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ABSTRACT

Spatial transcriptomics technologies have recently
emerged as a powerful tool for measuring spatially
resolved gene expression directly in tissues sec-
tions, revealing cell types and their dysfunction in un-
precedented detail. However, spatial transcriptomics
technologies are limited in their ability to separate
transcriptionally similar cell types and can suffer fur-
ther difficulties identifying cell types in slide regions
where transcript capture is low. Here, we describe
a conceptually novel methodology that can compu-
tationally integrate spatial transcriptomics data with
cell-type-informative paired tissue images, obtained
from, for example, the reverse side of the same tis-
sue section, to improve inferences of tissue cell type
composition in spatial transcriptomics data. The un-
derlying statistical approach is generalizable to any
spatial transcriptomics protocol where informative
paired tissue images can be obtained. We demon-
strate a use case leveraging cell-type-specific im-
munofluorescence markers obtained on mouse brain
tissue sections and a use case for leveraging the out-
put of AI annotated H&E tissue images, which we
used to markedly improve the identification of clini-
cally relevant immune cell infiltration in breast can-
cer tissue. Thus, combining spatial transcriptomics
data with paired tissue images has the potential to
improve the identification of cell types and hence to
improve the applications of spatial transcriptomics
that rely on accurate cell type identification.

INTRODUCTION

In the last five years, sequencing-based spatial transcrip-
tomics technologies (1–5) have emerged as a powerful tool
to measure spatially resolved genome-wide gene expression
directly within tissue sections, offering the potential to in-
terrogate tissue biology in unprecedented detail (6,7). Novel
computational methods have already begun to address sev-
eral analytical challenges posed by these new data, with spe-
cific tools developed to identify spatially varying genes (8,9),
spatial gene expression patterns (10,11) and cell–cell inter-
actions (12,13). However, the most fundamental problem
posed by spatial transcriptomics data––upon which almost
all other applications of the data depend––is that of iden-
tifying the location and abundance of different cell types
(herein referred to as ‘cell type decomposition’). Several
methods have already been developed for this task and gen-
erally function by leveraging the expression of a set of cell
type-specific marker genes to infer the abundance of each
cell type at each slide region (14–17). However, due to statis-
tical multicollinearity (18), cell type decomposition in spa-
tial transcriptomics data will always struggle to differentiate
between cell types that are transcriptionally similar. Addi-
tionally, low transcript capture, either across an entire slide
or in specific regions, can completely impede accurate cell
type decomposition.

Here, we present a conceptually novel computational
methodology termed Guiding-Image Spatial Transcrip-
tomics (GIST). This method improves cell type decompo-
sition in spatial transcriptomics data by jointly leveraging
gene expression data obtained from the spatial transcrip-
tomics platform with cell-type-informative images, for ex-
ample, AI annotated tissue images, or immunofluorescence
(IF) stains for cell-type-specific marker proteins, which
can be collected, for example, from the reverse side of
a tissue section affixed to a spatial transcriptomics cap-
ture slide. In a particularly interesting use case, we ap-
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plied the method to integrate spatial transcriptomics data
with deep learning-derived immune cell type annotations
in breast cancer pathology slides, where we identified clin-
ically relevant immune cell infiltration that was missed
by an initial pathologist’s manual annotation. However,
the methodology is generalizable to any spatial transcrip-
tomics platform where informative image-derived cell-type
compositional estimates can be obtained. Thus, combin-
ing spatial transcriptomics and paired tissue images has
the potential to improve all applications of spatial tran-
scriptomics data that rely on the accurate annotation of
cell types, such as estimating cell type specific differential
expression (19).

MATERIALS AND METHODS

Technical details of the GIST statistical model

The expression of gene i at each spatial transcriptomics
mRNA capture spot j is assumed to be approximately a
weighted sum of the average expression of that gene in each
of the cell types captured by that spot. If our spatial tran-
scriptomics data are arranged in a matrix Y, where the rows
represent i = 1, . . . , m genes and the columns represent
j = 1, . . . , n spots, then this relationship can be summa-
rized by the following equation:

Y ≈ WH

where W is an m × p matrix of cell type specific gene ex-
pression signatures, approximating the average expression
of each gene in each cell type in this tissue, with each col-
umn of W representing one of the p cell types and each row
representing one of the m genes. H is a p × n matrix of
cell type proportions (or probabilities if the data are sub-
cellular resolution) where each column H( j ) represents the
proportions of each of p cell types at spot j .

In the datasets used in this study, each element of W was
derived from �, a reference single-cell RNA-seq dataset.
Single-cell RNA-seq data is most often modelled using a
negative binomial distribution (20) estimated for each gene
i , in each cell type k, from the expression data of the avail-
able single-cells indexed by l. φi,k represents the overdisper-
sion parameter of such a distribution:

� i,k,l ∼ NegativeBinomial (wi,k, φi,k)

i = 1, . . . , m; k = 1, . . . , p

In this study, we approximated the elements of W by tak-
ing the mean normalized (details below) expression of each
gene in each cell type in the reference single-cell RNA-seq
dataset �, which in practical terms avoids having to include
the entire single-cell RNA-seq dataset during the model fit-
ting procedure, thus speeding up inference and likely having
advantages on very large reference datasets.

Given Y and W, the following model was then used for
estimating H:

yi, j | �i , Wi , H( j ), ν j , β0, j , σ j ∼ t
(
ν j , β0, j + Wi H( j ), σ j

)

i = 1, . . . , m; j = 1, . . . , n; k = 1, . . . , p

We placed a gamma prior (priors are denoted herein
by π ) on the degrees of freedom parameter ν of the t-
distribution, using shape and rate parameter values previ-
ously proposed by Juarez and Steele (21):

π
(
ν j

) ∼ Gamma (2, 0.1)

νi > 3

We constrained the elements of H to be positive and to
sum to one within each spot:

p∑

k=1

hk, j = 1

hk, j > 0

This was achieved by placing a non-informative Dirichlet
prior on the columns of H:

π
(
H( j )) ∼ Dirichlet (α)

α1 = α2 = · · · = αp = 1

Each σ j was assigned a non-informative prior.
We used the image data to generate a prior estimate of the

abundance of some cell type a (e.g. immune cells) at each
spot j (details below), then we placed a beta distribution
prior on the corresponding proportion of cell type a at spot
j :

π
(
ha, j

) ∼ Beta
(
τ j , λ

)

Here, τ j is the mean of the beta distribution representing
the image-derived prior estimate for the proportion of this
cell type a at spot j . λ is a hyperparameter, representing the
total count parameter of the beta distribution, determin-
ing how much weight is to be placed on the image data and
how much to place on the transcriptomic data. Elements of
H outside of the specific row-of-interest a (i.e. elements for
which an informative image-derived prior is not available)
are assigned non-informative priors.

In the notation above, vectors are shown using boldface
and matrices bold capital letters. We assume m genes (in-
dexed by i ), n spots, (indexed by j ) and p cell types (indexed
by k).

Fitting the GIST and GIST base-model

The statistical model described above was implemented in
the Stan programming language using the rstan package.
The Hamiltonian Monte Carlo (HMC) algorithm was used
to estimate the model parameters. The HMC algorithm was
run for 2000 iterations where the first 1000 iterations were
discarded as burn-in. The posterior mean was used as final
parameter estimates.

Prior construction

Mouse brain dataset. To avoid outlier bias in the IF image
data the pixel-level image intensity values were first capped
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at the 99th percentile and values below the first percentile
were set to zero. These pixel-level intensity values were then
rescaled from 0 to 1, by dividing all values by the max-
imum capped value. Pixels overlapping each spatial tran-
scriptomics mRNA capture spot were defined as those cen-
tered around the middle of the spatial transcriptomics spot
in a 70-pixel radius––the center of the spot was defined in an
annotation file that was output by the 10x Genomics Spac-
eRanger software. The rescaled pixel-level intensity values
were then averaged over the slide regions corresponding to
each spatial transcriptomics spot to obtain a single inten-
sity value for each spot. This procedure was repeated for
both IF channels––RBFOX3 (Neuron) and GFAP (Glia).
Finally, the intensity values for each spot in each channel
were mapped onto the quantiles of the cell type proportion
estimates obtained from a first round of model fitting using
the GIST base-model (i.e. where all parameters estimating
cell-type abundance are assigned non-informative priors).
These IF image-derived mapped spot level intensity values,
which act as a proxy for the abundance of neurons or glia,
were used as priors on the appropriate parameters in the
GIST model.

Breast cancer dataset. The deep learning models used in
the breast cancer analyses were previously published by
Saltz et al. (22) and were obtained from the Quantitative
Imaging in Pathology (QuIP) group’s website (https://sbu-
bmi.github.io/quip distro). These are convolutional neural
network-based deep learning models, which had been pre-
trained to recognize tumor-infiltrating lymphocytes. The
original authors had trained these models using patholo-
gist annotated H&E-stained tissues sections from TCGA.
We used the VGG16-based model provided by the group.
The breast cancer H&E images were converted from JPEG
format to tiled TIFF format and the software suite VIPS
was used to encode the TIFF files with a micron per pixel
(MPP) value for each slide. The encoded TIFF files were
processed using QuIP’s deep learning pipeline to generate
a probability map over the entirety of each breast can-
cer H&E stained slide image. The deep learning model as-
signed probability values to patches of 50 × 50 microns.
For a given spot, the assigned patch-level probability val-
ues were converted to spot-level probability values by tak-
ing a weighted sum of the patches, where the weight is the
pixel overlap between the patch and the spot. This gener-
ated values for each spatial transcriptomics spot that ap-
proximately corresponded to the probability of immune
cell infiltration. Similarly to the mouse brain IF dataset,
these probability values were then mapped onto the distri-
bution of total lymphocyte (T cell and B cell) content esti-
mated from gene expression-derived proportions alone, ob-
tained by an initial round of model fitting using the GIST
base-model. These mapped values were used as informative
priors on the appropriate model parameters in the GIST
model.

The image processing code was implemented in Python
using imaging libraries PIL.Image and imageio. Visualiza-
tion and analysis of imaging data were carried out using the
NumPy, pandas and Matplotlib libraries.

Quantifying the improvement achieved by the GIST model,
compared to an expression-only model, by benchmarking
against a pathologist-defined ground truth

For each slide in the breast cancer dataset, we quantified
a model’s ability to accurately estimate regions of immune
cells by the median of immune cell proportions in spots la-
beled as immune-infiltrated by the original pathologist, di-
vided by the median of immune cell proportions estimated
in the other remaining spots:

Q = median
(
h I mmuneSpots

)

median
(
h Other Spots

)

h I mmuneSpots is a vector of model-estimated immune cell
proportions for spots annotated by the pathologist as con-
taining immune cells, and h Other Spots are the immune cell
proportions estimated at the other spots on the same slide.

With better performance, the scalar value Q will in-
crease, as the model’s output better matches the pathologist-
defined ground truth for this slide. Having defined this per-
formance metric, we defined the improvement of the GIST
model over the expression-only GIST base-model below as
�, a scalar representing the difference between this ratio
statistic Q when immune cell proportions were estimated
with the GIST model (QG I ST) or the GIST base-model
(QG I STBaseModel ):

� = QG I ST − QG I STBaseModel

To assess whether the improved performance � observed
for the GIST model over the GIST base-model was sta-
tistically significant, we used a permutation-based strat-
egy, building a null distribution by randomly shuffling the
pathologist’s spot level annotations. Specifically, for each
permutation, the spots were randomly assigned as either im-
mune infiltrated or non-immune, fixing the total number of
immune infiltrated spots to the same number as the pathol-
ogist’s annotation of that slide; we then computed the im-
provement in the performance �perm of the GIST model
over the GIST base-model using the same procedure that
was applied to the real arrangement of the pathologist’s an-
notations. This was repeated for 100 000 permutations, gen-
erating a null distribution against which to compare the ob-
served test statistic �. A P-value was then calculated by the
proportion of permuted values �perm that achieved a value
at least as extreme as �, the test statistic observed in the
pathologist’s real annotations. In the cases where no per-
mutated value more extreme than the original test statistic
was observed (G1 and H1), a P-value was calculated by ap-
proximating the null distribution using a normal distribu-
tion, with a mean and standard deviation equal to that of
the �perm values from the 100,000 permutations. Note that
while the statistical validation procedure described in this
section assumes a pathologist’s manual annotation of the
slides as the hold-out ground truth, these same procedures
could be applied to any assumed ground truth annotation
given any class of informative paired image, for example,
substituting the pathologist’s annotation for an orthogonal
IF or pathology stain marking the cell type of interest.

https://sbu-bmi.github.io/quip_distro
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Second pathologist’s re-annotation of the breast cancer spa-
tial transcriptomics slides

A second pathologist was asked to assign new immune
infiltration grades from H&E images of spots for three
spatial transcriptomics breast cancer slides––B1, C1 and
H1. The pathologist (co-author Dr Heather Tillman) was
asked to blindly score H&E images of slide regions over-
lapping the spatial transcriptomics mRNA capture spots
from three groups of spots: These were (i) spots that were
annotated as immune cell infiltrated by the original pathol-
ogist (slide H1 only), (ii) spots that were identified as high-
confidence immune infiltrated by the GIST model or (iii)
other randomly chosen spots. High-confidence immune-
cell-infiltrated spots from the GIST model were selected as
the spots having a predicted proportion of immune cells that
was greater than the upper quartile plus 1.5 times the in-
terquartile range of the data, a de facto metric used to de-
fine outliers. For each slide, the number of random spots
selected was equal to the number of spots included from
the GIST model. This second pathologist was then asked
to score/grade an H&E stain image of each spot, scoring
immune cell infiltration levels as low, middle, or high, while
remaining blinded to the group from which the spot image
was selected. This provided a new score for each spot from
each of the three groups (annotated, GIST, random). We
then applied a one-sided Wilcoxon rank-sum test to assess
whether these scores were significantly higher in the group
of spots predicted as high confidence immune infiltrated by
the GIST model compared to the randomly selected spots
or the immune infiltrated spots from the initial patholo-
gist’s annotation, where low, middle and high scores were
encoded on an ordinal scale as 1, 2 and 3, respectively.

Simulations to assess the ability of the GIST base-model to
accurately identify cell type composition in gene expression
data from a mixture of cell types

Splatter. The accuracy of cell type proportions estimated
from the various computational methods was compared to
the GIST base-model by first creating synthetic mixtures
of gene expression data using the popular Splatter model
(23). We used the Splatter model with a slight modifica-
tion, which was recently proposed by Zhang et al. (24),
who reported that the native Splatter model did not cap-
ture the empirical distribution of log fold changes observed
in real data. The enhanced Splatter model was obtained
from the GitHub repository of Zhang et al. (https://github.
com/Irrationone/splatter), where the authors had learned
the simulation parameters from the counts matrix of a pub-
licly available PBMC single-cell RNA-seq dataset generated
by 10X Genomics. The parameters for log fold changes were
learned by fitting a truncated Student’s t-distribution to the
log fold changes between B cells and CD4 T cells in this
same PBMC dataset.

Using the enhanced Splatter framework, we generated a
dataset with 100 gene expression samples, each created from
mixtures of cell types, along with a simulated paired ref-
erence single-cell RNA-seq dataset. The paired single-cell
RNA-seq data were collapsed by their mean to create the
required reference signature matrix W, which was passed to

each of the computational methods. Each expression mix-
ture sample was generated by taking a weighted average of
gene expression across 100 cells (generated independently
of the reference single-cell RNA-seq data) from each of six
synthetic cell types. Ground truth cell type proportions for
the 100 simulated mixture samples were randomly gener-
ated from a flat Dirichlet distribution, where each cell type
was assigned equal weight.

Immune cell deconvolution. We performed a second set of
benchmarking simulations using the framework developed
by Strum et al. (25), which rather than relying entirely on
simulation, created a mixture gene expression dataset by
computationally mixing real single-cell RNA-seq data, pre-
viously generated by Schelker et al. (26). In this bench-
mark, ground truth was established by mixing gene expres-
sion counts from 500 single-cells from each of eight immune
cell types in known proportions and the simulated mixture
was created by taking an average across cells. For the fairest
comparison, we supplied each of the methods the LM22 cell
type signature matrix (27) (corresponding to W in our no-
tation herein), which is a signature matrix created by the
developers of CIBERSORT that represents average gene ex-
pression values in each of 22 immune cell types. Note this
was not possible for Stereoscope, which only accepts single-
cell RNA-seq data as the reference input, from which it esti-
mates the cell type signature matrix internally. Because the
LM22 cell types do not have a strict one-to-one correspon-
dence with the cell types annotated in Schelker et al., the
results were mapped to the most relevant cell type using the
same mappings previously employed by Strum et al.

In all simulations, the performance of each method was
summarized by the mean absolute error (MAE), which is
the average of the absolute value of the difference between
each predicted cell type proportion and the known simu-
lated ground truth proportion:

MAE =
∑n

i=1 |yi − xi |
n

=
∑n

i=1 |ei |
n

where yi is a predicted cell type proportion, xi is the ground
truth proportion, ei is the error associated with the predic-
tion, and n is the total number of predicted data points gen-
erated by a given method.

Data preprocessing, filtering, normalization and imputation

All public datasets were obtained as preprocessed counts
matrices, which had been processed according to the pre-
vious authors. Generally, spatial transcriptomics data dis-
played greater sparsity than the single-cell RNA-seq data,
which arises because of differences in platform-specific
mRNA capture efficiency. To alleviate this difference,
we used a non-parametric imputation approach. Specif-
ically, we used the knnSmooth (28) algorithm (available
at the GitHub repository https://github.com/yanailab/knn-
smoothing) to impute the spatial transcriptomics data.

For the IF mouse brain dataset, we set the ‘number of
nearest neighbors to aggregate’ parameter k to 5 and the
‘number of principal components’ parameter d to 10 (au-
thor’s suggested default). For the breast cancer dataset, we

https://github.com/Irrationone/splatter
https://github.com/yanailab/knn-smoothing
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used the same approach with slight modifications. The res-
olution of spots on the breast cancer slides was coarser
than on the Visium array and transcript capture was poorer.
Thus, to overcome these limitations, we combined the spots
from all the breast cancer spatial transcriptomics slides and
imputed them together using the knnSmooth algorithm
with a k parameter of 10, mitigating the lower transcript
capture efficiency in the breast cancer dataset.

Thereafter, both the spatial transcriptomics and single-
cell RNA-seq data were normalized separately by using
Seurat’s SCTransform (29), which importantly removes
technical effects such as library size effects. We restricted the
single-cell RNA-seq and spatial transcriptomics data to the
intersection of their 2000 most highly variable genes, yield-
ing totals of 1024 and 837 genes used for GIST model fitting
in the mouse and breast cancer datasets respectively.

Software and code availability

The GIST model has been made available as an R package,
which can be obtained at:

https://github.com/asifzubair/GIST.
All the code for the analyses presented in this manuscript

are available on GitHub: https://github.com/asifzubair/
GIST-paper.

RESULTS

Guiding-Image Spatial Transcriptomics (GIST) jointly lever-
ages spatial transcriptomics and paired tissue images to im-
prove cell type decomposition

GIST attempts to improve cell type decomposition in
spatial transcriptomics data by leveraging prior estimates
of cell type composition from paired tissue images. The
method relies on Bayesian probabilistic modeling, a statis-
tical approach that naturally lends itself to integrating mul-
tiple sources of information, jointly leveraging spatial tran-
scriptomics and imaging information to improve cell type
decomposition estimates. Intuitively, the approach uses the
imaging data to provide an initial ‘suggestion’ as to the cell
types in a particular region of the spatial transcriptomics
slide, but this suggestion can be overcome if outweighed by
the evidence from the transcriptomic data (schematic rep-
resentation in Figure 1A, see Materials and Methods for
technical details of model).

A Bayesian probabilistic model for cell type decomposition
performs competitively when compared to existing methods
in simulations when no paired image information is leveraged

Existing methods for cell type decomposition in spatial
transcriptomics data are related to previous models for bulk
gene expression deconvolution and can be broadly concep-
tualized as a matrix decomposition, where some reference
basis matrix of expression data from purified cells W (e.g.
derived from single-cell RNA-seq) is used to estimate the
proportion of each cell type H in the bulk mixture Y (Fig-
ure 1B for schematic representation). At subcellular reso-
lution, the H matrix can be thought of as probability es-
timates, rather than proportion estimates (15), although

for simplicity we use the term ‘proportion’ throughout this
manuscript.

The statistical model underlying GIST is related to these
existing approaches but includes the ability to leverage
prior information derived from paired tissue images. Thus,
we were first interested in assessing whether our model
performed competitively when compared to existing ap-
proaches in the absence of prior information derived from
images (henceforth referred to as the ‘GIST base-model’).
To test this, we first developed two complementary unbi-
ased benchmarking simulations, one based on the existing
tool Splatter (23) and one based on a published bench-
marking dataset (25), which evaluates methods on a sim-
ulated mixture of immune cell types from a real single-
cell RNA-seq dataset. We compared the GIST base-model
to two methods originally designed for bulk gene expres-
sion data (CIBERSORT (30), DeconRNASeq (31)), two
methods tailored specifically for spatial transcriptomics
data (Stereoscope (17) and SpatialDWLS (32)), and lin-
ear regression (the simplest conceivable model.) Based on
the mean absolute error (MAE), CIBERSORT performed
slightly better on the Splatter simulations (Figure 2A, Sup-
plementary Figure S1, Table S1; MAE = 7.9 × 10–2 for
CIBERSORT and 8.3 × 10–2 for the GIST base-model),
while the GIST base-model performed best on the other
benchmarking dataset (Figure 2B, Supplementary Figure
S2, Supplementary Table S2; MAE = 0.09 for CIBER-
SORT and 0.06 for the GIST base-model). However, given
the conceptual similarity of the underlying models, it is
not surprising that none of these existing methods pro-
duce markedly dissimilar results in either simulation, sug-
gesting that, rather than further model tweaking and op-
timization, a new conceptual advance may be necessary to
achieve meaningful progress on the cell type decomposition
problem.

The GIST base-model performs competitively on spatial tran-
scriptomics data obtained from mouse brain sections when
cell type specific immunofluorescence markers are treated as
a ground truth

We were next interested in comparing the performance of
the GIST base-model to other methods using real spa-
tial transcriptomics data. To do this, we leveraged a pub-
licly available dataset (see Data Availability), which mea-
sured gene expression in the mouse brain using the popular
10x Genomics Visium spatial transcriptomics platform, and
where immunofluorescence (IF) staining was performed on
the reverse side of the tissue section. These IF stains were
conducted for two proteins, RBFOX3 and GFAP, which
are protein markers unique to neurons and glia respectively
(Figure 3A). We calculated the average pixel intensity of
each of these two markers in all image pixels overlapping
each spatially barcoded mRNA capture spot on the Visium
slide (Figure 3B; see Materials and Methods), then we used
these spot-level intensity estimates to represent an indepen-
dent ground-truth approximating the abundance of neurons
and glia in regions of the slide overlapping each of the Vi-
sium array’s 4992 spots.

https://github.com/asifzubair/GIST
https://github.com/asifzubair/GIST-paper
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Figure 1. Schematic overview of Guiding-Image Spatial Transcriptomics (GIST) methodology. (A) Schematic representation of GIST. The schematic shows
a hypothetical tissue section, where we wish to identify the location of a hypothetical cell type (colored orange); this could represent, for example, immune
cell infiltration in a tumor. Prior estimates of this cell type’s proportions from e.g. a deep learning model applied to an H&E stain image (left) are used to
optimize the estimates derived from the spatial transcriptomics data (right), yielding improved estimates over what could be achieved otherwise (bottom
right). (B) Schematic representation of the cell type decomposition problem posed as a matrix decomposition. Spatial transcriptomics expression data is
arranged in an m genes by n mRNA-capture-spots matrix Y. This matrix is decomposed into a basis matrix W and a matrix H that contains the proportion
of each of p cell types on each spot or (at subcellular resolution) the probability that a spot matches a cell type (shown for three hypothetical cell types A,
B and C). The basis matrix W is typically known and can be derived for example from single-cell RNA-seq data from the same or similar tissue. Given
this, all existing cell type decomposition algorithms, be they designed specifically for spatial transcriptomics data or not, aim to estimate H.

Next, using the GIST base-model, we estimated the cell
type composition on each spot from the spatial transcrip-
tomics data by leveraging a single-cell RNA-seq dataset that
was available from a similar region of a mouse brain, allow-
ing us to estimate the abundance of glial and neuronal cell
types from the spatial transcriptomics expression data alone
(Figure 3C). We compared the results obtained from the
GIST base-model to popular spatial transcriptomics cell
type decomposition methods Spotlight (14), RCTD (15),
Stereoscope (17) and cell2location (33), treating the IF-
derived estimates of neurons and glia at each spot as ground
truth. Consistent with our simulations, the GIST base-
model, RCTD, cell2location, and Spotlight all performed
quite similarly in these benchmarks on real data; however,
we note that the GIST base-model had slightly better per-
formance than the other methods, achieving Spearman’s
rank correlations of 0.49 and 0.77, compared to 0.33 and
0.77 for RCTD (the second best performing method), for
the glial and neuronal comparisons respectively (Figure 3D;
P < 2.2 × 10–16 from Spearman’s correlation against IF-
derived ground truth for all five methods; Supplementary
Figures S3–S7). Overall, these results suggest that the GIST
base-model performs competitively when compared to ex-
isting methods for cell type decomposition in real spatial
transcriptomics data.

Incorporating image-derived prior information from matched
immunofluorescence stains has the potential to improve cell
type decomposition in spatial transcriptomics data

Even though our GIST base-model performed well com-
pared to existing methods, the results above also showed
that the best-performing methods were not markedly dif-
ferent and fall well short of an optimal performance when
compared to the IF-derived ground truth. Thus, we next
hypothesized that it should be possible to markedly im-
prove our performance by leveraging our model’s Bayesian
implementation and supplying the model with informative
image-derived prior information (henceforth referred to as
the ‘GIST model’). We reasoned that we could first demon-
strate this principle on this mouse brain dataset, leverag-
ing the IF-derived estimates of cell type abundance. How-
ever, IF-derived pixel intensity estimates do not represent
proportions on a 0–1 scale and thus it is not obvious how
this information could be leveraged as prior estimates of cell
type composition in the GIST model. To solve this prob-
lem, we first normalized the IF-derived estimates by map-
ping them onto the quantiles of the spatial transcriptomics-
derived cell type proportion estimates, generated by an ini-
tial round of model fitting using the GIST base-model (Fig-
ure 3E–G; see Materials and Methods). We then refit our
GIST model, incorporating this prior knowledge derived
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Figure 2. A Bayesian probabilistic model performs similarly to existing cell type decomposition methods when no prior information is available. (A)
Boxplot showing the results of five cell type decomposition methods on simulated mixture gene expression data, for a mixture of 6 cell types, generated
using the tool Splatter (see Methods). Points have been colored by the simulated cell type and the y-axis shows the deviation from ground truth, quantified
by the difference between the estimated cell type proportions in a sample and the true proportion used as ground truth for the simulation. The mean
absolute error (MAE), summarizing the overall performance of each method is as follows (lower values imply better performance): linear regression = 0.21,
CIBERSORT = 7.9 × 10–2, DeconRNAseq = 0.13, spatialDWLS = 0.19, Stereoscope = 0.9, GIST base-model = 8.3 × 10–2. (B) Similar to (A) but based
on the simulated dataset obtained from the benchmarking procedure outlined in Strum et al. (25). Points have been colored by the immune cell type and the
y-axis shows the deviation from ground truth, quantified by the difference between the estimated cell type proportions in a sample and the true proportion
used as ground truth for the simulation. The Mean Absolute Error (MAE), summarizing the overall performance of each method is as follows: Linear
regression = 0.14, CIBERSORT = 0.09, DeconRNAseq = 0.11, SpatialDWLS = 0.1, GIST base-model = 6.4 × 10–2. Note: Stereoscope was not included
in this second set of simulations because it was not possible to pass the CIBERSORT LM22 signature matrix, which was used as the cell-type reference
in this simulation, to Stereoscope (see Materials and Methods). In all boxplots, the center line represents the median, bound of box is upper and lower
quartiles and the whiskers are 1.5 × the interquartile range.

from the RBFOX3 IF data, providing ‘suggestions’ of the
abundance of neuronal cell types over each spatial tran-
scriptomics spot. We specified these priors using a beta dis-
tribution applied to the appropriate group of model pa-
rameters corresponding to neuronal cell type estimates. The
beta distribution was parameterized by its mean (τ ; the
point estimate of the normalized cell type proportion esti-
mate from the IF image) and the total-count parameter (λ;
the strength of the prior, corresponding to the weight placed
on the IF image)––any beta distribution is naturally con-
strained to a 0–1 scale, meaning it is appropriate for spec-
ifying image-derived prior estimates of cell type composi-
tion. The key modeling question is then determining how
much weight to place on these image-derived priors and
how much to place on the spatial transcriptomics data itself.
This must be determined by selecting the hyperparameter λ,
where a value that is too small will mean there is little to no
influence of the image-derived cell type information on the
model’s output, but selecting a value that is too large will
cause the model to over rely on the image and degrade per-
formance.

We chose this hyperparameter λ by observing how the
estimates of glial cell type composition compared to IF-
derived glial-cell ground-truth (GFAP stain) when fitting
the model with ever-increasing values of λ for the IF-derived
neuronal cell type prior (RBFOX3 stain), only placing pri-
ors on the neuronal cell types. As expected, when increas-
ing the value of λ and placing more weight on the image-

derived prior for neuronal cells, the model’s output pro-
gressively more closely matched these IF-derived estimates
for the neuronal cell types (Figure 3H). However, as we
continued to increase λ, placing more and more weight on
the image-derived estimates of neuronal cells, we eventu-
ally observed a monotonic drop-off in the model’s perfor-
mance, as measured by the agreement between the glial cell
type estimates from the GIST model and the IF-derived
ground truth from the GFAP glial marker protein (Figure
3H). This monotonic drop-off begins at λ=50, suggesting
that beyond this point this prior is too strong, providing
us a stopping criterion and a reasonable initial value of λ
for image-derived priors. This value of λ concentrates most
of the prior probability mass within approximately ±10%
of the mean. At this λ value, the Spearman’s rank correla-
tion between the model-derived neuronal cell type estimates
and the IF-derived ground truth increased from 0.7 to 0.85,
but this increase would be expected given that the model’s
posterior predictions are being compared to the specified
prior (Figure 3I and J). While these analyses specify a sta-
tistical model (including reasonable hyperparameter esti-
mates) and normalization procedure for directly leveraging
cell type informative image-derived information, determin-
ing whether this improves performance would involve com-
parison against an independent data modality, which is not
available for this dataset. We address this problem below,
leveraging this initial estimate of the key hyperparameter
λ in a new out-of-batch independent dataset and assessing
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Figure 3. Incorporating image-derived prior information from matched immunofluorescence stains in mouse brain spatial transcriptomics data. (A) Raw
immunofluorescence image of the mouse brain tissue section showing the glial (GFAP) and neuronal (RBFOX3) cell markers. (B) Spatial distribution of
raw IF intensity values for GFAP (glial) and RBFOX3 (neuronal) when fluorescence intensity has been averaged over pixels corresponding to each spatial
transcriptomics spot’s location. Intensity values were rescaled from 0 to 1. (C) Spatial distribution of glial and neuronal proportions estimated from the
spatial transcriptomics gene expression data using the GIST base-model. (D) Bar plot showing Spearman’s correlation between IF-derived ground truth cell
type proportions and cell type proportions estimated from five different gene expression-based spatial transcriptomics cell type decomposition methods
(Stereoscope, cell2location, SPOTlight, RCTD, and the GIST base-model). (E) Quantile-quantile plot (QQ plot) of image-based IF-derived values for
total glial and neuronal content for each spot (y-axis) versus values obtained for total glial and neuronal content from the spatial transcriptomics gene
expression data only using the GIST base-model (x-axis). (F) Same as in (E) except that this QQ plot is generated after post-mapping normalization
where the distribution of cell type compositional estimates from the IF images were mapped onto the distribution of cell type compositional estimates
from the spatial transcriptomics gene expression data generated using the GIST base-model. (G) Spatial distribution of IF intensity values for the glial
and neuronal channel where the values have now been mapped to a distribution estimated from the gene expression data using the GIST base-model.
(H) Line plot showing the change in GIST model performance as we increase the key hyperparameter λ (x-axis). Performance is quantified by Spearman
correlation with IF-derived ground truth (y-axis) and is shown for both neuronal (green) and glial (blue) cell types. The RBFOX3 IF image-derived prior
is only applied to the neuronal cell type. A non-informative prior is applied to the glial cell type. The vertical dashed red line indicates a stopping point
(λ = 50) where performance in the glial channel begins to deteriorate, indicating the model has been overfitted to the RBFOX3 IF data. (I) Scatter plots
showing the cell type compositional estimates against IF-derived ground truth (x-axis) in the mouse brain for glia (left) and neurons (right) derived from
the spatial transcriptomics gene expression data using the GIST base-model (y-axis) when no prior information is leveraged. P-values are from Spearman’s
correlation test. (J) Similar to (I) but showing the improved agreement with ground truth (x-axis) when the IF-derived cell type compositional estimates
are incorporated as prior information using the GIST model with a λ hyperparameter value of 50 (y-axis). P-values are from Spearman’s correlation test.
Abbreviations: ST, Spatial Transcriptomics; IF: Immunofluorescence.
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the model performance against a pathologist manual anno-
tation of paired H&E stained pathology images, which are
available in this additional dataset.

Incorporating prior information derived from deep learning
models applied to matched H&E-stained images improves es-
timates of immune cell infiltration in breast cancer spatial
transcriptomics data

The results above suggest it should be possible to improve
cell type decomposition in spatial transcriptomics data by
leveraging matched images. However, while IF stains can
provide reliable markers of cell types, they are restricted
to a small number of proteins and are currently less com-
monly collected than the H&E stain. Thus, we also won-
dered whether it would be possible to leverage cell-type-
informative information derived from deep learning models
applied to H&E stains––the principal pathology stain that
is collected as a part of almost all sequencing-based spa-
tial transcriptomics protocols. Deep learning models have
already been developed that can output numerous clini-
cally relevant annotations from H&E-stained tissue section
images alone, which could theoretically be usefully prop-
agated in the spatial transcriptomics assay. These annota-
tions include cell type composition, expression of signal-
ing pathways, chromosomal ploidy, and immune cell infil-
tration (22,34,35). To test whether such information could
be usefully exploited in spatial transcriptomics assays, we
obtained 8 previously published spatial transcriptomics tis-
sue slides, which had measured gene expression in biologi-
cally independent breast cancer tumors. Critically, each of
these tissue sections had also been H&E stained (Figure 4A,
panel (a) in Supplementary Figures S8-S12), and regions
of immune cell infiltration had been annotated by a pre-
vious pathologist (Figure 4B, panel (b) in Supplementary
Figures S8–S12), providing an independent ground truth
against which to assess our model predictions (notably this
was not available for the previous IF dataset). Identifying
immune cell infiltration has prognostic value (36) and is pre-
dictive of response to cancer immunotherapy (37), hence
represents a particularly interesting use case of the GIST
model.

Thus, we applied a previously published deep convolu-
tional neural network (22), which had been trained us-
ing images collected as part of TCGA to identify regions
of tumor-infiltrating lymphocytes from H&E stained tu-
mor tissue sections. This yielded patches of deep learning-
derived predictions of immune cell infiltration across each
of our breast cancer tumor tissue sections (Figure 4C,
panel (c) in Supplementary Figures S8–S12), where gene
expression had also been measured using spatial transcrip-
tomics. We then averaged these deep learning derived pre-
dictions over the pixels overlapping each of the spatial tran-
scriptomics mRNA capture spots, yielding a deep-learning-
derived per-spot estimate of immune cell composition in
each tumor (Figure 4D, panel (d) in Supplementary Fig-
ures S8–S12, similar to the approach applied above for IF
data; see Materials and Methods). Initial immune cell pro-
portions at each spot were then estimated using the GIST
base-model (Figure 4E, panel (e) in Supplementary Figures
S8–S12). We applied a similar normalization approach as
we described for the IF data, mapping the deep learning de-

rived estimates to the quantiles of the initial gene expression
derived estimates, then applied these deep-learning-derived
immune cell compositional estimates as informative priors,
again specified as a beta distribution on the appropriate
GIST model parameters. We used a λ value of 50, which was
derived from the previous independent dataset (Figure 3H).
If the GIST model performs better than the expression-only
GIST base-model, the expectation is that we should iden-
tify more immune cells in pathologist-annotated immune
cell regions, but less in other regions of the slides. Thus, we
quantified model performance by the ratio of immune cells
identified within the pathologist’s annotated regions of im-
mune infiltration, compared to all other regions of the tis-
sue slide (this ratio is defined herein as Q (see Methods);
note that regions of immune cells had been identified by the
pathologist in six of eight slides). When compared to the
pathologist-derived ground truth, the GIST model, lever-
aging deep learning-derived prior information, performed
better than the expression-only GIST base-model in four
out of the six slides (Figure 4F, panel (f) in Supplementary
Figures S8–S12). The performance increase over the GIST
base-model was particularly large for two slides (Figure 4G,
panel (g) in Supplementary Figures S8–S12; increase in Q
for GIST versus GIST base-model (defined herein as �) of
1.95 and 2.69, P = 7.2 × 10–3 and P < 2.2 × 10–16 for slides
A1 and G1 respectively; empirical P-values were calculated
by permutation, see Methods). Visual inspection of the re-
sults revealed examples of clear regions where leveraging the
deep learning-derived prior information correctly decreased
the estimates of immune cell composition in regions where
the pathologist marked an absence of immune cells (Figure
4H, black arrowhead, and Figure 4I) and regions where es-
timates of immune cell composition increased to match the
pathologist (Figure 4H, green arrowhead). Given that the
false positive region highlighted in Figure 4I is directly adja-
cent to a true positive region of immune cells, it is plausible
this represents diffusion of immune cell mRNA from the
adjacent spots, a common issue in spatial transcriptomics
assays that can seemingly be mitigated by jointly leverag-
ing the paired tissue image. Thus, leveraging deep learning
derived prior information has the potential to markedly im-
prove cell type decomposition in data generated from spa-
tial transcriptomics technologies.

The GIST model identified large regions of immune cell infil-
tration that were missed by the initial pathologist

Surprisingly, one of the six breast cancer slides assessed
demonstrated a statistically significant decrease in perfor-
mance when we leveraged the image-derived prior esti-
mates of immune cell infiltration (slide H1 in Figure 4F,
P = 3.56 × 10–11, Supplementary Figure S12g). However,
closer inspection of this slide’s results revealed that there
was a large region of this tumor that was identified as im-
mune cell infiltrated by both the spatial transcriptomics as-
say and the deep learning model, but this region was not
marked by the initial pathologist’s annotation (Supplemen-
tary Figure S12a–e and h). Unsurprisingly, this region was
predicted as heavily immune cell infiltrated by the GIST
model, which also correctly identified the original pathol-
ogist’s annotated regions of immune infiltration in this slide
(Figure 5A, Supplementary Figure S12f).
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Figure 4. Tissue image-derived cell type compositional estimates can be leveraged to improve estimates of immune cell infiltration in breast cancer tissue
sections profiled using spatial transcriptomics. (A) H&E stained tissue image obtained from the reverse side of the breast cancer spatial transcriptomics
slide G1. Green outline shows regions containing ST spots annotated as containing immune cells by the pathologist. (B) Pathologist annotation for slide
G1 showing regions containing spatial transcriptomics spots that were labeled immune cell infiltrated (marked by dark-colored spots and green outlines).
(C) Output from the deep learning model for slide G1 overlayed on top of the breast cancer tissue section H&E image. The color scale indicates deep
learning-derived predictions for the proportions of immune cells made on 50 × 50 micron patches of the tissue. Green boxes outline regions of pathologist’s
annotated immune spots. (D) Slide G1 showing the patch level deep learning predictions converted to spot level predictions, so that they can be used as
priors in the GIST model. Spot level predictions are a sum of patch level predictions weighted by their percent overlap with the spot. Boxes outline regions
of pathologist’s annotated immune spots. (E) Slide G1 showing the gene expression-derived immune cell proportions from the GIST base model. Solid
boxes indicate the regions of the pathologist’s annotated immune spots. Green indicates that the model reasonably identifies immune-infiltrated spots. Red
indicates that the immune spots were not captured by the model. The dashed black box indicates a region of interest that likely is a false positive (see
panels (h) and (i)). (F) Scatterplot showing the performance of the GIST model (y-axis) versus the performance of the GIST base-model based on only
gene expression data (x-axis) for six pathologist-annotated spatial transcriptomics slides. Performance is defined as the ratio of the median proportion
of immune cells in pathologist labeled immune cell slide spots, versus the median proportion of immune cells in the other slide spots (Q, see Materials
and Methods). Points are colored by slide ID. The red line is the identity line (intercept of 0, slope of 1), and the distance between this line and each point
(black arrow) represents the observed test statistic � for that sample. (G) Histogram showing the empirical null distribution of ratio-based test statistic
(�perm, see Materials and Methods) generated using a permutation procedure (x-axis). The test statistic is a measure of improvement in model performance,
versus the pathologist-annotated ground truth, when deep-learning derived prior cell type annotations are incorporated. The observed test statistic � is
shown using a vertical red line. P-value from permutation test. (H) Slide G1 showing the GIST model-derived immune cell proportions, when the deep
learning immune cell type annotation has been used as an informative prior. Solid boxes indicate regions of pathologist’s annotated immune spots. Green
indicates that immune spots were successfully identified, and red indicates that immune spots were not well captured. The dashed black box, highlighted
by the black arrowhead, indicates the same region of interest as in (E), where the false positive immune cell predictions have been mitigated. The green
arrowhead highlights a region where the correct identification of a pathologist annotated immune-infiltrated region has improved. (I) Tissue image showing
the region of interest highlighted by a dashed black box in panels (E) and (H). The H&E stain shows minimal evidence of immune infiltration in the areas
overlapping the three spatial transcriptomics spots, whose location is shown by black circles. Abbreviations: ST, Spatial Transcriptomics.
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Figure 5. GIST model identifies regions of immune cell infiltration that were missed by an initial pathologist’s annotation. (A) GIST model-derived pro-
portions plotted on top of tissue from slide H1. Green outline indicates the original annotation of immune infiltrated spot regions identified by the initial
pathologist. (B) Three representative 100 × 100 micron images showing spots from the first pathologist’s annotated regions of immune cell infiltration (top),
additional high confidence immune infiltrated regions identified by the GIST model (middle), and additional randomly selected regions (bottom). Spots
are taken from slide H1. (C) Dot plot showing the second pathologist’s immune infiltration grading with a score of low, middle, and high (y-axis) for spots
from different regions of the tissue (x-axis). Spots were taken from slide H1 from regions previously annotated by the first pathologist as immune-rich,
additional high confidence regions from the GIST model, and additional random regions on the slide. P-values from one-sided Wilcoxon rank sum test.
(D) Boxplot showing distribution of GIST model predicted immune cell proportions (y-axis) broken down by immune infiltration grade (x-axis) provided
by the second pathologist. For each pathologist grade (low, middle & high), GIST scores are shown for spots from annotated, GIST high confidence, and
random regions. Spots taken from slide H1. (E) Deep learning-derived proportions for spots on slide B1. The color scale shows the predicted proportion
of immune cells at a spot. (F) Gene expression-derived proportions for slide B1 from GIST base-model. The color scale shows the predicted proportion of
immune cells at a spot. (G) Scatter plot showing the per-spot correlation between deep learning-derived predictions (y-axis) and ST gene expression-derived
proportions (x-axis) for slide B1. Each dot is a spot and the red line is the regression line. P-value from Spearman’s correlation test. (H) GIST model-derived
proportions for slide B1. The color scale shows the predicted proportion of immune cells at a spot. (I) Dot plot showing the second pathologist’s immune
infiltration grading with a score of low, middle and high (y-axis) for spots from different regions of the tissue (x-axis). Spots were taken from slide B1
from high confidence regions from the GIST model and random regions on the slide. P-value from one-sided Wilcoxon rank sum test. In all boxplots, the
center line represents the median, bound of box is upper and lower quartiles and the whiskers are 1.5× the interquartile range. Abbreviations: ST, spatial
transcriptomics.
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Thus, we hypothesized that the apparent decrease in per-
formance may have represented an oversight in the ini-
tial pathologist’s annotation, and thus a deficiency in the
assumed ground truth, rather than a deficiency in the
GIST model’s prediction. To test this, we devised a pro-
cedure that would allow a second independent patholo-
gist (see Author’s contributions) to re-examine the rele-
vant regions of this slide, while remaining blinded to the
GIST model’s output and the original pathologist’s annota-
tion. The second pathologist was presented with (n = 115)
100 × 100-micron subregions from this slide and asked
to categorize them as either low, middle, or high levels
of immune cell infiltration. These subregions were chosen
either from (i) the first pathologist’s annotated immune
cell regions (ii) high-confidence immune cell regions iden-
tified by the GIST model but not the first pathologist or
(iii) other randomly chosen regions (representative exam-
ples shown in Figure 5B; see Methods). Remarkably, the
second pathologist’s reannotation determined no statisti-
cal difference between the high-confidence regions of im-
mune cell infiltration annotated by the first pathologist
and the additional high-confidence regions identified by
the GIST model, which were missed by the first patholo-
gist (Figure 5C; P = 0.15 from two-sided Wilcoxon rank-
sum test). However, the high-confidence regions of im-
mune cell infiltration identified by GIST were much more
likely to be marked as high probability regions of im-
mune cell infiltration when compared to randomly chosen
slide regions (Figure 5C, P = 3.5 × 10–9 from one-sided
Wilcoxon rank-sum test). Additionally, the second pathol-
ogist’s high confidence immune infiltrated regions were mir-
rored by higher estimated proportions by GIST (Figure
5D). These results support the notion that the additional
regions identified by the GIST model were true regions of
immune cell infiltration and that the poor performance on
this slide arose from an omission in the original patholo-
gist’s annotation, not falsely identified regions by the GIST
model.

We also reexamined the two available spatial transcrip-
tomics slides where the original pathologist’s annotation
of the H&E images had not identified any regions of im-
mune cell infiltration (Supplementary Figure S13a, b). Sur-
prisingly, for both slides the deep learning model (Figure
5E, Supplementary Figure S13c) and the expression-only
cell type predictions from the spatial transcriptomics as-
say (Figure 5F, Supplementary Figure S13d) agreed that
there were in fact regions of immune cell infiltration (Fig-
ure 5G, Spearman’s correlation = 0.46, P < 2.2 × 10–16;
Supplementary Figure S13e, Spearman’s correlation = 0.25,
P < 2.2 × 10–4). Unsurprisingly, these same regions were
identified by the GIST model (Figure 5H, Supplementary
Figure S13f) and thus it seemed plausible that the initial
pathologist had also missed these immune infiltrated re-
gions in their initial examination of these two slides. We
used the same scoring procedure outlined above to reanno-
tate these slides by the second pathologist, who convincingly
annotated these predicted regions as true regions of immune
cell infiltration (Figure 5i, P = 1.5 × 10–9; Supplementary
Figure S13g, P = 4.5 × 10–2; see Materials and Methods),
which were also mirrored by higher proportions estimated
by GIST (Supplementary Figure S13h, i).

Taken together, the presented use cases suggest that our
GIST model, which can jointly leverage image-derived cell
type annotations with spatial transcriptomics data, has the
potential to improve cell type decomposition in spatial tran-
scriptomics data, and that such a strategy can be used to
identify predictive and prognostically important features in
human tissue sections.

DISCUSSION

We have presented a conceptually novel computational
methodology that can leverage cell-type-informative data
derived from paired tissue images to improve inferences of
cell type composition in spatial transcriptomics data. For
the spatial transcriptomics platforms used in this study,
these images were obtained from the reverse side of the
slide-affixed tissue section (schematic in Figure 1A), but
it is also likely feasible to obtain informative images from
an adjacent tissue section. One exciting application of the
methodology is the ability to leverage inferences from deep-
learning models applied to tissue images, for example H&E
stains, which itself has recently reached close to patholo-
gist level performance in annotating clinically relevant fea-
tures of tissue sections (22,34,35). However, the statisti-
cal methodology is highly generalizable and could be ap-
plied to any image-derived prior information, which we
have demonstrated for immunofluorescence. We have also
described a set of generalizable statistical procedures for
determining the value-added by incorporating paired cell-
type-informative tissue images in spatial transcriptomics
analysis (see Materials and Methods). These procedures
were applied to our detailed example of leveraging deep
learning-derived immune cell predictions in breast cancer,
where a pathologist’s annotation was held-out as an as-
sumed ground truth, but this same validation procedure
could be applied to any imaging modality where a reason-
able hold-out annotation is available, for example, in the
context of IF data, derived from an orthogonal IF stain
marking the cell type of interest. Generally, our proposed
integrated approach has the potential to improve all down-
stream applications of spatial transcriptomics that rely on
accurate cell type annotations, including identification of
cell–cell or gene-gene interactions, or cell type specific dif-
ferential expression (19).

Our framework will also spur the development of future
similar computational approaches. Theoretically, any cell
type decomposition method that could be re-implemented
in a Bayesian framework could be adapted to leverage
image-derived cell-type-informative prior information and
this is likely possible for most of the existing models used
in our comparisons-of-methods (Figures 2 and 3). Thus,
there is enormous scope for future model development and
optimization within our novel framework. We also antic-
ipate that our framework will lead to new modes of spa-
tial transcriptomics experimental design. For example, we
showed that immunofluorescence data could be leveraged.
This opens the possibility of a priori staining for a few par-
ticularly informative protein markers, knowing that such
markers can be used in downstream analyses to directly
influence and improve the results of the spatial transcrip-
tomics data analysis. This may be particularly useful for sep-
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arating cell types when multicollinearity affects the perfor-
mance of conventional models for cell type decomposition
(18).

Additionally, while we have shown some illustrative ex-
amples, the Bayesian implementation allows enormous flex-
ibility in how prior information is specified. It is theoret-
ically possible to, for example, apply one prior to groups
of cell types, or apply multiple partially overlapping priors
derived from various sources of information. For the breast
cancer dataset shown, we also fixed the λ hyperparameter to
50, using information obtained in the previous dataset. This
is likely a conservative means by which to choose this key
value and also assumes that this hyperparameter should be
assigned the same value at all regions of the slide––almost
certainly an oversimplification. Methods could likely be de-
vised to adaptively adjust the value of the λ hyperparameter
on a per-spot or per-slide-region basis, such that, for exam-
ple, the differences in uncertainty associated with the deep
learning-based outputs could be accounted for at each tis-
sue region. Additionally, given that spatial transcriptomics
is still a very new technology, the availability of datasets
upon which to properly benchmark or test the GIST ap-
proach is still quite limited. Thus, particularly with increas-
ing data availability, it is likely that creative applications
within the described framework will eventually yield im-
provements over the results presented here.

In conclusion, we anticipate that jointly leveraging spatial
transcriptomics and cell-type-informative images collected
from the same or adjacent tissue sections will represent
an important conceptually novel computational methodol-
ogy, which has the potential to improve many applications
of emerging spatial transcriptomics technologies, including
potential translational applications in clinical and diagnos-
tic pathology.

DATA AVAILABILITY

Mouse brain

The mouse brain spatial transcriptomics Visium
data with associated IF images were downloaded
from the 10X Genomics website: https://support.
10xgenomics.com/spatial-gene-expression/datasets/1.1.
0/V1 Adult Mouse Brain Coronal Section 2.

As a cell type reference W for these data, we used
the curated mouse brain single-cell RNA-seq data pro-
vided by Andersson et al. (17). This data had been
originally retrieved from http://www.mousebrain.org and
was processed by Andersson et al. for use in spa-
tial transcriptomics analysis: https://github.com/almaan/
stereoscope/tree/master/data/mousebrain.

Breast cancer

The eight separate breast cancer spatial transcriptomics
slides, previously generated by Andersson et al., were down-
loaded from https://github.com/almaan/her2st. This repos-
itory contained count matrices generated from the spatial
transcriptomics assays, H&E images of the tissue sections
(with and without pathologist annotation), and matrices de-
tailing the location of the spots.

The single-cell RNA-seq breast cancer dataset, used to
generate the cell type reference matrix W for all breast
cancer analyses, was previously generated by Karaayvaz et
al. (38) and obtained from: https://github.com/Michorlab/
tnbc scrnaseq.

Software and code availability

The GIST model has been made available as an R package,
which can be obtained at:

https://github.com/asifzubair/GIST.
All the code for the analyses presented in this manuscript

are available on GitHub: https://github.com/asifzubair/
GIST-paper.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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