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Abstract
Recent advances in high-throughput sequencing have facilitated the genome-wide studies of small non-coding

RNAs (sRNAs). Numerous studies have highlighted the role of various classes of sRNAs at different levels of

gene regulation and disease. The fast growth of sequence data and the diversity of sRNA species have prompted

the need to organise them in annotation databases. There are currently several databases that collect sRNA data.

Various tools are provided for access, with special emphasis on the well-characterised family of micro-RNAs. The

striking heterogeneity of the new classes of sRNAs and the lack of sufficient functional annotation, however,

make integration of these datasets a difficult task. This review describes the currently available databases for

human sRNAs that are accessible via the internet, and some of the large datasets for human sRNAs from high-

throughput sequencing experiments that are so far only available as supplementary data in publications. Some of

the main issues related to the integration and annotation of sRNA datasets are also discussed.

Keywords: miRNAs, small RNAs, non-coding RNAs, high-throughput sequencing, databases

sRNA databases

In 2001, three groups published independent

reports on the discovery of a new class of small

non-coding RNAs (sRNAs), which were named

micro-RNAs (miRNAs).1–3 These comprise a

large family of small, �22 nucleotide-long, non-

coding RNAs that have emerged as key players in

post-transcriptional gene regulation.4 Subsequent

years have witnessed the discovery of many new

types of sRNAs. In humans, apart from the hun-

dreds of miRNAs detected so far, there are also

many endogenous small interfering RNAs

(endo-siRNAs)5 and piwi-interacting RNAs

(piRNAs)6,7. These and other short non-coding

RNA molecules collectively are called ‘sRNAs’.

They are generally short (�18–30 nucleotides

[nt]); do not code for proteins; exert their function

as RNA molecules generally combined with

protein factors; and represent a substantial portion

of the RNA output of cells. Moreover, sRNAs

encompass a diverse, widespread and basal regulat-

ory system: they are known to regulate genes and

genomes at different levels, including chromatin

structure, transcription, RNA stability and trans-

lation.8–10 Furthermore, they can act as activators

or inhibitors and their disruption has been linked

to disease.11 The explosion of information on

sRNAs makes necessary its organisation—in terms

of their biogenesis, expression properties and func-

tional characteristics—into public databases.

Traditionally, GenBank,12 the European Molecular

Biology Laboratory (EMBL)13 and the DNA Data

Bank of Japan (DDBJ)14 have been the depository

of RNA sequences, while the Gene Expression

Omnibus (GEO)15 database at the National Center

for Biotechnology Information (NCBI) compiles

high-throughput data for miRNAs and other

SOFTWARE REVIEW

192 # HENRY STEWART PUBLICATIONS 1479–7364. HUMAN GENOMICS. VOL 5. NO 3. 192–199 MARCH 2011



sRNAs from publications. Besides these generic

resources, there are specialised databases for sRNAs.

The most complete ones are those related to

miRNAs, since their functional role in RNA metab-

olism is also the best characterised.5 The miRBase

database16 (Table 1) is considered the central reposi-

tory for microRNA sequence information. It con-

tains all published miRNA sequences linked to

primary literature and other secondary databases. In

miRBase, the user can browse published miRNA

Table 1. sRNA databases

Database sRNA type Data available Reference

miRBase miRNAs Sequence, genomic location and

predicted targets of published

miRNAs with links to references

http://www.mirbase.org/

MirZ miRNAs Sequencing-based miRNA

expression profiles and predicted

targets

http://www.mirz.unibas.ch

IsomiR database miRNAs and isomiRs Reads and isomiRs assigned to

miRNAs from human 293T cells,

with miRNA annotation from

miRBase

http://galas.systemsbiology.net/cgi-bin/

isomir/find.pl

siRNAdb siRNAs Experimentally verified and

predicted siRNAs. Sequence

information and links to the

literature

http://sirna.sbc.su.se/

piRNABank piRNAs Sequence information, clusters and

homology searches for piRNAs

http://pirnabank.ibab.ac.in/

snoRNA-LBME-db snoRNAs, scaRNAs Sequence, expression information

and predicted targets with

base-pairing information

http://www-snorna.biotoul.fr/

Rfam snRNAs, snoRNAs,

miRNAs, other structural

RNAs

Sequence families of structural

RNAs. Families represented by a

multiple sequence alignment and a

probabilistic model

http://rfam.sanger.ac.uk/

NONCODE miRNAs, piRNAs,

snoRNAs, scaRNAs

Sequence information with links to

GenBank and functional information

http://noncode.org/

RNAdb miRNAs, snoRNAs,

piRNAs, other ncRNAs

Sequence information with links to

literature and other databases

http://jsm-research.imb.uq.edu.au/rnadb/

deepBase miRNAs, piRNAs,

endo-siRNAs, nasRNAs,

pasRNAs, easRNAs,

rasRNAs

Sequences and clusters for sRNAs

from different tissues and for

computationally predicted sRNAs

http://deepbase.sysu.edu.cn/

fRNAdb ncRNAs from various

sources (see text)

Annotation of known and predicted

non-coding RNAs of various

lengths with visualisation in

genomic context

http://www.ncrna.org

easRNAs, exon-associated small RNAs; endo-siRNAs, endogenous small interfering RNAs; miRNAs, micro-RNAs; isomiRNAs, nasRNAs, non-coding RNA associated small
RNAs; NCRNA, non-coding RNA; pasRNA, promotor-associated small RNAs; piRNAs, piwi-interacting RNAs; rasRNAs, repeat associated small RNAs; scaRNAs, Cajal body-
specific RNAs; siRNAs, small interfering RNAs; snRNAs, small nuclear RNAs; snoRNAs, small nucleolar RNAs; SRNA, small RNA.
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sequences from several species and can perform

searches by name, accession number etc. Another

database for miRNAs is MirZ17 (Table 1), which

provides analysis tools for mining various datasets

from sequencing projects18 (Table 2) and miRNA

expression profiles. MirZ integrates two previously

developed resources, the smiRNAdb miRNA

expression atlas18 and the E1MMo miRNA target

prediction algorithm.32

Although it is generally assumed that a single

precursor miRNA molecule leads to a single func-

tional miRNA, there is evidence that precursors

can be processed with heterogeneous ends, giving

rise to isomiRs.33 A recently published database

collects isomiR sequences from high-throughput

sequencing of miRNAs from human 293T cells34

(Table 1). This database allows one to retrieve all

reads and isomiRs assigned to a specific miRNA,

with results linked to miRBase and Ensembl.35

The endo-siRNAs, which were first observed in

plants, are also a very abundant class of sRNAs.10

They share some properties regarding biogenesis

and function with miRNAs.36,37 More recently,

other sources of endo-siRNAs have been ident-

ified, such as convergent mRNA transcripts and

sense-antisense pairs.10 To date, there is only one

database specific for siRNAs, siRNAdb,38 which

contains the collections of endogenous and exogen-

ous siRNA molecules from the literature that have

been experimentally verified. Moreover, siRNAdb

also includes predicted siRNAs based on a combi-

nation of computational prediction methods.39–41

Additionally, the database includes information about

targets and experimental sources. A set of target

predictions is also available for the non-

experimentally verified siRNAs.

In 2006, a new abundant sRNA species of approxi-

mately 30 nt was observed in extracts of total RNA

Table 2. Human sRNA datasets from deep sequencing

sRNA Biology Datasets

TSSa RNAs 20–90nt sRNAs, localised within –250 to þ50 of TSSs.

Similar to PASRs. Dataset included in deepBase

GSE1348319

PASRs Promoter-associated small RNAs. 20–200 nt long, with 50

ends coinciding with the TSSs

GSE1436220

tiRNAs 18 nt length sRNAs, localised downstream of TSS http://fantom.gsc.riken.jp/4/download/

Supplemental_Materials/Taft_et_al_200921

spliRNAs Nuclear sRNAs, enriched at splice sites GSE2066422

TASRNAs Termini-associated sRNAs GSE757623

aTASRNAs Termini-associated sRNAs from the antisense strand SRA01267624

miRNAs sRNA sequences from libraries from different human

organ systems and cell types. Included in MirZ

GSE723318

miRNAs miRNAs from HeLa cells. Dataset included in deepBase GSE1082925

miRNAs miRNAs expressed in human leucocytes GSE1983326

sRNAs sRNAs associated with AGO1 and AGO2, derived from

snoRNAs and with miRNA-like functions. Dataset included

in deepBase

GSE1337027

sRNAs Derived from tRNAs, in competition with miRNAs 28–30

sRNAs Derived from snoRNAs, with miRNA-like functions 31

AGO, Argonaute; miRNA, micro-RNAs; SRNA, small RNA; snoRNAs, small nucleolar RNAs; tRNA, transfer RNA; TSS, transcription start site.
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from mouse testes.42 These somewhat larger types of

sRNA, called piRNAs, were found to exert their

function most clearly in the germline43 and possibly

in cancer cell lines.44,45 In contrast to miRNAs and

endo-siRNAs, they derive from single-stranded pre-

cursors.10 The only database exclusively dedicated to

piRNAs is piRNAbank,46 which contains piRNA

sequences collected from Genbank47 and published

data, indexed through unique identifiers linked to

NCBI and with additional information on gene

name and genomic position.

Small nucleolar RNAs (snoRNAs) are longer

types of non-coding RNA (ncRNA; 60–300 nt in

length), but are also regarded as sRNAs. These are

a highly evolutionarily conserved class of RNAs

which function mostly in the nucleolus and partici-

pate in the chemical modification of other RNAs,

mainly ribosomal RNAs (rRNAs).48 The

snoRNA-LBME-db database49 was created to

collect the available information on human

snoRNAs. Besides sequence information, it also

includes predicted RNA targets and potential base-

pairing interactions with these targets. The data

have been collected from the literature and can be

accessed by the name of the snoRNA or can be

downloaded in their entirety. This database includes

the Cajal body-specific RNAs (scaRNAs). This is a

class of nuclear sRNAs similar to snoRNAs which

accumulate specifically in Cajal bodies and guide

modifications of small nuclear RNAs (snRNAs). The

latter are also considered to be sRNAs and are part of

the spliceosome.50 All of these nuclear sRNAs and

other structural RNAs are present in the Rfam data-

base (Table 1), which is a general collection of struc-

tured RNA families51 represented by their sequences

and a structural model. Rfam also includes models for

miRNAs.

Recent advances in deep-sequencing technol-

ogies have yielded a large number of short RNA

sequences,16,37,52,53 leading to an exhaustive detec-

tion of both known and novel sRNAs. In order to

facilitate access to deep-sequencing data, the Short

Read Archive (SRA) of NCBI54 and the European

Nucleotide Archive55 (ENA) (http://www.ebi.ac.

uk/ena/) have been created. They provide centra-

lised access to published sequencing data, including

sRNAs, and, more notably, all the data are accessi-

ble through powerful search tools. Many of these

sRNAs, however, still await classification. They

vary significantly in origin and structure and their

function is often unknown, which makes it difficult

to develop databases for their storage and analysis.

A growing number of public databases are now

available for sRNAs obtained from deep-sequencing

experiments that classify them in terms of the exper-

imental origin, function (if known) and genomic

localisation. These databases try to integrate novel

heterogeneous data and sometimes include curated

data. The NONCODE database56 (Table 1) provides

organised information for snoRNAs, piRNAs,

miRNAs, scaRNAs and other ncRNA classes

present in GenBank, classified according to cellular

process. Similarly, RNAdb57 (Table 1) provides access

to data from snoRNA-LBME-db, miRBase, the

FANTOM project58 and the H-invitational

project.59 All the datasets are divided according to

the main sRNA classes. Additionally, RNAdb con-

tains predictions based on comparative methods. All

RNAdb data are available for downloading.

The deepBase60 database (Table 1) contains the

most heterogeneous collection of sRNAs from

deep-sequencing data from different libraries

(Table 2).19,25,27 The deep-sequencing data have

been mapped to the human genome assembly and

annotated according to various sRNA classes,

which are defined by the location of the mapped

sRNAs: non-coding RNA-associated small RNAs

(nasRNAs); sRNAs that overlap promoter regions

(pasRNAs), which overlap with the transcription

start site (TSS) of genes; exon-associated small

RNAs (easRNAs),60 which overlap with exons

from RefSeq61 genes; and repeat-associated small

RNAs (rasRNAs),60 which overlap with repeat

elements from the University of California, Santa

Cruz (UCSC) genome browser.62 Additionally,

deepBase includes: all known miRNAs from

miRBase and snoRNAs from snoRNA-LBME;

novel predicted miRNAs and snoRNAs; and RNA

clusters built from the sRNAs that are proximal in

the genomic sequence.

Finally, fRNAdb63 (Table 1) is a searchable database,

with functional and genomic annotation for ncRNAs
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of various lengths from snoRNA-LBME-db,

miRBase, the FANTOM and the H-invitational pro-

jects, NONCODE and RNAdb. At the same URL,

the authors provide visualisation of the annotated and

predicted ncRNAs with a mirror of the UCSC

browser.

sRNA datasets

The sRNA world is expanding: it includes many

new sRNA sequences that share many features but

also differ in others, which makes it difficult to

integrate them into the same resource. Despite the

current wealth of public databases, there are many

recently discovered sRNA classes that are not

present in any specific or general database. Below,

we enumerate some of the datasets that we cannot

find in the previously mentioned databases, and

which are only available directly from the publications.

Deep sequencing has led to the detection of at

least three new classes of sRNAs linked to the

region proximal to the promoter and TSS of genes:

promoter-associated sRNAs, which are hypothesised

to result from the transcription of independent

capped short transcripts or as cleavage products of

longer RNAs and which were specifically called

‘PASRs’;20 TSS-associated RNAs (TSSa RNAs),19

included in deepBase and similar to PASRs

(Table 2); and transcription initiation RNAs

(tiRNAs)21 (Table 2), which are predominantly 18

nt in length and originate mostly from the region

downstream of the TSS, possibly from the backtrack-

ing of RNA polymerase II (RNAPII) at the start of

transcription.64 Interestingly, a new class of nuclear

sRNAs, also of about 18 nt in length, recently has

been found to be associated with the 50 splice sites

of genes (spliRNAs)22 (Table 2). PASRs,

TSSaRNAs and tiRNAs datasets are available at

NCBI GEO, and spliRNAs at the FANTOM web

page.65 A different class of sRNAs, also with pos-

itional biases, are the termini-associated short RNAs

(TASRs)23 (Table 2) and their antisense counterparts

(aTASRs),24 obtained via a change of the sequencing

protocol. These are found to be located antisense of

the 30-untranslated regions of genes. They are only

available from the SRA at NCBI (Table 2).

Interestingly, some authors have proposed that

some miRNAs and other sRNAs could stem from

the processing of snoRNAs by a still unknown

mechanism.66–68 Moreover, there is also some evi-

dence from deep-sequencing experiments that

other sRNAs also could originate from transfer

RNAs (tRNAs).28–30 The sRNAs derived from

snoRNAs31,68 and tRNAs28–30 (see Table 2) are

not available in any of the databases mentioned

above.

Additionally, there are datasets of sRNAs

expressed in specific cell lines, like novel miRNAs

obtained from human leucocytes26 (Table 2),

which have not yet been integrated into any data-

base. These examples of new classes of sRNAs

display diverse positional and length biases and

their function is mostly uncharacterised. They are

therefore difficult to integrate with each other and

within the existing sRNA databases.

Discussion

The sRNA data currently available—especially those

obtained from deep-sequencing experiments—are

very heterogeneous. Ideally, these sRNA datasets

should be compiled and integrated together,

thereby facilitating functional and computational

downstream analyses. One of the main problems

with the integration of sRNA data is the lack of

functional information. While miRNAs and

siRNAs are well characterised in terms of how they

interact with their targets,10,36,69 nothing is known

so far about the mode of action of many of the

new classes of sRNAs. This is further complicated

by the fact that sRNAs may have multiple func-

tions. For instance, exogenous siRNAs may affect

gene expression70 and also splicing71 by inducing

chromatin changes. Likewise, miRNAs can also

affect gene expression through a similar pathway

affecting chromatin,72 and other sRNAs originating

from sense-antisense transcription can also trigger

similar mechanisms.73

For many of the new sRNA classes, then, we

still lack a function and a target definition.

Interestingly, the Argonaute (AGO) family of pro-

teins is known to be essential for the function of
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miRNAs, piRNAs and endo-siRNAs.74 It may be

possible, therefore, that some of the new classes of

sRNAs exert their function through one or more

members of the AGO family as well, and may

interact with DNA or RNA in a similar way.

Further evidence on the proteins that interact with

the new classes of sRNAs will help in defining

their function and possible targets.

Another important issue for the classification of

sRNAs is the characterisation of their biogenesis.

Interestingly, some of the new sRNAs have similar

positional biases. The sRNAs localised near the

TSS of genes have been linked to transcription

activity.21 Likewise, TSSa RNAs and PASRs have

been associated with transcription and processing of

other RNAs.20 These similarities may be indicative

of a common biogenesis mechanism. Furthermore,

many snRNAs are found to be independent of the

processing machinery responsible for the biogenesis

of miRNAs.75 Thus, there must be other factors

involved in the generation of these sRNAs. Recent

experiments have shown that there is considerable

endonucleolytic activity associated with still unde-

termined proteins.76 These proteins may be the key

factors responsible for the biogenesis of some of the

novel classes of sRNAs.

In summary, high-throughput methods—and

especially deep-sequencing technologies—provide a

unique opportunity to explore the wealth of RNA

species in diverse cellular contexts. Different types

of RNA have been characterised using these tech-

nologies, giving rise to new sRNA categories.

Further experiments will be necessary to determine

the function and biogenesis of these new molecules.

Considering the large amount of data that are being

generated, we are just touching the tip of the

iceberg regarding the sRNA world. The coming

years will witness new and exciting developments in

molecular and computational biology in the area of

sRNAs.
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