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Abstract: A simple copper-catalyzed redox coupling of sodium sulfinates and nitroarenes is described.
In this process, abundant and stable nitroarenes serve as both the nitrogen sources and oxidants,
and sodium sulfinates act as both reactants and reductants. A variety of aromatic sulfonamides were
obtained in moderate to good yields with broad substrate scope. No external additive is employed
for this kind of transformation.

Keywords: copper; redox; additive-free

1. Introduction

Nitroarenes are a class of the most readily available starting materials in synthetic organic
chemistry. The most important property of nitroarenes is able to undergo various reduction-based
reactions, especially for the preparation of primary aromatic amines. The traditional processes mainly
rely on using a stoichiometric amount of metal/acid or catalytic hydrogenation [1–6]. Direct use
of nitroarenes to form new C-N bonds is highly attractive, and great effort has been made on the
subject during the past decades [7–9]. However, external reducing reagents such as hydrogen and
transition-metals are necessary in most cases [10–13]. Recently, there has been significant interest in the
transition-metal-catalyzed C-N bond formation from nitroarenes by use of in situ borrowing-hydrogen
strategy [14–19]. Among these transformations, two types of reactions can be summarized according
to the resultant products: reductive cyclizations and reductive couplings. They provide convenient
access to amine, amide and N-heterocycles directly from aromatic nitro compounds [20–31].

N-arylsulfonamides are common building blocks among many pharmaceuticals and biologically
active molecules [32–35]. Various efforts have been made for the synthesis of sulfonamides [36–39].
The classical methods mainly use arylamines as the nitrogen sources reacting with sulfonyl chlorides
or sodium sulfinates [40–45]. Alternatively, N-arylsulfonamides have been successfully synthesized by
the transition-metal-catalyzed cross-coupling of sulfonamides with aryl halides, aryl boronic acids,
cyclohexanones, alcohols and hydrocarbons [46–57]. Nevertheless, they suffer from some drawbacks
of low atom-, step-, and efficiency. In the case of genotoxic and unstable anilines, the undesired
impurities may be obtained during the conversion process. Recently, stable and abundant nitroarenes
have emerged as a highly attractive nitrogen source for the construction of N-arylsulfonamides. A series
of Fe-based coupling reaction of sodium arylsulfinates or arylsulfonyl chlorides with nitroarenes to
synthesize N-arylsulfonamides have developed. This kind of transformation required stoichiometric
amounts of NaHSO3 or Fe dust as the reductant [58–61]. Notably, Deng and co-workers developed a
palladium-catalyzed method for the synthesis of N-arylsulfonamides from arylsulfonyl hydrazides
and nitroarenes without external reductants [62,63]. It would be highly desirable to develop a process
using inexpensive and non-toxic metal such as copper for the concise and facile preparation of
N-arylsulfonamides from nitroarenes. We hypothesized sodium sulfinate, which generally served
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as reducing regent and was oxidized in the sulfonylation reactions, would be participated in the
reductive coupling reactions of nitroarenes. Herein, we present a copper-catalyzed reductive coupling
of nitroarenes using sodium sulfinate as the coupling partner and reducing regent, which gives rise to
an alternative access to pharmacologically significant N-aryl sulfonamides (Scheme 1).

Molecules 2019, 24, x 2 of 12 

 

such as copper for the concise and facile preparation of N-arylsulfonamides from nitroarenes. We 
hypothesized sodium sulfinate, which generally served as reducing regent and was oxidized in the 
sulfonylation reactions, would be participated in the reductive coupling reactions of nitroarenes. 
Herein, we present a copper-catalyzed reductive coupling of nitroarenes using sodium sulfinate as 
the coupling partner and reducing regent, which gives rise to an alternative access to 
pharmacologically significant N-aryl sulfonamides (Scheme 1). 

 

Scheme 1. Copper-catalyzed redox coupling of nitroarenes with sodium sulfinates. 

2. Results 

2.1. Optimization of Reaction Conditions for Synthesis of 4-Methyl-N-(p-tolyl)benzenesulfonamide 3a 

To begin our study, the reaction of commercially available p-methyl nitrobenzene (1a) and 
sodium 4-methylbenzenesulfinate (2a) was chosen as the model under argon at 120 °C to optimize 
the reaction conditions. Three equivalents of sodium sulfinates were used because the substrate 
served as a reductant. The product 3a was obtained in only 10% yield without any metal-catalyst 
(Table 1, entry 1). The use of FeCl2·4H2O and FeSO4·7H2O afforded 3a in 20% and 11% yields, 
respectively (entries 2–3). Copper catalyst was found crucial, and various copper salts were 
investigated for this transformation. Similar results were obtained when employing 
CuCO3·Cu(OH)2, Cu(OTf)2, CuCl2, CuI as the catalyst (entries 4–7). Among the various copper salts 
examined, CuCl was the most effective, and its use resulted in the formation of 3a in 92% yield (entry 
9). CuBr and Cu powder also promoted the reaction with slightly lower efficiency (entries 8 and 10). 
The choice of solvents was important for this reaction. The use of DMF and DMSO reduced the 
reaction yields to 78% and 75%, respectively (entries 11 and 12). Only a trace amount of products 
were obtained when reactions were carried out in weak polar solvents such as anisole, dioxane, 
toluene and diglyme (entries 13–16). Unfortunately, a much lower yield was acquired when the 
reaction was conducted under an atmosphere of air (entry 17). 

Table 1. Optimization of the reaction conditions a. 

 
 

Entry Catalyst Solvent Yield b (%) 
1 - NMP 10 
2 FeCl2.4H2O NMP 20 
3 FeSO4.7H2O NMP 11 
4 Cu2(OH)2CO3 NMP 31 
5 Cu(OTf)2 NMP 45 
6 CuCl2 NMP 30 
7 CuI NMP 46 
8 CuBr NMP 82 

Scheme 1. Copper-catalyzed redox coupling of nitroarenes with sodium sulfinates.

2. Results

2.1. Optimization of Reaction Conditions for Synthesis of 4-Methyl-N-(p-tolyl)benzenesulfonamide 3a

To begin our study, the reaction of commercially available p-methyl nitrobenzene (1a) and sodium
4-methylbenzenesulfinate (2a) was chosen as the model under argon at 120 ◦C to optimize the reaction
conditions. Three equivalents of sodium sulfinates were used because the substrate served as a
reductant. The product 3a was obtained in only 10% yield without any metal-catalyst (Table 1, entry 1).
The use of FeCl2·4H2O and FeSO4·7H2O afforded 3a in 20% and 11% yields, respectively (entries 2–3).
Copper catalyst was found crucial, and various copper salts were investigated for this transformation.
Similar results were obtained when employing CuCO3·Cu(OH)2, Cu(OTf)2, CuCl2, CuI as the catalyst
(entries 4–7). Among the various copper salts examined, CuCl was the most effective, and its use
resulted in the formation of 3a in 92% yield (entry 9). CuBr and Cu powder also promoted the reaction
with slightly lower efficiency (entries 8 and 10). The choice of solvents was important for this reaction.
The use of DMF and DMSO reduced the reaction yields to 78% and 75%, respectively (entries 11 and
12). Only a trace amount of products were obtained when reactions were carried out in weak polar
solvents such as anisole, dioxane, toluene and diglyme (entries 13–16). Unfortunately, a much lower
yield was acquired when the reaction was conducted under an atmosphere of air (entry 17).

Table 1. Optimization of the reaction conditions a.
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Entry Catalyst Solvent Yield b (%)

1 - NMP 10
2 FeCl2·4H2O NMP 20
3 FeSO4·7H2O NMP 11
4 Cu2(OH)2CO3 NMP 31
5 Cu(OTf)2 NMP 45
6 CuCl2 NMP 30
7 CuI NMP 46
8 CuBr NMP 82
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10 Cu NMP 86
11 CuCl DMF 78
12 CuCl DMSO 75
13 CuCl Anisole 0
14 CuCl Dioxane 8
15 CuCl Toluene 0
16 CuCl Diglyme 15
17 CuCl NMP 52 c

a Reaction conditions: 1a (0.2 mmol), 2a (0.6 mmol), CuCl (5 mol%), H2O (2 equiv.), solvent (0.6 mL), 120 ◦C, 40 h,
under argon. b GC yield based on 1a. c under air.
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2.2. Substrate Scope for the Nitroarenes

With the optimized conditions in hand, the scope of the reaction with respect to sodium
4-methylbenzenesulfinate (2a) and various nitroarenes was investigated (Table 2). The reaction
was found to be general, giving the desired N-aryl sulfonamides (3) in reasonable yields.
When nitrobenzene was used, the desired product 3b was achieved in 70% yield. Common functional
substituents such as methoxy and acetyl were compatible with the optimized conditions, and the
desired products 3c and 3d were obtained in 68% and 70% yields, respectively. Notably, active
functional groups such as ester were well tolerated, giving the target products in good yields
(3e, 3f). The substituent position on nitroarenes did not show obvious influence on the reaction
yields. Moderate yields were obtained when o-methylnitrobenzene, m-methylnitrobenzene and
2,4-dimethylnitrobenzene were used (3g–3i). Nitroarenes possessing electron-withdrawing group
on the phenyl ring also reacted smoothly with 2a and afforded the desired product in good yield
(3j).When naphthalenyl substrate 1k was used, the desired product 3k was obtained in 56% yield.
To our delight, hetero-nitroarenes such as 6-nitrobenzothiazole and 5-nitroindole also could react with
2a to give the corresponding sulfonamides in 60% and 42% yields, respectively (3l, 3m).

Table 2. Reaction of 2a with various nitroarenes a.
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2.3. Substrate Scope for the Sodium Sulfinates

To further examine the scope and the limitations of the reaction, various sodium sulfinates were
treated with p-methyl nitrobenzene under the standard conditions (Table 3). Sodium benzenesulfinate
reacted with 1a smoothly and gave the desired product 3n in 81% yield. Other substrates bearing
electron-donating group such as methoxy and tert-butyl remained effective and gave the corresponding
arylsulfonamides in 72% and 53% yields, respectively (3o, 3p). Functional groups halogens were well



Molecules 2019, 24, 1407 4 of 11

tolerated and afforded the desired products in moderate yields (entries 3q–3s). The reaction showed
poor activity when trifluoromethyl group were presented at the para position (3t). Gratifyingly, besides
aromatic sodium sulfinates, aliphatic sodium methanesulfinate could also react with 1a to give the
target products in 71% yield (3u).

Table 3. Reaction of 1a with various sodium sulfinates a.
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2.4. Mechanism

To gather more information about the reaction mechanism, a series of control experiments were set
up under different reaction conditions (Scheme 2). When the radical scavenger 1,1-diphenylethylene or
2,2,6,6-tetramethyl-piperidine-1-oxyl (TEMPO) was added to the reaction, the desired product 3a was
obtained in 37% and 7% GC yields, respectively (Scheme 2a). This indicates that the present reaction
process perhaps wasn’t a free radical mechanism. Treatment of sodium 4-methylbenzenesulfinate
2a with 4-methyl nitrosobenzene or phenylhydroxylamine under the standard reaction conditions
afforded the corresponding product in 32% and 10% yield, respectively (Scheme 2b), which implies
both the two compounds were not involved as the key intermediate in this coupling reaction. Notably,
no product was detected when p-toluidine reacted with sodium sulfinate (Scheme 2c). This means that
sodium sulfinate could not directly reduce nitrobenzene into aniline in this catalytic system.
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While the exact mechanism of the reductive coupling of nitroarenes with sodium sulfinate is
not clear, as the previously reported nitrobenzene-based reduction [61–63], these mechanistically
experimental results encouraged us to propose an inner pathway of the redox process. As shown in
Scheme 3, this reaction starts from the coordination between sodium sulfinate 2 and Cu(I) to form
copper(I) sulfinic acid salt A. Then, complexation and nucleophilic addition of the lone electron pair of
the sulfur moiety to the nitro group of 1 produce a five-membered metallocycle B. Next, reduction
of B by the second molecule of 2 generates complex C, followed by the liberation of a sulfonate to
afford intermediate D. Subsequently, D continues to be reduced by the third molecule of 2 to copper
N-arylsulfonamide salt E along with the sulfonate. At last, protonation of E affords the desired product
and regenerates the Cu catalyst.
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3. Materials and Methods

3.1. General Information

All experiments were carried out under an atmosphere of argon. Flash column chromatography
was performed over silica gel 48–75 µm. 1H-NMR and 13C-NMR spectra were recorded on Bruker-AV
(400 and 100 MHz, respectively) instrument (Billerica, MA, USA) internally referenced to SiMe4

or chloroform signals. MS analyses were performed on Agilent 5975 GC-MS instrument (EI)
(Santa Clara, CA, USA). The structure of known compounds were further corroborated by comparing
their 1H-NMR, 13C-NMR data and MS data with those of literature. All reagents were used as received
from commercial sources without further purification. All nitroarenes and sulfinic acid sodium salts
2a, 2b, 2g 2h, and 2j employed were reagent grade materials, and others were prepared according to
the literature procedures.

3.2. General Procedure for the Preparation of Sodium Sulfinates

4-Methoxybenzenesulfinic acid sodium salt (2e) was prepared by heating 2.5 g of sodium sulfite,
2.06 g of 4-methoxybenzenesulphonyl chloride, and 1.68 g of sodium bicarbonate in 9.6 mL of water
at 70–80 ◦C for 4 h. After cooling to room temperature, water was removed under vacuum and the
residue was extracted by ethanol, recrystallization as a white solid, the yield was 67% (1.34 g). Similarly,
other sodium arenesulfinates were prepared from their corresponding sulfonyl chlorides.
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3.3. General Procedure for the Synthesis of N-Arylsulfonamides

A pressure tube (10 mL) was charged with CuCl (1.0 mg, 0.01 mmol), p-toluenesulfinic acid
sodium salt (2a, 107.2 mg, 0.6 mmol), p-methyl nitrobenzene (1a, 27.4 mg, 0.2 mmol) and purged with
argon three times. NMP (0.6 mL) and H2O (7.2 µL) were added by syringe. The resulting solution was
stirred at 120 ◦C for 40 h. After cooling to room temperature, the crude product mixture was diluted
with ethylacetate (15 mL) and washed with a saturated solution of NaCl (3 × 15 mL) and the organic
layer was dried over MgSO4 and concentrated under reduced pressure. The resulting residue was
purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 6:1) to give 3a as white
solid; yield: 40.3 mg (77%) (NMR spectra for all compounds shown in Supplementary Materials).

3.4. Product Characterization

4-Methyl-N-p-tolylbenzenesulfonamide (3a) [58]: White solid, 77% yield (40.3 mg), 1H-NMR (400 MHz,
CDCl3, ppm) δ 7.64 (d, J = 8.4 Hz, 2H), 7.24 n, 2H), 7.05 (d, J = 8.0 Hz, 2H), 6.96 (d, J = 8.0 Hz, 2H),
6.51 (s, 1H), 2.40 (s, 3H), 2.29 (s, 3H); 13C-NMR (100 MHz, CDCl3, ppm) δ 143.7, 136.2, 135.3, 133.9,
129.8, 129.6, 127.3, 122.2, 21.5, 20.8; MS (EI) m/z (%) 261, 155, 106 (100), 91, 77, 65.

4-Methyl-N-phenyl-benzenesulfonamide (3b) [58]: White solid, 70% yield (34.6 mg), 1H-NMR (400 MHz,
CDCl3, ppm) δ 7.64 (d, J = 7.6 Hz, 2H), 7.26–7.22 (m, 4H), 7.11 (t, J = 7.2 Hz, 1H), 7.05 (d, J = 7.4 Hz,
2H), 6.55 (s, 1H), 2.37 (s, 3H); 13C-NMR (100 MHz, CDCl3, ppm) δ 143.9, 136.7, 136.2, 129.7, 129.3, 127.3,
125.2, 121.5, 21.5; MS (EI) m/z (%) 247, 182, 168, 155, 91 (100), 65.

4-Methyl-N-(4-methoxyphenyl)-benzenesulfonamide (3c) [58]: White solid, 68% yield (37.7 mg), 1H-NMR
(400 MHz, CDCl3, ppm) δ 7.58 (d, J = 7.8 Hz, 2H), 7.24 (d, J = 7.5 Hz, 2H), 6.98 (d, J = 8.6 Hz, 2H),
6.78 (d, J = 8.2 Hz, 2H), 6.20 (s, 1H), 3.78 (s, 3H), 2.41 (s, 3H); 13C-NMR (100 MHz, CDCl3, ppm) δ 157.9,
143.7, 136.1, 129.6, 129.1, 127.4, 125.3, 114.5, 55.4, 21.5; MS (EI) m/z (%) 277, 122 (100), 95, 65.

4-Methyl-N-p-acetylphenyl-benzenesulfonamide (3d) [55]: Off-white solid, 70% yield (44.0 mg), 1H-NMR
(400 MHz, CDCl3, ppm) δ 7.85 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 7.4 Hz, 2H), 7.26 (s, 2H), 7.14 (d, J = 7.7 Hz,
2H), 6.88 (s, 1H), 2.53 (s, 3H), 2.38 (s, 3H); 13C-NMR (100 MHz, CDCl3, ppm) δ 196.6, 144.4, 141.0, 135.9,
133.4, 129.9, 129.8, 127.2, 119.1, 26.3, 21.5; MS (EI) m/z (%) 289, 274, 155, 106, 91 (100), 77, 65.

Methyl-4-(4-methylphenylsulfonamido) benzoate (3e) [58]: Off-white solid, 76% yield (46.4 mg), 1H-NMR
(400 MHz, CDCl3, ppm) δ 7.94 (d, J = 7.8 Hz, 2H), 7.72 (d, J = 7.6 Hz, 2H), 7.28 (s, 2H), 7.13 (d, J = 7.8 Hz,
2H), 6.77 (s, 1H), 3.89 (s, 3H), 2.40 (s, 3H); 13C-NMR (100 MHz, CDCl3, ppm) δ 166.3, 144.4, 140.9, 132.6,
131.1, 129.8, 127.3, 126.4, 119.2, 52.1, 21.5; MS (EI) m/z (%) 305, 155, 122, 91 (100), 65.

Ethyl-4-(4-methylphenylsulfonamido) benzoate (3f) [55]: Off-white solid, 78% yield (49.8 mg), 1H-NMR
(400 MHz, CDCl3, ppm) δ 7.94 (s, 2H), 7.72 (s, 2H), 7.28 (s, 2H), 7.13 (s, 2H), 6.79 (s, 1H), 4.35 (s, 2H),
2.40 (s, 3H), 1.38 (s, 3H); 13C-NMR (100 MHz, CDCl3, ppm) δ 165.9, 144.4, 140.8, 135.9, 131.1, 129.8,
127.3, 126.8, 119.2, 61.0, 21.5, 14.3; MS (EI) m/z (%) 319, 274, 155, 119, 108, 91 (100), 65.

4-Methyl-N-o-tolyl-benzenesulfonamide (3g) [58]: White solid, 55% yield (28.7 mg), 1H-NMR (400 MHz,
CDCl3, ppm) δ 7.60 (d, J = 7.7 Hz, 2H), 7.31 (d, J = 7.8 Hz, 1H), 7.21 (d, J = 7.6 Hz, 2H), 7.14 (s, 1H),
7.08 (s, 2H), 6.23 (s, 1H), 2.39 (s, 3H), 1.99 (s, 3H); 13C-NMR (100 MHz, CDCl3, ppm) δ 143.8, 136.9,
134.6, 131.5, 130.8, 129.6, 127.6, 126.9, 126.2, 124.4, 21.5, 17.6; MS (EI) m/z (%) 261, 155, 106 (100), 91,
77, 65.

4-Methyl-N-m-tolyl-benzenesulfonamide (3h) [58]: White solid, 68% yield (35.5 mg) 1H-NMR (400 MHz,
CDCl3, ppm) δ 7.64 (d, J = 7.8 Hz, 2H), 7.22 (d, J = 7.6 Hz, 2H), 7.10 (t, J = 7.5 Hz, 1H), 6.92 (d, J = 7.3 Hz,
1H), 6.88 (s, 1H), 6.83 (d, J = 7.5 Hz, 1H), 6.42 (s, 1H), 2.38 (s, 3H), 2.27 (s, 3H); 13C-NMR (100 MHz,
CDCl3, ppm) δ 143.8, 139.3, 136.7, 136.3, 129.6, 129.1, 127.3, 125.9, 122.0, 118.3, 21.5, 21.3; MS (EI) m/z
(%) 261, 196, 182, 155, 106 (100), 91, 77, 65.
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4-Methyl-N-(2,4-dimethylphenyl)-benzenesulfonamide (3i) [64]: White solid, 64% yield (35.2 mg), 1H-NMR
(400 MHz, CDCl3, ppm) δ 7.61 (d, J = 7.6 Hz, 2H), 7.24 (d, J = 7.5 Hz, 2H), 7.15 (d, J = 7.8 Hz, 1H), 6.95 (d,
J = 7.9 Hz, 1H), 6.92 (s, 1H), 6.18 (s, 1H), 2.41 (s, 3H), 2.28 (s, 3H), 1.96 (s, 3H); 13C-NMR (100 MHz,
CDCl3, ppm) δ 143.6, 137.0, 136.2, 132.3, 131.8, 131.5, 129.6, 127.4, 127.2, 125.3, 21.5, 20.9, 17.6; MS (EI)
m/z (%) 275, 120 (100), 91, 77.

4-Methyl-N-m-cyanophenyl-benzenesulfonamide (3j) [62]: White solid, 75% yield (40.8 mg), 1H-NMR
(400 MHz, CDCl3, ppm) δ 7.69 (d, J = 6.6 Hz, 2H), 7.38–7.35 (m, 3H), 7.29–7.27 (m, 2H), 7.06 (s, 1H),
2.41 (s, 3H); 13C-NMR (100 MHz, CDCl3, ppm) δ 144.7, 137.8, 135.6, 130.3, 130.0, 128.5, 127.2, 125.1,
123.6, 118.0, 113.4, 21.6; MS (EI) m/z (%) 272, 155, 91 (100), 65.

4-Methyl-N-(naphthalene-1-yl)benzenesulfonamide (3k) [62]: White solid, 56% yield (33.3 mg), 1H-NMR
(400 MHz, CDCl3, ppm) δ 7.81 (d, J = 5.4 Hz, 2H), 7.72 (s, 1H), 7.62 (d, J = 6.4 Hz, 2H), 7.45 (s, 2H),
7.37 (s, 2H), 7.16 (d, J = 6.2 Hz, 2H), 6.79 (s, 1H), 2.34 (s, 3H); 13C-NMR (100 MHz, CDCl3, ppm) δ 143.8,
136.5, 134.3, 131.5, 129.6, 128.9, 128.4, 127.4, 127.2, 126.6, 126.3, 125.4, 122.7, 121.5, 21.5; MS (EI) m/z (%)
297, 142 (100), 115, 91.

N-(Benzo[d]thiazol-6-yl)-4-methylbenzenesulfonamide (3l) [65]: Off-white solid, 60% yield (36.5 mg),
1H-NMR (400 MHz, CDCl3, ppm) δ 8.96 (s, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.84 (s, 1H), 7.67 (d, J = 7.3 Hz,
2H), 7.24 (d, J = 7.2 Hz, 2H), 7.15 (d, J = 8.4 Hz, 1H), 7.03 (s, 1H), 2.39 (s, 3H); 13C-NMR (100 MHz,
CDCl3, ppm) δ 154.0, 150.8, 144.1, 136.0, 134.8, 134.6, 129.8, 127.3, 124.0, 121.0, 114.6, 21.5; MS (EI) m/z
(%) 304, 149 (100), 122, 105, 91, 65.

N-(1H-Indol-5-yl)-4-methylbenzenesulfonamide (3m): White solid, 42% yield (24.0 mg), 1H-NMR
(400 MHz, CDCl3, ppm) δ 8.18 (s, 1H), 7.59 (d, J = 7.3 Hz, 2H), 7.34 (s, 2H), 7.24 (s, 1H), 7.20 (d,
J = 7.1 Hz, 2H), 6.90 (d, J = 8.3 Hz, 1H), 6.49 (s, 1H), 6.31 (s, 1H), 2.38 (s, 3H); 13C-NMR (100 MHz,
CDCl3, ppm) δ 143.4, 136.4, 134.3, 129.4, 128.5, 127.4, 126.3, 125.3, 119.5, 116.7, 111.4, 103.0, 21.5; MS (EI)
m/z (%) 286, 131 (100), 104, 91, 77; HRMS calcd. for C15H15N2O2S [M + H]+ 287.0784, found 287.0779.

N-(4-Methylphenyl)-benzenesulfonamide (3n) [58]: White solid, 81% yield (40.0 mg), 1H-NMR (400 MHz,
CDCl3, ppm) δ 7.74 (d, J = 7.6 Hz, 2H), 7.54 (t, J = 7.2 Hz, 1H), 7.44 (t, J = 7.5 Hz, 2H), 7.05 (d, J = 7.9 Hz,
2H), 6.94 (d, J = 7.9 Hz, 2H), 6.39 (s, 1H), 2.28 (s, 3H); 13C-NMR (100 MHz, CDCl3, ppm) δ 139.2, 135.5,
133.7, 132.9, 129.9, 129.0, 127.3, 122.5, 20.8; MS (EI) m/z (%) 247, 106 (100), 77, 51.

4-Methoxy-N-p-tolylbenzenesulfonamide (3o) [55]: White solid, 72% yield (39.9 mg), 1H-NMR (400 MHz,
CDCl3, ppm) δ 7.69 (d, J = 8.5 Hz, 2H), 7.05 (d, J = 7.6 Hz, 2H), 6.96 (d, J = 7.6 Hz, 2H), 6.90 (d, J = 8.4 Hz,
2H), 6.54 (s, 1H), 3.85 (s, 3H), 2.29 (s, 3H); 13C-NMR (100 MHz, CDCl3, ppm) δ 163.1, 135.3, 133.9, 130.8,
129.8, 129.5, 122.3, 114.2, 55.6, 20.9; MS (EI) m/z (%) 277, 171, 106 (100), 77.

4-Tert-butyl-N-p-tolylbenzenesulfonamide (3p) [66]: White solid, yield: 32.1 mg (53%), 1H-NMR (400 MHz,
CDCl3, ppm) δ 7.68 (d, J = 7.5 Hz, 2H), 7.45 (d, J = 7.4 Hz, 2H), 7.07 (d, J = 7.0 Hz, 2H), 6.98 (d, J = 6.8 Hz,
2H), 6.39 (s, 1H), 2.30 (s, 3H), 1.32 (s, 9H); 13C-NMR (100 MHz, CDCl3, ppm) δ 156.7, 136.3, 135.1, 134.0,
129.8, 127.1, 126.0, 122.0, 35.1, 31.1, 20.8; MS (EI) m/z (%) 303, 182, 133, 106 (100), 77.

4-Fluoro-N-p-tolylbenzenesulfonamide (3q) [67]: White solid, 50% yield (26.5 mg), 1H-NMR (400 MHz,
CDCl3, ppm) δ 7.75 (t, J = 5.9 Hz, 2H), 7.12 (t, J = 8.5 Hz, 2H), 7.08 (d, J = 7.9 Hz, 2H), 6.95 (d, J = 7.8 Hz,
2H), 6.36 (s, 1H), 2.31 (s, 3H); 13C-NMR (100 MHz, CDCl3, ppm) δ 165.2 (d, J = 253 Hz), 135.9, 135.1 (d,
J = 3.0 Hz), 133.4, 130.1 (d, J = 9.4 Hz), 130.0, 122.7, 116.2 (d, J = 22.5 Hz), 20.8; MS (EI) m/z (%) 265,
106 (100), 95, 77.

4-Chloro-N-p-tolylbenzenesulfonamide (3r) [59]: Off-white solid, 59% yield (33.3 mg), 1H-NMR (400 MHz,
CDCl3, ppm) δ 7.67 (d, J = 7.6 Hz, 2H), 7.42 (d, J = 7.5 Hz, 2H), 7.08 (d, J = 6.7 Hz, 2H), 6.95 (d, J = 6.7 Hz,
2H), 6.45 (s, 1H), 2.31 (s, 3H); 13C-NMR (100 MHz, CDCl3, ppm) δ 139.5, 139.4, 136.2, 133.2, 130.0, 129.3,
128.7, 122.9, 20.9; MS (EI) m/z (%) 281, 106 (100), 77.
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4-Bromo-N-p-tolylbenzenesulfonamide (3s) [68]: Off-white solid, 63% yield (41.0 mg), 1H-NMR (400 MHz,
CDCl3, ppm) δ 7.59 (s, 4H), 7.08 (d, J = 7.3 Hz, 2H), 6.95 (d, J = 7.0 Hz, 2H), 6.37 (s, 1H), 2.31 (s, 3H);
13C-NMR (100 MHz, CDCl3, ppm) δ 138.2, 136.1, 133.2, 132.3, 130.1, 128.8, 128.0, 122.9, 20.9; MS (EI)
m/z (%) 327, 106 (100), 77.

4-Trifluoromethyl-N-p-tolylbenzenesulfonamide (3t) [55]: White solid, yield: 25.3 mg (40%), 1H-NMR
(400 MHz, CDCl3, ppm) δ 7.87 (d, J = 7.1 Hz, 2H), 7.72 (d, J = 7.1 Hz, 2H), 7.09 (d, J = 6.8 Hz, 2H),
6.97 (d, J = 6.7 Hz, 2H), 6.63 (s, 1H), 2.31 (s, 3H); 13C-NMR (100 MHz, CDCl3, ppm) δ 142.7, 136.4,
134.6 (q, J = 33 Hz), 132.9, 130.1, 127.8, 126.1 (q, J = 3.7 Hz), 123.2 (q, J = 271.1 Hz), 123.0, 20.8; MS (EI)
m/z (%) 315, 145, 106 (100), 77.

N-p-Tolymethanesulfonamide (3u) [55]: Off-white solid, 71% yield (26.3 mg), 1H-NMR (400 MHz, CDCl3,
ppm) δ 7.16 (d, J = 7.2 Hz, 4H), 6.46 (s, 1H), 3.00 (s, 3H), 2.36 (s, 3H); 13C-NMR (100 MHz, CDCl3, ppm)
δ 135.6, 134.1, 130.2, 121.7, 39.0, 20.8; MS (EI) m/z (%) 185, 106 (100), 79.

4. Conclusions

In summary, we have developed a simple synthetic method for the preparation of
N-arylsulfonamides via copper-catalyzed redox coupling of sodium sulfinates and nitroarenes.
Aromatic sulfonamides were formed in moderate to good yields in the absence of external oxidant or
reductant. Active functional groups such as ester, cyano, and halogens were well tolerated under the
optimized conditions. This method affords an alternative route for the synthesis of N-aryl sulfonamides
under mild conditions. Moreover, this protocol would inspire other cases of nitroarene reduction-based
synthesis of complex compounds. The detailed mechanism and the synthetic applications of this
reaction are currently under investigation.

Supplementary Materials: The supplementary materials are available online.
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