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Abstract: Complex morphologies, as is the case in self-assembled fibrillar networks (SAFiNs) of
1,3:2,4-Dibenzylidene sorbitol (DBS), are often characterized by their Fractal dimension and not
Euclidean. Self-similarity presents for DBS-polyethylene glycol (PEG) SAFiNs in the Cayley Tree
branching pattern, similar box-counting fractal dimensions across length scales, and fractals derived
from the Avrami model. Irrespective of the crystallization temperature, fractal values corresponded
to limited diffusion aggregation and not ballistic particle–cluster aggregation. Additionally, the
fractal dimension of the SAFiN was affected more by changes in solvent viscosity (e.g., PEG200
compared to PEG600) than crystallization temperature. Most surprising was the evidence of Cayley
branching not only for the radial fibers within the spherulitic but also on the fiber surfaces.

Keywords: 1,3:2,4-Dibenzylidene sorbitol; self-assembled fibrillar networks (SAFiNs); fractality;
Cayley Tree; fractal dimension; solvent viscosity; supercooling; crystallization

1. Introduction

Fractal or self-similar objects exhibit ‘never-ending’ identical patterns across different
length scales leading to equal Hausdorff dimensions, often termed fractal dimensions
(D). The Hausdorff dimensions of uniform objects—a point = 0, line = 1, square = 2,
and cube = 3—are defined as topological dimensions. More complex shapes, such as
the Koch Snowflake [1] (Df = 1.26 (D = log 4/log 3) or Sierpinski Carpet [2] (Df = 1.89
(D = log 8/log 3)) (Figure 1), are better defined by their properties of self-similarity and
non-Euclidean dimensions. Uniform objects have Df = d, while partly-filled, more open
structures where density decreases radially have Df < d [3]. Self-similarity is achieved when
each part of a geometric figure has the same statistical character as the whole. Fractality
is reported for numerous materials—including, but not limited to, frost [4], fat crystal
networks [5], self-assembled polymers [6], and molecular gels [7–10] are routinely found in
nature [11].

Understanding and ultimately controlling the fractal nature of self-assembled fibrillar
networks (SAFiNs) is particularly important because the crystalline network morphology
determines the macroscale properties (e.g., oil binding, elasticity, and breaking properties)
and, ultimately, gel applications [12–14]. Molecular self-assembly constructs precision
materials, where their supramolecular structures assemble molecule-by-molecule, by way
of “bottom–up” nanofabrication, and remarkably, coding for assembly is embedded in
the structural motifs of the molecule [15]. Structural motifs direct self-assembly via non-
covalent interactions (i.e., hydrogen bonding [16], π–π stacking [17], and van der Waals
interactions [18]). Understanding molecular coding (i.e., molecular chirality [19–25], po-
sitional isomers [26–29], molecular polarity [30–32]) is an active area of inquiry for low-
molecular-mass (MW < 2000 Da) organogelators (LMOGs) [21,33–39]. These highly specific
interactions drive inter-molecular interactions promoting 1-dimensional (1D) growth—the
precursor to gel formation.
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Figure 1. Illustration of self-similar fractal objects—the Koch Snowflake and the Sierpinski carpet. 

However, LMOGs self-assemble in highly dilute environments and factors govern-
ing solubility directly contrast forces that control epitaxial growth into axially symmetric 
elongated aggregates [40–44]. Thus, aspects of solvent are equally important as the mo-
lecular coding of the LMOG, making studies that examine the meticulous balance between 
the gelator and solvent instrumental in developing our fundamental understanding of 
self-assembly. Herein, the influence of solvent viscosity on SAFiN fractal growth is char-
acterized. 

2. Results and Discussion 
The nano- and micro-structure of SAFiNs, composed of 2,4-Dibenzylidene sorbitol 

(DBS) in polyethylene glycol (PEG) or poly (propylene glycol) (PPG), depends on both 
supersaturation and PEG polymer length [45–48]. LMOGs aggregate via stochastic nucle-
ation events, upon cooling, due to supersaturation [49,50]. When subsequent crystal 
growth is limited to 1D, the result is extraordinarily high aspect ratio fibers and SAFiNs. 
DBS/PPG organogels are reported to form spherulite-like morphologies [46], which ap-
pear as Maltese-crosses when observed under low magnification cross-polarized light 
(Figure 2). The precursor to nucleation in a dilute solution is diffusion and phase separa-
tion of LMOGs, and a greater solution viscosity increases the kinetic barrier, slowing dif-
fusion and, in practice, leads to greater supersaturation before nucleation, resulting in 
more nuclei. Consequently, more nuclei translate to larger crystal surface areas for subse-
quent growth and the spherultie radius decreases. The lower viscosity PEG200 (Figure 2 
Top) has fewer, larger (656 ± 129 µm) spherulites compared to PEG600 (302 ± 99 µm), 
irrespective of concentration, while the spherulite radius is greater for 5 wt.% DBS com-
pared 10 wt.%.  

Lui and Sawant’s seminal work [3,51,52] characterized spherulitic supramolecular 
network structures of LMOGs using a fractal model combining the trimmed Caley Tree 
and Avrami models [53–55]. Self-similarity in fractal objects reflects the independence of 
length scale on its geometric properties and two-point density–density correlation func-
tion [3,56–59]. Three essential factors—the length between branch points, growth site ac-
tivity, and each branching rate (z)—determine the type of Caley tree type and alter its 
geometric and physical properties (e.g., skeleton dimension) [51,60]. Networks character-
ized by Caley tree fractals maintain a constant branching rate (z), and newly formed 
‘daughter’ segments maintain identical dimensions to the precursor ‘mother segment’, 
whereby perpetual recurrence of growth cycles forms the supramolecular hierarchical 
network [51,60,61]. DBS/PEG gels form trimmed Cayley Trees as they contain dead-ends, 
the branching rate, z, and segment length ζ, are constant throughout the crystal growth 
process, and branching occurs at all sites simultaneously [3,51,60]. At low magnifications 
(Figure 2 and Supplemental Figures S1 and S2), only the supramolecular spherulitic net-
work is apparent, and the fibers that comprise these networks become evident at much 
higher magnifications (Figure 3). 

Figure 1. Illustration of self-similar fractal objects—the Koch Snowflake and the Sierpinski carpet.

However, LMOGs self-assemble in highly dilute environments and factors govern-
ing solubility directly contrast forces that control epitaxial growth into axially symmet-
ric elongated aggregates [40–44]. Thus, aspects of solvent are equally important as the
molecular coding of the LMOG, making studies that examine the meticulous balance
between the gelator and solvent instrumental in developing our fundamental under-
standing of self-assembly. Herein, the influence of solvent viscosity on SAFiN fractal
growth is characterized.

2. Results and Discussion

The nano- and micro-structure of SAFiNs, composed of 2,4-Dibenzylidene sorbitol
(DBS) in polyethylene glycol (PEG) or poly (propylene glycol) (PPG), depends on both
supersaturation and PEG polymer length [45–48]. LMOGs aggregate via stochastic nu-
cleation events, upon cooling, due to supersaturation [49,50]. When subsequent crystal
growth is limited to 1D, the result is extraordinarily high aspect ratio fibers and SAFiNs.
DBS/PPG organogels are reported to form spherulite-like morphologies [46], which appear
as Maltese-crosses when observed under low magnification cross-polarized light (Figure 2).
The precursor to nucleation in a dilute solution is diffusion and phase separation of LMOGs,
and a greater solution viscosity increases the kinetic barrier, slowing diffusion and, in
practice, leads to greater supersaturation before nucleation, resulting in more nuclei. Conse-
quently, more nuclei translate to larger crystal surface areas for subsequent growth and the
spherultie radius decreases. The lower viscosity PEG200 (Figure 2 Top) has fewer, larger
(656 ± 129 µm) spherulites compared to PEG600 (302 ± 99 µm), irrespective of concentra-
tion, while the spherulite radius is greater for 5 wt.% DBS compared 10 wt.%.

Lui and Sawant’s seminal work [3,51,52] characterized spherulitic supramolecular
network structures of LMOGs using a fractal model combining the trimmed Caley Tree
and Avrami models [53–55]. Self-similarity in fractal objects reflects the independence of
length scale on its geometric properties and two-point density–density correlation func-
tion [3,56–59]. Three essential factors—the length between branch points, growth site
activity, and each branching rate (z)—determine the type of Caley tree type and alter its
geometric and physical properties (e.g., skeleton dimension) [51,60]. Networks charac-
terized by Caley tree fractals maintain a constant branching rate (z), and newly formed
‘daughter’ segments maintain identical dimensions to the precursor ‘mother segment’,
whereby perpetual recurrence of growth cycles forms the supramolecular hierarchical
network [51,60,61]. DBS/PEG gels form trimmed Cayley Trees as they contain dead-ends,
the branching rate, z, and segment length ζ, are constant throughout the crystal growth
process, and branching occurs at all sites simultaneously [3,51,60]. At low magnifications
(Figure 2 and Supplemental Figures S1 and S2), only the supramolecular spherulitic net-
work is apparent, and the fibers that comprise these networks become evident at much
higher magnifications (Figure 3).
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Figure 2. Polarized light micrographs of 2,4-Dibenzylidene sorbitol (DBS) in polyethylene glycol 
(PEG) 200, 400, and 600 crystallized at 20 °C. Crystal size average ± standard deviation (n = 3) (10 
crystals per micrograph and if <10 crystals present, all were measured, each crystal was measured 
across the longest and shortest widths). Illustration of Trimmed Caley Tree. 

Figure 2. Polarized light micrographs of 2,4-Dibenzylidene sorbitol (DBS) in polyethylene glycol
(PEG) 200, 400, and 600 crystallized at 20 ◦C. Crystal size average ± standard deviation (n = 3)
(10 crystals per micrograph and if <10 crystals present, all were measured, each crystal was measured
across the longest and shortest widths). Illustration of Trimmed Caley Tree.
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Figure 3. Scanning electron microscopy (SEM) micrographs after 5, 15, and 30 min (Left, Center, 
and Right columns) H2O rise to displace surface PEG (PEG200 (Top row), PEG400 (Middle row), 
and PEG400 (Bottom row)). 

From images in Figure 3, surface PEG is displaced, exposing the DBS microstructure, 
illustrating the spherulitic crystallites seen as Maltese crosses (Figure 2) comprise fibers 
radially growing from the central nuclei, which is eventually impeded by the encroach-
ment of adjacent crystals. These delineations between spherulites are most apparent in 
PEG200 after the 5 min water rinse and PEG400 and PEG600 after 15 min and are similar 
in dimension compared to the brightfield images of Figure 2. The individual, radially-
growing fibers become exposed, and although visual differences are apparent, such as 
crystal size, the Cayley Tree fractal character is not obvious (Figure 3). At high magnifica-
tions, the fiber morphology in both 200PEG and 600PEG consists of ‘parent’ fibers, which 
branch into two ‘child’ fibers, ALL of which are equal in length and diameter (Figure 4). 

At obvious branching points (Figure 4, white x), the branching rate is consistently 
two, and very little variation in fiber width across radial shells exists. Interestingly, the 
fibers which comprise each spherulite in PEG200 are approximately twice as wide for 
PEG600, at this point, it is not immediately obvious why such a drastic difference in fiber 
thickness presents. The solvent viscosity impacts the number of nucleation sights, spher-
ulitic crystallite and fiber size, and the Caley tree fractal pattern (l and ζ) (Figure 4 and 
Supplemental Figures S3 and S4). Remarkably, in addition to Cayley Tree fractal patterns 
presenting within the spherulite fibers, smaller fractal patterns appear on the fiber surface 
(Figure 4, far right). In an attempt to quantify the difficult-to-describe differences of the 
SAFiN morphologies across length scales, SEM images of the same DBS/PEG gels were 
obtained at 130×, 500×, and 2900× magnification (Figure 5). Post-acquisition modification 
included correcting the white balance to ensure the entire greyscale (0–255) was used be-
fore automated thresholding (percentile threshold function, Fraclac Plugin, ImageJ, NIH, 
Bethesda, MD, USA). In this case, Cayley Tree fractals present as a function of diffusion-
limited growth, which, for obvious reasons, should be altered by solution viscosity. Dif-
fusion-limited fractals often describe colloidal gels [62,63] and present fractal patterns that 
are statistically similar across length scales. 

Figure 3. Scanning electron microscopy (SEM) micrographs after 5, 15, and 30 min (Left, Center, and
Right columns) H2O rise to displace surface PEG (PEG200 (Top row), PEG400 (Middle row), and
PEG400 (Bottom row)).

From images in Figure 3, surface PEG is displaced, exposing the DBS microstructure,
illustrating the spherulitic crystallites seen as Maltese crosses (Figure 2) comprise fibers
radially growing from the central nuclei, which is eventually impeded by the encroachment
of adjacent crystals. These delineations between spherulites are most apparent in PEG200
after the 5 min water rinse and PEG400 and PEG600 after 15 min and are similar in
dimension compared to the brightfield images of Figure 2. The individual, radially-growing
fibers become exposed, and although visual differences are apparent, such as crystal size,
the Cayley Tree fractal character is not obvious (Figure 3). At high magnifications, the fiber
morphology in both 200PEG and 600PEG consists of ‘parent’ fibers, which branch into two
‘child’ fibers, ALL of which are equal in length and diameter (Figure 4).

At obvious branching points (Figure 4, white x), the branching rate is consistently
two, and very little variation in fiber width across radial shells exists. Interestingly, the
fibers which comprise each spherulite in PEG200 are approximately twice as wide for
PEG600, at this point, it is not immediately obvious why such a drastic difference in
fiber thickness presents. The solvent viscosity impacts the number of nucleation sights,
spherulitic crystallite and fiber size, and the Caley tree fractal pattern (l and ζ) (Figure 4
and Supplemental Figures S3 and S4). Remarkably, in addition to Cayley Tree fractal
patterns presenting within the spherulite fibers, smaller fractal patterns appear on the fiber
surface (Figure 4, far right). In an attempt to quantify the difficult-to-describe differences
of the SAFiN morphologies across length scales, SEM images of the same DBS/PEG
gels were obtained at 130×, 500×, and 2900×magnification (Figure 5). Post-acquisition
modification included correcting the white balance to ensure the entire greyscale (0–255)
was used before automated thresholding (percentile threshold function, Fraclac Plugin,
ImageJ, NIH, Bethesda, MD, USA). In this case, Cayley Tree fractals present as a function
of diffusion-limited growth, which, for obvious reasons, should be altered by solution
viscosity. Diffusion-limited fractals often describe colloidal gels [62,63] and present fractal
patterns that are statistically similar across length scales.
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Figure 4. SEM images of trimmed Caley tree fractals present in 5 wt.% DBS in PEG200 (A–C) and 
PEG600 (D,E). Blue arrows represent the same point on high and low magnification images. The 
yellow arrow is the direction of the radial growth, where x represents branch points, the length 
(red), and chemical distances. Lightened lines in A and C are to illustrate the branched network. 

The box-counting fractal dimension, Db, is determined by plotting the count of fore-
ground white pixels (Nε) in each different box size (ε) presented in Equation (1). Dୠ = limக→ஶ[log Nக log ε⁄ ] (1)

Albeit a small sample set (n = 3), Db remains constant across magnifications for both 
5 wt.% DBS in PEG200 and PEG600 (Figure 5), a requirement for fractal objects, but Db is 
significantly lower for PEG600 than PEG200. Values of Db ~1.8 indicate diffusion-limited 
cluster aggregation, while values ~2.8 suggest ballistic particle–cluster aggregation [64]. A 
key mechanism governing fiber–fiber interactions arises from crystallographic mis-
matches occurring at the crystal surface due to thermal fluctuation and mass transport 
properties [3,51,65,66]. SAFiNs formed at low super-saturations have large nucleation bar-
riers. Thus randomness is suppressed at the growing surface, resulting in very high aspect 
ratio fibers [65]. High supersaturations suppress the mismatch nucleation barrier, leading 
to new crystalline domains on the crystal surface, resulting in deviations of the parent 
crystal orientation and fiber branching. When fiber branching occurs at the tip of the 
growing 1D fiber Cayley treelike, fractal networks are observed [3,67–69]. Cayley Trees 
are embedded in infinite Euclidian space; the total number of branching sites increases 
exponentially with R, the distance from the origin to the gth tree shell [51,61,70]. The ex-
ponent, Df of Equation (2), represents the tree fractal dimension in the Euclidean space. M ~ Rୈ౜ (2)

Figure 4. SEM images of trimmed Caley tree fractals present in 5 wt.% DBS in PEG200 (A–C) and
PEG600 (D,E). Blue arrows represent the same point on high and low magnification images. The
yellow arrow is the direction of the radial growth, where x represents branch points, the length (red),
and chemical distances. Lightened lines in A and C are to illustrate the branched network.
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dimensions (Db). Letters above bars represent significant differences (p < 0.05). 
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The Avrami equation originally characterized the bulk crystal nucleation and growth 
rates, where k is a rate constant, t is time, and D indicates the bulk crystal growth dimen-
sion. Crystallinity (Xcr) obtained from the crystal volume fraction, φ, at the time t, is di-
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Figure 5. Corrected White Balance (CWB) and Percentile Thresholded (PT) of 5 wt.% DBS in PEG
200 or PEG600 SEM images across magnifications and the images resulting in box-counting fractal
dimensions (Db). Letters above bars represent significant differences (p < 0.05).
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The box-counting fractal dimension, Db, is determined by plotting the count of fore-
ground white pixels (Nε) in each different box size (ε) presented in Equation (1).

Db = lim
ε→∞

[log Nε/ log ε] (1)

Albeit a small sample set (n = 3), Db remains constant across magnifications for both
5 wt.% DBS in PEG200 and PEG600 (Figure 5), a requirement for fractal objects, but Db is
significantly lower for PEG600 than PEG200. Values of Db ~1.8 indicate diffusion-limited
cluster aggregation, while values ~2.8 suggest ballistic particle–cluster aggregation [64]. A
key mechanism governing fiber–fiber interactions arises from crystallographic mismatches
occurring at the crystal surface due to thermal fluctuation and mass transport proper-
ties [3,51,65,66]. SAFiNs formed at low super-saturations have large nucleation barriers.
Thus randomness is suppressed at the growing surface, resulting in very high aspect ratio
fibers [65]. High supersaturations suppress the mismatch nucleation barrier, leading to
new crystalline domains on the crystal surface, resulting in deviations of the parent crystal
orientation and fiber branching. When fiber branching occurs at the tip of the growing 1D
fiber Cayley treelike, fractal networks are observed [3,67–69]. Cayley Trees are embedded
in infinite Euclidian space; the total number of branching sites increases exponentially
with R, the distance from the origin to the gth tree shell [51,61,70]. The exponent, Df of
Equation (2), represents the tree fractal dimension in the Euclidean space.

M ∼ RDf (2)

The mass of the fractal (M) scales over chemical distance (ξ), the shortest vector
between two branching sites and the chemical distance is not necessarily equal to the
covering shells’ Euclidean distance represented by Equation (3) [60,61]:

M ∼ ξDξ (3)

where Dξ is the fractal dimension in the chemical space and the fractal gyration radius (R)
is obtained by the combination of Equations (2) and (3) [60,61]:

R ∼ ξDξ/Df (4)

In Equation (4), the number of enclosed sites of the gth shell for a trimmed Caley tree
pattern in the chemical space is represented as Equation (5) [51,60]:

M = zgDξ (5)

by considering the infinite distance of the gth shell in the fractal pattern (i.e.,

g ∼
[

R
ξ

]Dξ/Df
, where R → ∞ ), Equation (5) can be rewritten as Equation (2) for the

fractal pattern. How solvent viscosity and density altered SAFiNs’ fractal dimension [51,61]
was not elucidated until Liu and Sawant [52] modified the Avrami model (Equation (6))
[53–55] to report the fractal dimension (Df).

ln[1− Xcr] = −ktD (6)

The Avrami equation originally characterized the bulk crystal nucleation and growth
rates, where k is a rate constant, t is time, and D indicates the bulk crystal growth dimension.
Crystallinity (Xcr) obtained from the crystal volume fraction, ϕ, at the time t, is divided by
the ϕ as t → ∞ [51,53–55]:

Xcr = ϕ[t]/ϕ[t→ ∞] (7)

The Einstein relation, Equation (8), correlates Xcr, or the volume fraction ϕ of sus-
pended particles, to specific viscosity ηsp with the addition of a shape factor (F) [51], and
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ηsp is calculated from the complex viscosity of the system (η*) and initial solvent viscosity
ηo [51,69,71–74], obtained from small deformation rheology (Figure 6A–C).

n∗ − no

no
= ηsp ≈ Fϕ (8)
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Figure 6. Complex viscosity (A–C) and correspondant ln{−ln[1 − Xcr(t)]} versus ln(t − tg) (D–F)
for PEG200 (A,D), PEG400 (B,E), and PEG600 (C,F). Fractal dimensions clustered by crystallization
temperature (G) and PEG solvent (H). Different number of superscript stars * represents statical
significance at p ≤ 0.05.

Equation (9) combines Equations (6)–(8) and replaces D with Df, and t with (t − tg),
where tg is the sol-gel transition temperature, since the formation of a supersaturated state
must precede nucleation and gel formation; and the ln{−ln [1 − Xcr(t)]} versus ln(t − tg)
(Figure 6D–F) corresponds to the fractal dimension Df (Figure 6G,H).

ln
[

1−
(
η∗(t)− no

η∗(∞)− ηo

)]
= −k(t− tg)

Df (9)

The solvent viscosity has a significant impact on the fractal dimension (Df) across tem-
peratures (Figure 6G), however, drastically different crystallization temperatures became
less significant as solvent viscosity decreased (e.g., PEG200 presents the same Df at all
crystallization temperatures) (Figure 6H). This finding indicates that DBS SAFiN formation
is governed by diffusion-limited aggregation (DLA) and not ballistic particle–cluster aggre-
gation (BPCA). Additionally, DLA fractal values are ~1.8, compared to ~2.8 for BPCA [64],
and, for the limited set of SEM images, the fractal values across magnifications remained
mostly constant, ranging between 1.5–1.8, while the more robust rheological data set shows
a similar decrease in fractal values between PEG200 and PEG600 where Df ranged between
1.0–1.5 (Figure 6H). Absolute fractal values obtained from box-counting and the Avrami
equation do not compare with different structural organization measures. However, the
relative change in value for PEG200 and PEG600 shows a reduced fractal dimension of the
DBS SAFiN in a higher viscosity environment.
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3. Conclusions

Evidence of fractality in nature is always a remarkable phenomenon to report. Herein,
DBS in PEG presents its fractality through the consistent Db, across magnifications, and
through its Cayley Tree fractal branching pattern and corresponding linear Avrami deter-
mination of Df. Additionally, and somewhat surprisingly, the Cayley Tree patterns present
for fiber branching within the spherulites and on the fiber branching on the individual fiber
surfaces. Cayley Tree fractal fiber formation at two length scales (e.g., fibers in spherulites
and fibers of fibers) has yet to be reported for SAFiNs. Solvent viscosity has a larger impact
on supramolecular fractality than crystallization temperature, again supporting the notion
that SAFiNs from diffusion-limited aggregation.

4. Materials and Methods
4.1. Sample Preparation

1,3:2,4 dibenzylidene-D-sorbitol (DBS) (95%, BocSci, New York, NY, USA) and polyethy-
lene glycol (PEG) 200 (mol. Wt. 190–210), 400 (mol. Wt. 380–420), and 600 (mol. Wt. 570–602),
(Sigma Aldrich (Oakville, ON, Canada) were used as received. 5.0 wt.% samples of DBS in
each polyethylene glycol (i.e., PEG 200, 400, and 600) were prepared in 2-mL borosilicate vials
with Teflon-lined lids (VWR, Mississauga, ON, Canada), at 5 and 10 wt.%, and heated in an
aluminum heating block until the sample was molten and transparent. Once molten, samples
were held for 10 min and then held at 20 ◦C for 24 h (forced convection incubator, VWR,
Mississauga, ON, Canada) or transferred directly onto the small deformation rheometer.

4.2. Microscopy and Image Analysis

Brightfield and cross-polarized micrographs of the same field of view were obtained
with an inverted microscope (Model CX41, Olympus, Tokyo, Japan) equipped with an imag-
ing 5616 × 3744 pixels digital camera (Canon, Japan) and a 10× Olympus lens (0.25 N.A.)
(Olympus, Tokyo, Japan). Samples placed on a glass slide were immediately covered with
a coverslip and imaged. Crystal diameter was measured using ImageJ (NIH, Bethesda,
MD, USA) and calibrated using a 10-µm scale bar. For scanning electron microscopy (SEM)
200 µL of 5 wt.% DBS/PEG molten gel was placed on the SEM stubs coated with carbon
(600 Ultra Fine Norton SandWetTM, Worcester, MA, USA) and stored at room temperature
for 24 h. Since PEG is more soluble in water than DBS, the stubs were soaked in ice-cold
water and gently rotated. Three soaking times were applied to each gel (5, 15, and 30 min),
after which they were dried at 40 ◦C for at least 2 h (Fisher Scientific, Isotemp®, Fair
Lawn, NJ, USA) until the surface water evaporated. The stubs with gel were coated with
a 20-nm thickness gold–palladium layer using a sputter coater (Denton vacuum Desk V,
Moorestown, NJ, USA) operated with a 20-mA deposition current and vacuum pressure
of 9 × 10−5 kPa. The gold–palladium-covered samples were placed in the SEM specimen
holder (FEI Quanta FEG 250, Thermo Fisher Scientific, Hillsboro, OR, USA) and imaged
with the xT Microscope Control software. An accelerating voltage of 5 kV was maintained.
SEM images were prepared for thresholding by correcting the white balance in photoshop©
(CS6, Adobe, San Jose, CA, USA) using the level function and setting the blackest and
whitest points of the image to 0 and 255, normalizing image contrast. Images were then
opened in ImageJ (1.52d, NIH, Bethesda, MD, USA) and thresholded using the percentile
threshold function. The percentile threshold was manually adjusted, so SAFiN crystal
features appear white, while all else appeared black. Images were then analyzed using the
box-counting (Db) function in FracLac (V2.0f, Wagga Wagga, Australia) plugin for ImageJ.
The Db fractal dimension was calculated using 100 grid sizes between 20 pixels and 35%
of the binary image, and the background was locked to black. Comparisons of statistical
significance for all parameters compiled a minimum of triplicates using two-way ANOVA
and Tukey’s Post hoc analysis (GraphPad Prism V.9) at p ≤ 0.05.
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4.3. Small Deformation Rheology

Small-deformation rheology on a Physica MCR 301 rheometer equipped with a
temperature-controlled Peltier plate and stainless-steel, 50-mm flat-parallel plate attach-
ment (PP50/P2) (Anton-Paar, Graz, Austria) obtained parameters, storage (G′) and loss
(G”), and complex (G*) moduli at 0.1% strain (γ) and 10 s−1 frequency controlled strain ap-
plied during temperature sweeps from 110 ◦C to either 20, 30, 40, 50, or 60 ◦C at 20 ◦C/min
and then held isothermally until the G′ and G” plateaued.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/gels7020046/s1, Figure S1: 10× polarized light micrographs of 5wt% DBS in PEG200 crys-
tallized in triplicate. Scale bar = 100 mm; Figure S2: 10× polarized light micrographs of 5wt% DBS
in PEG600 crystallized in triplicate. Scale bar = 100 mm; Figure S3: Scanning electron micrographs
of 5wt% DBS in PEG200 crystallized on three separate SEM Spindles; Figure S4: Scanning electron
micrographs of 5wt% DBS in PEG600 crystallized on three separate SEM spindles.
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Abbreviations

SAFiNs Self-assembled fibrillar networks
DBS 1,3:2,4-Dibenzylidene sorbitol
PEG Polyethylene glycol
Df Fractal dimension
Db Box-counting fractal dimension
d Euclidean dimension
LMOGs Low-molecular-mass organogelators
PPG Polypropylene glycol
z Branching rate
ζ Segment length
l Distance within the Euclidian embedding space
Nε The count of foreground, white pixels
ε Box size
PT Percentile Thresholded
CWB Corrected White Balance
BPCA Ballistic particle–cluster aggregation
g number of fractal shell in Caylee tree
R Distance from the origin to the gth tree shell
M Mass of the fractal
ξ Chemical distance
Dξ Fractal dimension in chemical space
Xcr Crystallinity
t Time
D Bulk crystal growth dimension
k Rate constant
ϕ Crystal volume fraction
ηsp Specific viscosity
F Shape factor
η* Complex viscosity of the system
ηo Initial solvent viscosity
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