137 NM_001199356 Exon 6

—NM_017653 Exon 2

Reverse-

Reverse

No

Patient

13

SLC30A6-SPAST 11 vs 22 Exon-Exon Yes Intrachromosomal chr2:32409407-chr2:32340771 68636 NM_001330476 Exon 2

—NM_199436 Exon 5

Forward-

Forward

No

Patient

13

UBR1-EPB42 4 vs 2 Exon-Exon No Intrachromosomal chr15:43398140-chr15:43489662 91522 NM_174916 Exon 1—

NM_0001199 Exon 13

Reverse-

Reverse

No

Patient

18

ARL5A-NEB 7 vs 3 Exon-Exon No Intrachromosomal chr2:152659521-chr2:152590309 69212 NM_012097 Exon 6—

NM_001271208 Exon 2

Reverse-

Reverse

No

Patient

20

TET3-DGUOK 29 vs 44 Exon-Exon Yes Intrachromosomal chr2:74230293 -chr2:74173846 56447 NM_001287491 Exon 2

—NM_080916 Exon 3

Forward—

Forward

No

Patient

21

METTL22-ABAT 15 vs 5 Exon-Exon No Intrachromosomal chr16:8738582 -chr16:8829556 90974 NM_024109 Exon 10—

NM_020686 Exon 2

Forward-

Forward

No

Patient

33

CACNB4-STAM2 33 vs 12 Exon-Exon No Intrachromosomal chr2:152954844 -chr2:153006743 51899 NM_000726 Exon 2—

NM_005843 Exon 2

Reverse-

Reverse

No

Patient

36

CTSS-ARNT 27 vs 21 Exon-Exon Yes Intrachromosomal chr1:150737114 -chr1:150786715 49601 NM_001199739 Exon 2

—NM_001668 Exon 20

Reverse—

Reverse

No

Patient

36

SON-FCRL3 7 vs 45 Intron-Exon No Interchromosomal chr21:34927578 -chr1:157670375 NA NM_138927 Exon 3—

NM_001320333 Exon 2

Reverse—

Reverse

No

Patient

37

PDPK1-PRSS21 51 vs 120 Exon-Exon No Intrachromosomal chr16:2633586 -chr16:2875971 242385 NM_002613 Exon 10—

ENST00000575739.1

Exon 2

Forward—

Forward

No

Patient

37

SAMD12-EXT1 17 vs 2 Exon-Exon No Intrachromosomal chr8:119592952-chr8:118849438 743514 NM_001101676 Exon 2

—NM_000127 Exon 2

Reverse-

Reverse

No

Table 1 describes technical details of the fusion canddiates passing all steps of the categorization pipeline and putatively determined to have phenotypic relevance. Only

one fusion candidate was detected by the standard Tophat Fusion filter settings.

https://doi.org/10.1371/journal.pone.0223337.t001
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Table 2. Validation status and phenotypic justiifcation for the 11 fusion candidates selected for validation.

Patient

ID

Fusion Reason for interest? Flagged by Experimental

Validation

Patient

5

NARS2-TENM4 Patient was referred due to

epilepsy phenotype. NARS2

mutations are responsible for

combined oxidative

phospohorylation deficiency

with symptoms including

epilepsy. OMIM notes variable

penetrance and severity.

PCAN (NARS2 reactome

pathway p-value 0.027)

Positive (PCR,

ddPCR)

Patient

6

ATM-SLC35F2
(and
SLC35F2-ATM)

The patient carries a single

pathogenic mutation in ATM,

for which a second hit is sought

as mutations are recessive.

Manual analysis & PCAN

(ATM gene relative rank

0.002, Reactome pathway

p-value 0.037, STRING p-

value 0.028)

Positive (PCR,

ddPCR, Sanger

Sequencing, PacBio

Sequencing)

Patient

12

C18orf32-DYM Patient symptoms include

microcephaly, global

developmental delay and

scoliosis. Mutations in DYM

gene responsible for Dyggve-

Melchior-Clausen disease

whose symptoms include

microcephaly, scoliosis, and

psychomotor retardation.

PCAN (DYM gene

relative rank 0.067,

Reactome pathway,

STRING p-value 0.028)

Positive (ddPCR)

Patient

13

SLC30A6-SPAST Fusions between these two

genes have been previously

described in cases of spastic

paraplegia. SPAST mutations

are responsible for autosomal

dominant spastic paraplegia

(which the patient is not

diagnosed with) but also

various symptoms based on

mutation e.g. mild-moderate

cognitive defects, stutter,

wheelchair bound by age 40 etc

(OMIM).

Manual analysis. Negative (PCR &

ddPCR)

Patient

18

ARL5A-NEB NEB mutations are responsible

for Nemaline Myopathy.

Symptoms include hypotonia

and delayed motor

development. Patient

symptoms are developmental

delay, hypotonia &

laryngomalacia.

PCAN (NEB gene relative

rank 0.03)

Positive (ddPCR)

Patient

20

TET3-DGUOK TET3 is a TET Oncogene

family member.

TET3-DGUOK fusions have

been reported in tumors.

Manual analysis Negative (PCR &

ddPCR)

Patient

33

CACNB4-STAM2 CACNB4 mutations are

associated with episodic ataxia

(inc. vertigo, nystagmus,

dysarthria) and epilepsy.

Patient phenotype is

progressive gait difficulty/

balance, abnormal brain MRI

with atrophy, progressive

cognitive decline.

Manual analysis. Overlap

quite weak.

Negative (PCR &

ddPCR)

(Continued)
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ddPCR (S3 File). Thus, the SAMD12-EXT1 fusion was categorized as pathogenic and diagnos-

tic of the patient’s multiple exostoses phenotype in accordance with American College of Med-

ical Genetics and Genomics (ACMG) reporting guidelines [50]. While exon 1 deletions are

recurrently reported in cases of multiple exostoses, no previously reported events involve

SAMD12 or report fusion transcript formation [51].

PDPK1-PRSS21: A patient carries a second confirmed fusion

A candidate PDPK1-PRSS21 fusion was also identified in Patient 37, juxtaposing PDPK1
Exon 10 and PRSS21 Exon 2 at exon boundaries. The event was absent from our normal

control database and aCGH revealed a corresponding 16p13.3 deletion spanning approxi-

mately 219 kb at chr16:2636111–2854742 (S4 Fig). The deleted interval completely con-

tained ten genes, including LOC652276, FLJ42627, ERVK13-1, KCTD5, PRSS27, SRRM2-
AS1, SRRM2, TCEB2, PRSS33 and PRSS41, with PDPK1 and PRSS21 partially affected at

the 5‘and 3‘boundaries respectively (S5 Fig). The de novo deletion was confirmed by

FISH. None of the ten deleted genes had known links to patient phenotype. The PRSS21
Ensembl transcript ENST00000575739.1 is a transcript of unknown function, not believed

to include an open reading frame. PDPK1 is a protein kinase implicated in cancer and a

regulator of CBP. Pathogenic variants in CBP cause Rubinstein-Taybi Syndrome, an auto-

somal dominant condition. Whether the gene-fusion has phenotypic relevance to the

patient is uncertain. The DCX variant and SAMD12-EXT1 fusion are diagnostic of the

majority of the patient’s phenotype, but further variation may still play a role in the

broader phenotypic presentation. Ultimately the deletion and corresponding gene fusion

constitute VUS that should be likely reevaluated over time as knowledge about the genes’

phenotypic relevance increases.

Table 2. (Continued)

Patient

ID

Fusion Reason for interest? Flagged by Experimental

Validation

Patient

36

SON-FCRL3 ZTTK syndrome is caused by

haploinsufficiency of SON (AD

inheritance). Symptoms

include congenital heart

defects, developmental delay,

strabismus, various facial

dysmorphisms, cleft palate.

Patient has all of these plus a

couple more.

Manual analysis Positive (ddPCR)

Patient

37

PDPK1-PRSS21 Both genes fell at the

boundaries of a deletion

detected in this patient by

aCGH. Links to phenotype

remain unclear.

Manual analysis—

phenotypic relevance

unknown but

corresponds to a deletion

detected by aCGH.

Positive (PCR,

ddPCR, aCGH,

FISH)

Patient

37

SAMD12-EXT1 EXT1 mutations are known to

cause many cases of multiple

exostoses. Patient has

unresolved exostoses.

Manual analysis & PCAN

(EXT1 gene relative rank

0.001, Reactome p-value

0.00025, STRING p-value

0.0000066)

Positive (PCR,

ddPCR, MIP,

aCGH)

Negative (MLPA,

initial clinical

aCGH)

Table 2 describes the 11 fusions selected for validation and phenotypic evidence putatively linking them to the

patient phenotype. 8 of 11 fusions were successfully validated by orthogonal technologies. Validation status and

utilized technologies are described.

https://doi.org/10.1371/journal.pone.0223337.t002
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Fig 3. Diagnostic fusion transcripts identified by RNA-Seq in Mendelian disease cases. 3A) A SAMD12-EXT1 fusion identified in Patient 37 whose phenotype

included multiple exostoses. Multiple exostoses are most often attributed to autosomal dominant mutations in EXT1 and EXT2 but extensive clinical testing failed to

identify any variants of interest in either gene. RNA-Seq identified a fusion candidate which might be explained by an interstitial deletion based on the genes’ orientation

and position on chromosome 8 and would lead to loss of function of both EXT1 and SAMD12 due to loss of coding potential at the fusion boundary. Despite clinical

aCGH and MLPA results initially indicating no deletion affecting the putatively conjoined genes, reevaluation of clinical aCGH results appeared suggestive of a mosaic

deletion of approximately 604 kb at chr8:118960168–119569348. The deletion was subsequently validated by several orthogonal methods and determined to be

diagnostic of the multiple exostoses phenotype. The SAMD12-EXT1 fusion was not detected by standard TopHat filters. 3B) Reciprocal ATM-SLC35F2 and

SLC35F2-ATM fusions detected in Patient 6, with a severe combined immunodeficiency phenotype. The patient carried a paternally inherited pathogenic ATM variant

Fusion transcripts diagnose inherited disease
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Reciprocal ATM-SLC35F2 fusion in a patient with severe combined

immunodeficiency

Patient 6 is a female infant diagnosed with T cell lymphopenia by newborn screening for severe

combined immunodeficiency (SCID) [34]. SCID gene panel sequencing was uninformative

and aCGH unrevealing. Subsequent trio-based exome sequencing discovered a paternally

inherited frameshift INDEL in ATM, clinically classified as pathogenic. Pathogenic ATM vari-

ation causes Ataxia-telangiectasia in an autosomal recessive manner, and would account for

the patient’s phenotype if a second variant was in trans. Flow cytometry assay revealed

impaired phosphorylation of ATM, supporting the presence of a second pathogenic variant

[34]. RNA sequencing of patient fibroblasts revealed reciprocal ATM-SLC35F2 and

SLC35F2-ATM fusion transcripts (Fig 3B). These fusions were supported by 14 and 43 reads

respectively, and neither was identified in our normal control database. The ATM-SLC35F2
fusion consists of ATM exon 16 joined to SLC35F2 exon 8, while the SLC35F2-ATM fusion

consists of SLC35F2 exon 7 joined to ATM exon 17. Both resulting fusions were predicted to

be in-frame, with each gene fragment in its correct orientation, despite the two genes existing

natively on opposing genomic strands on Chromosome 11q22.3. It was hypothesized that the

reciprocal fusion transcripts were the result of a chromosomal inversion. To confirm the

hypothesis, long range PCR of the putatively affected introns was conducted and sequenced

using PacBio long-read technology (S6 Fig). This resulted in reads bridging the breakpoints,

which were subsequently confirmed by targeted PCR (S3 File) and Sanger sequencing (S7 Fig).

The event was shown to be inherited from the unaffected mother, equating to a compound

heterozygous loss of ATM function in the patient. Thus the event was classified as diagnostic

of the patient’s phenotype in accordance with ACMG guidelines.

Fusion selection by default TopHat Fusion filtering

The default TopHat Fusion filters identified a total of 1003 candidates in our patient cohort

(5–46 per patient). We classified these candidates using our categorization workflow (S6

Table). 52.3% of candidates involved blood-abundant genes while a further 19.7% involved

immunoglobulin genes. The majority of candidates (994 of 1002) were removed due to their

presence in our normal control database (S7 Table). All candidates detected by TopHat

Fusion’s default filters and classified by our workflow as potential fusions are described in S8

Table irrespective of normal tissue expression. Candidates occurring in normal tissue data-

bases but categorized as potential fusions included known polymorphic events such as KAN-
SL1-ARL17A/B [52] and TFG-GPR128 [53], detected in 14 and 3 patients respectively. Other

events such as PFKFB3-RP11#563J2.2 (37 patients) and EIF4E3-FOXP1 (28 patients) appeared

with high frequency and might represent previously unrecognized polymorphic fusion events

or read-through transcription. The 9 remaining candidates not appearing in our normal data-

base comprised 3 containing blood-abundant genes, 1 potential novel transcript and 5 events

categorized as potential fusions (two representing the reciprocal ATM fusion). Thus 99.5% of

the standard TopHat Fusion outputs were removed from further consideration by our classifi-

cation workflow. Of the five mutually detected fusion candidates, the reciprocal ATM fusions

were the only ones selected by our categorization and prioritization workflow (Table 1). The

remaining three fusion candidates were excluded from our manual analysis due to lack of

for which a second hit was sought due to the autosomal recessive nature of ATM mutations. RNA-Seq revealed reciprocal fusions that were expected to retain their

protein-coding potential but lead to aberrant ATM function based on the results of a novel flow cytometry assay. The fusions were experimentally validated by several

orthogonal methods and shown to be maternally inherited, equating to compound heterozygous loss of ATM function which was classified as diagnostic of the patient

phenotype. These reciprocal fusions were the only members of our validation panel that were detected by standard TopHat filters.

https://doi.org/10.1371/journal.pone.0223337.g003
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phenotypic relevance. Within the group of 16 phenotypically prioritized fusion candidates out-

put by our workflow, 8 of 11 attempted were successfully validated and only 2 were detected

by the default TopHat Fusion filters.

Discussion

We have described the first systematic application of fusion transcript detection in an undiag-

nosed, rare inherited disease cohort. Our findings support the assertion that fusion transcrip-

tion is a phenomenon whose pathogenic relevance extends beyond the traditionally

recognized field of oncology, and furthermore, suggest that fusion analysis is an important

component of comprehensive rare inherited disease testing. The two confirmed diagnostic

fusions reported here involve genes that were previously suspected of clinical significance but

for which a pathogenic event was still sought following clinical and research testing using sev-

eral advanced methods. The fact that fusion analysis achieved diagnosis where multiple alter-

native methods failed underscores the diagnostic potential of fusion profiling in rare disease

cases. We assert that fusion analysis should be considered integral to any RNA-Seq pipeline

used for genetic diagnosis.

The discovery of SAMD12-EXT1 and reciprocal ATM-SLC35F2 fusions constitutes a 4.3%

increase in diagnostic yield within our patient cohort. Notably, the diagnostic odyssey cases

studied here represent a phenotypically diverse and challenging population, and it cannot be

discounted that similar analyses might produce higher rates of diagnosis within distinct phe-

notypic groupings. The clinical significance of the 5 additionally validated fusions remains

unknown despite experimental verification and the potential phenotypic relevance of their

constituent genes. The EXT1 and ATM fusions are unique in that they affect genes with exten-

sive prior evidence linking them incontrovertibly to each patient’s phenotype. The events con-

taining genes with lesser-evidenced links to patient phenotype are challenging to conclusively

interpret and consequently these remain variants of uncertain significance. It is possible that

periodic reassessment of such events will eventually identify a pathogenic role as knowledge in

the field expands. Alternatively, functional validation studies remain an available but non-triv-

ial option to clarify the role of such fusions.

We developed an inherited-disease-focused workflow to replace fusion-filtering strategies

developed for alternative applications, and to lower the potential for erroneous removal of dis-

ease-relevant events while reducing an initially overwhelming number of fusion calls to a trac-

table quantity. Thus our workflow provides a call set that is amenable to manual analysis and

interpretation in Mendelian disease studies. Furthermore all events detected by the default

TopHat Fusion filters were detected by our workflow, but were biologically classified and

largely deprioritized following sequence alignment and biological inference. Conversely, of the

16 fusion candidates prioritized by our workflow, 73% of those tested were experimentally vali-

dated and only one reciprocal fusion was detected by the standard TopHat Fusion filters.

Initial raw candidate identification remains wholly dependent on the underlying fusion

calling algorithm, and suitable care in its selection is required. We selected TopHat Fusion

based on its ability to provide output of unfiltered candidate fusions. While this approach

proved effective in this study, an ensemble of multiple callers might enable the detection of

additional fusion events and represents a natural extension of our approach that should be

considered in future studies.

The rationale underlying our candidate categorization workflow is versatile and widely

applicable. Its various components can be implemented wholly or piecemeal, as part of new or

existing workflows utilizing a wide range of fusion calling algorithms. For example, we demon-

strated the ability to remove events likely to have low phenotypic relevance from the outputs of
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standard fusion-caller filters as evidenced by our reduction of the default TopHat Fusion out-

puts from a median of 19 events to less than a single event per patient. Furthermore, we have

demonstrated that comparison to normal tissue databases alone will markedly reduce the

number of candidates of unlikely phenotypic relevance.

This study reveals that surrogate tissues, such as blood, are viable biospecimens for the pro-

filing of fusion transcription in inherited disease studies. Inaccessibility of affected tissue is a

recognized obstacle to RNA-Seq profiling because of tissue-specific gene expression and splic-

ing patterns [6] [7], therefore the successful utilization of surrogate tissue sources for fusion

detection is encouraging. Nonetheless, this approach poses challenges and constraints that

should not be overlooked. While approximately 68% of OMIM genes are expressed in fibro-

blasts for example [7], the genes underlying muscle pathologies are underrepresented in both

fibroblasts and blood [6]. Within our own cohort, several genes of potential interest were

scarcely expressed in either blood or fibroblasts, and we cannot discount the possibility that

our analyses may have failed to detect pathogenic events in these under-expressed genes. Thus,

inaccessibility of affected tissue may limit the utility of RNA-based approaches and the viability

of these methodologies may require assessment on a case-by-case basis.

Conversely, the direct profiling of disease-affected tissue may represent its own challenges.

Our findings indicate that genes highly expressed in blood are a major source of transcrip-

tional or artifactual noise, and whilst it is convenient to remove blood-abundant genes from

an analysis unrelated to blood pathologies, it will be less viable to remove genes highly

expressed in muscle if directly profiling the affected tissue for the underlying cause of a muscu-

lar phenotype. Illustratively, Patient 6 was the only case for which fibroblasts were utilized in

our study, and a correspondingly large number of candidate fusion events were categorized,

often involving highly expressed species such as collagens. It is likely that some customization

of normal tissue databases and excluded gene lists will be required to enable adequate categori-

zation of common tissue-specific normal events or artifacts. Ideally, large scale multi-tissue

sequence analysis efforts like GTEx will multiply and broaden to increase the sampled popula-

tion and include protocols like fusion transcript analysis, thus facilitating continued and

expanded analyses like our own.

Automated PCAN analysis ranked our two diagnostic fusions highest (rank scores 0.001 &

0.002) and flagged 8 of our final 16 candidates in total, raising the possibility of a workflow

without a requirement for manual candidate prioritization. Nonetheless, technical errors

remain a reality, and PCR or other confirmation studies are necessary to confirm a candidate’s

presence. While our unsuccessfully validated fusions might represent an assortment of artifac-

tual species, it is notable that all but one of them fused precisely at exon-exon boundaries, con-

sistent with RNA splicing, and further they produced non-promiscuous alignments to the

human genome and transcriptome. Furthermore, fusions between SPAST and SLC30A6 as

reported in Patient 13 have been previously reported in disease [54]. Such observations raise

some uncertainty about the artifactual origins of these candidates. Alternative possibilities

include the presence of low copy-number events due to mosaicism, subclonality, tissue-specific

gene expression, or other novel RNA rearrangements, and thus, validation efforts utilizing

alternative tissue sources might represent a means of categorizing putative artifactual events

with more certainty.

Since both diagnostic events identified in this study result from underlying genomic dele-

tion or rearrangement, the question arises of whether whole-genome sequencing could detect

them. Without further analysis, the possibility cannot be discounted. Whole-genome analysis

nonetheless brings its own set of analytical and interpretive problems. DNA does not match

the ability of RNA to measure transcriptional consequence [6], [5], [4] and has its own techni-

cal limitations that may cause failure to detect chromosomal DNA fusions [27]. We believe
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that whole genome analyses will indubitably play a major role in the increased diagnosis of

rare disorders as it spreads in use and its complexities are further unraveled, but ultimately

DNA and RNA-based methods will serve as supplementary and parallel methodologies.

We focus primarily on DNA-Seq and RNA-Seq because they represent the most mature

modern ‘omics’ technologies and the two that are being most widely applied in the rare disease

domain. However, alternative approaches including those that integrate proteomic-based tech-

nologies also have the potential to detect aberrant fusion events. Throughput is currently

higher with RNA-based methods, enabling more rapid, extensive and cost-effective profiling.

Furthermore, fusion transcripts may or may not produce a protein product depending on

their constitution. For example, an out-of-frame fusion leading to loss-of-function of two

genes would not be expected to produce a protein. Thus RNA-Seq offers advantages of detect-

ability beyond that of protein based assays, however proteomic and other approaches includ-

ing diverse multi-omic assays will likely reveal their own benefits in the future as they become

more accessible and their use becomes more ubiquitous.

While this study has focused on the detection of aberrant fusion transcripts, further diagno-

ses may yet be possible by expanding testing to include profiling of ASE, aberrant expression

levels and splicing [6–8]. Indeed, we have previously published case studies where such events

were diagnostic of rare disease [55]. Furthermore, variations of the analytical approach

described herein may yield further events of interest. For example, the event category housing

potential novel transcripts from single genes might contain abnormal exon combinations aris-

ing from intragenic deletions and these have potential for disease relevance. Ultimately how-

ever, each of these analyses is methodologically distinct and forms its own set of technical

challenges. Their systematic application to this and further patient cohorts should undoubtedly

form the basis of future work.

Conclusions

We have reported the first successful systematic application of fusion transcript detection

within a rare disease cohort. We have demonstrated an increased diagnostic rate and identified

further novel candidates for phenotype causation. Fusion transcript analysis such as those

described herein should be considered in any RNA-Seq analysis aimed at genetic diagnosis of

undiagnosed rare inherited disease.
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