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ADAM10 (A Disintegrin and Metalloproteinase 10) has been identified as the

major physiological alpha-secretase in neurons, responsible for cleaving APP in a

non-amyloidogenic manner. This cleavage results in the production of a neuroprotective

APP-derived fragment, APPs-alpha, and an attenuated production of neurotoxic A-beta

peptides. An increase in ADAM10 activity shifts the balance of APP processing

toward APPs-alpha and protects the brain from amyloid deposition and disease. Thus,

increasing ADAM10 activity has been proposed an attractive target for the treatment of

neurodegenerative diseases and it appears to be timely to investigate the physiological

mechanisms regulating ADAM10 expression. Therefore, in this article, we will (1) review

reports on the physiological regulation of ADAM10 at the transcriptional level, by

epigenetic factors, miRNAs and/or protein interactions, (2) describe conditions, which

change ADAM10 expression in vitro and in vivo, (3) report how neuronal ADAM10

expression may be regulated in humans, and (4) discuss how this knowledge on the

physiological and pathophysiological regulation of ADAM10 may help to preserve or

restore brain function.

Keywords: ADAM10, aging, alpha-secretase, Alzheimer’s disease, mouse models, promoter, transcription factors,

spine

ADAM10 - PORTRAIT OF A BIOLOGICALLY VERSATILE
PROTEASE

Introduction
ADAM10 (A Disintegrin and Metalloproteinase 10) was identified in vitro as a key proteinase in
the processing of the amyloid precursor protein (APP) more than 15 years ago (Lammich et al.,
1999). The zinc-dependent proteinase cleaves APP within the A-beta sequence, thus preventing
the production of this peptide. Furthermore, APP-cleavage by ADAM10 liberates APPs-alpha,
which has neuroprotective properties and is involved in the regulation of synaptic plasticity and
learning and memory (reviewed in Kögel et al., 2012). In line with these findings, overexpression
of ADAM10 in mice revealed elevated APPs-alpha levels and demonstrated a robust in vivo activity
of ADAM10 (Postina et al., 2004). Overexpression of ADAM10 was also effective in animal mouse
models of Alzheimer’s disease (AD) and reduced plaque load as well as deficits in learning and
memory (Postina et al., 2004; Schmitt et al., 2006). Subsequent investigations of RNAi-mediated
knock-down of the enzyme in primary cortical neurons (Kuhn et al., 2010) as well as conditional
knock-down in mice (Jorissen et al., 2010) consolidated the enzymes’ role in APP processing
in vivo. Collectively, these data point to ADAM10 as being the most important physiological
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alpha-secretase involved in the processing of APP in
neurons.

The central role of ADAM10 in APP processing has made
ADAM10 an interesting target for AD therapy. It has been
proposed (e.g., Fahrenholz and Postina, 2006; Vincent and
Govitrapong, 2011) that similar to the situation in intact animals
(Postina et al., 2004) an increase in ADAM10 could result in
decreased A-beta load and improved learning and memory in
AD patients. For this approach to be effective and safe, however,
the cell biology of ADAM10 and its cellular functions need to be
better understood. ADAM10 is a versatile protease which cleaves
not only APP but also several other proteins (see paragraph 2).
Therapeutic strategies for AD focusing on ADAM10 as a target
have to keep these additional substrates in mind. In the present
review we will summarize the extant literature on ADAM10 and
focus on what is known about its regulation in vitro and in vivo.
Understanding the regulation of this enzyme may be a necessary
step toward understanding its usefulness in therapeutic contexts.

Domain Structure, Cellular Synthesis, and
Maturation of ADAM10
ADAM10 is a catalytically active member of the ADAM
family of proteinases. The ADAMs are grouped together as a

FIGURE 1 | Domain structure of ADAM10. ADAM10 consists of several functional distinct domains: (1) prodomain, (2) catalytic domain, (3) cystein-rich

disintegrin-like domain, (4) transmembrane domain, (5) cytosolic domain. Upon dimerization (left), the unstructured C-terminus converts into an ordered domain (Deng

et al., 2014). Cleavage sites for proteinases such as proprotein convertases [located at the end of the prodomain, (Anders et al., 2001), I], other ADAMs [close to the

membrane, (Cissé et al., 2005; Parkin and Harris, 2009; Tousseyn et al., 2009) II] or gamma-secretase [within the membrane, (Tousseyn et al., 2009), III] have been

identified.

family because they share structural features with snake venom

disintegrin proteases (Wolfsberg et al., 1995a,b). ADAM10 is

co-translationally synthesized via the rough ER, matures and
is transported via the Golgi apparatus. Maturation includes

removal of the prodomain (Figure 1: 1), which keeps the enzyme

in an inactive state. A cleavage site for proprotein convertases

such as PC7 (Anders et al., 2001) is mandatory for production
of the catalytically active enzyme as shown by analyzing mutated

ADAM10. However, the prodomain has not a mere inhibitory
function but is also needed as an intramolecular chaperon for
correct folding (Anders et al., 2001). This is reflected by the
fact that a large proportion of ADAM10 has been found to
be localized in the Golgi apparatus in AR breast carcinoma
cell line by confocal microscopy (Gutwein et al., 2003). The
mature form of ADAM10 of about 68 kDa was found in the
Golgi compartment as well as in the ER/plasma membrane-
enriched fraction of postnuclear supernatant and at least cleavage
of another substrate of ADAM10—the L1 adhesion molecule—
seems to occur in both. Recent investigations suggested by
administering the inhibitor RVKR for up to 8 h before measuring
shedding activity that cleavage by proprotein convertases might
be dispensable for rapid stimulation of ADAM10 (Maretzky et al.,
2015). However, as the half-life time of ADAM10 is rather long
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(>72 h; Mezyk-Kopec et al., 2009), this result may need to be
interpreted with some caution.

The catalytic domain of ADAM10 (Figure 1: 2)
contains the characteristic zinc-binding consensus motif
(HEXGHXXGXXHD) of active members of the proteinase
family. A point mutation within this motif (E384A) results in a
dominant negative acting protein and a decreased APPs-alpha
secretion, as could be shown shown in HEK cells and mice
(Fahrenholz et al., 2000; Postina et al., 2004).

The catalytic and the proximal disintegrin domain contain
high-mannose as well as complex-type N-glycan attachment sites
(Escrevente et al., 2008). The disintegrin domain of ADAM10
(Figure 1: 3) does not appear to be essential for ADAM10
protease activity in cell culture experiments (Fahrenholz et al.,
2000). Rather, the short intracellular C-terminus seems to play
an important role: Epidermal growth factor (EGF) cleavage has
been reported to be partially impaired in ADAM10−/− cells
overexpressing a cytoplasmic domain deletion mutant of the
proteinase (Horiuchi et al., 2007). However, the cytoplasmic
domain of ADAM10 has also been reported to negatively
influence constitutive shedding through an ER retention motif:
an ADAM101cyto mutant displayed increased catalytic activity
compared to ADAM10 Wt with regard to Betacellulin cleavage
(Maretzky et al., 2015). The cytoplasmic domain of ADAM10
contains several binding sites that may be involved in regulatory
events, such as an IQ consensus binding site for calmodulin
(Horiuchi et al., 2007) and two proline-rich putative Src
homology 3 (SH3) binding domains. The juxtamembrane
binding site affects basolateral localization of ADAM10 in
epithelial cells (Wild-Bode et al., 2006), while in neurons the SH3
binding domains direct ADAM10 to the postsynaptic membrane
(Marcello et al., 2007). Using a phage library analysis comprising
305 human SH3 domains, 38 candidate binding proteins for the

ADAM10 C-terminus were identified, including endophilin-A2,
Lck, or ZDHHC6 (Ebsen et al., 2014). Although the biological
relevance of many of these putative ADAM10 binding partners
needs to be determined, this finding suggests that regulatory
interactions at the C-terminus could play a major role regarding
the cellular localization as well as the activity of the proteinase.

Developmental and Adult Expression of
ADAM10 in Mouse and Human Brain
ADAM10 is expressed in various tissues in mice (Marcinkiewicz
and Seidah, 2000). Its presence in the developing as well as
in the adult CNS underscores its importance for normal brain
development and function. Since ADAM10 can only process a
putative substrate if both, protease and substrate are expressed
at the same time and in the same cellular compartments, it
is important to know the temporospatial pattern of ADAM10
expression in the brain. This pattern can then be compared to
corresponding data of putative substrates or binding partners.

The distribution of ADAM10 was studied in mouse cerebral
cortex from embryonic day (E) 14.5 to postnatal day (P) 1
using in situ hybridization analysis. This revealed ADAM10
expression within the ventricular zone and the cortical plate
from E17.5 to P1 (Ma et al., 2013; see also Figure 2). These data
on ADAM10 mRNA were corroborated by immunofluorescence
analyses which detected ADAM10 protein in developing cerebral
cortex from E14.5 to E18.5 (Ma et al., 2013).

ADAM10 plays an essential role during development. Animals
with a conventional ADAM10 knock-out die on E9.5 (Hartmann
et al., 2002), which underlines the general importance of
this protease. More recently generated conditional Nestin-
Cre-ADAM10 knock-out mice with a cell-specific inactivation
of ADAM10 in neural progenitor cells (NPCs), NPC-derived
neurons and glial cells prolonged the life span of the mice to

FIGURE 2 | Distribution of ADAM10 mRNA in the murine brain. Sagittal section of C57Bl6/J mouse brain (male) at E18.5 (A1,A2; Image credit: Allen Institute;

http://developingmouse.brain-map.org/experiment/show/100055949, ©2016. Allen Institute for Brain Science) and P56 (B1,B2; Image credit: Allen Institute; http://

developingmouse.brain-map.org/experiment/show/69514738, ©2016. Allen Institute for Brain Science C1,C2: magnification of hippocampal area of the adult brain).

ADAM10 mRNA expression is revealed by in situ hybridization [A1–C1, upper row ISH; A2–C2, lower row expression energy (cells with highest probability of gene

expression)]. CA1-3, Cornu Ammonis regions; Cb, cerebellum; Ctx, cerebral cortex; DG, Dentate Gyrus; H, hippocampus; ob, olfactory bulb; SC, Superior Colliculus;

Th, thalamus; vmh, ventral mid-/hindbrain
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a perinatal time point (Jorissen et al., 2010). These mutants
displayed a disrupted neocortex and a severe reduction of
the ganglionic eminence. Knock-out of ADAM10 in the
postnatal CNS using a CaMKII-alpha-Cre driver finally allowed
investigation of adult mice (Prox et al., 2013). This conditional
mutant did not show gross morphological abnormalities but
exhibited synaptic dysfunction, increased early perinatal lethality,
altered behavior, and epileptic seizures. Similar results were
reported by another group which independently established an
adult ADAM10 knock-out model (Zhuang et al., 2015). Taken
together, these studies indicate that ADAM10-deficiency results
in major developmental phenotypes. Lack of the protease at
later stages is compatible with life but results in a number of
dysfunctions.

The cellular expression pattern of ADAM10 was also
investigated in some of these studies. Interestingly, ADAM10
protein expression partially correlated with both, S100β and
Tuj1 expression (E16.5 to P1), which indicates a relevance of
ADAM10 for glial as well as neuronal cell function during late
embryonic cerebral cortex development stages (Ma et al., 2013).
In the developing brain of chicken, ADAM10 shows a weak but
widespread expression at E12 in most gray matter areas (Lin
et al., 2008). Expression intensity decreased from E14 to E19,
with the exception of the telencephalon and the cerebellum. Some
ADAM10-positive non-neuronal cells may be oligodendrocytes,
since they were shown to co-express galactocerebroside, which
is a marker for oligodendrocytes at late stages of chicken
embryogenesis (Lin et al., 2008).

ADAM10 expression has also been studied in developing
human brain: Bernstein and colleagues compared the amount
of ADAM10 in temporal cortex of stillborn children with
those of normal aged adults and found a general increase
(Bernstein et al., 2003). In a follow-up study, a weak expression
of ADAM10 in the cytoplasm of pyramidal as well as non-
pyramidal neurons was confirmed in pre- and perinatal human
brains (Bernstein et al., 2009). In contrast to these findings,
analysis of total human fetal brain RNA obtained from a
commercial source (Clontech, Kaczur et al., 2007) failed to detect
a prominent ADAM10 expression using microarray analysis.
Differences in the stage of fetal development (which has not
been reported) or technical issues, e.g., detection of ADAM10
in total mRNA preparations, may explain these discrepancies.
Analysis of transcripts from a human fetal brain library, however,
revealed two types of ADAM10 cDNAs: one encoding a 748
amino acid protein [designated Kuzbanian (Kuz)L] and a second
one (KuzS, encoding a 568 amino acid protein), which lacks
the cysteine-rich, transmembrane, and cytoplasmic domain
(Yavari et al., 1998). Fetal human brain expressed substantially
more of the short than of the long variant, while fetal lung
predominantly contained the longer variant. In adult human
brain tissue, Northern blot demonstrated the persistence of
both forms in different amounts (Yavari et al., 1998). The
presence of the short transcript appears to be unique to
humans as the transcript could not be detected in adult and
embryonic tissue of mice. Whether it is functionally relevant,
i.e., whether it is translated into a biologically active protein is
unclear.

The expression of ADAM10 in the adult brain has been
studied in rodents and humans. By using northern blot
technique it could be shown that adult human amygdala,
caudate nucleus and corpus callosum contain relatively high
amounts of ADAM10 transcripts whereas mRNA levels in the
subthalamic nucleus and the thalamus were comparably low
(Yavari et al., 1998). In the adult rodent brain, ADAM10 mRNA
was reported to be moderately expressed throughout the whole
brain, including the olfactory bulb, the hippocampus or the
subthalamic region (mouse and rat: Kärkkäinen et al., 2000, see
also Figure 2: P56). Semiquantitative evaluation of ADAM10
mRNA using ISH analysis revealed only the Pontine nuclei
as a brain structure not expressing the protease (Kärkkäinen
et al., 2000). These findings have been confirmed by a recent
investigation that also described positive ISH-stainings for
neurons of the cerebral cortex, hippocampus, thalamus, and
cerebellar granular cells in the CNS of adult mice (Guo et al.,
2016).

ADAM10—PHYSIOLOGICAL SUBSTRATES
AND FUNCTIONS

Physiological Substrates of ADAM10
ADAM10 is probably best known for its ability to process APP.
ADAM10 cleaves APP at the alpha-secretase cleavage site and
in vitro as well as in vivo studies have implicated ADAM10
as the biologically most relevant neuronal alpha-secretase (e.g.,
Postina et al., 2004; Jorissen et al., 2010; Kuhn et al., 2010). Of
note, the regional and cellular overlap of ADAM10 and APP,
which is necessary for ADAM10 to process APP in tissues,
is age-dependent: at early developmental stages the mRNA
distributions of ADAM10 and APP are not fully congruent but
with aging the overlap increases (Marcinkiewicz and Seidah,
2000). This finding—but also the wealth of data on other
substrates of ADAM10 (see below)—suggests that ADAM10
substrates may change: During development and in the young
brain ADAM10 may preferentially cleave substrates other than
APP and the role of ADAM10 as alpha-secretase of APP may
emerge with aging.

Presently, a rather large number of ADAM10 substrates
have been identified in different experimental settings (e.g.,
reviewed for proteomic approaches in Müller et al., 2016).
Of notice, ADAM10 substrates belong to type I as well as
type II transmembrane but also Glycosylphosphatidylinisotol
(GPI)-anchored proteins, indicating a considerable flexibility of
the protease with regard to substrate recognition. Consensus
cleavage motifs for proteases are commonly deduced from the
amino acids surrounding the naturally occurring cleavage sites
within protein substrates. This approach failed in the case of
ADAM10 because it lacks a well-defined consensus sequence:
for ADAM10 leucine was found to be preferred (and tyrosine
accepted) in the P1’ position (immediately downstream of the
cleavage site) in an investigation using oriented peptide mixture
libraries which gives evidence of a shallow or deep S1’ site (John
et al., 2004). ADAM10’s preference for larger residues at P1’ has
been confirmed but acceptance of aromatic amino acids and
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even glutamine were also reported (Caescu et al., 2009). This
tolerance for aromatic residues in P1’ may be the most relevant
difference in cleavage site specificities between ADAM10 and
its close relative ADAM17 (Tucher et al., 2014). In the early
investigation tyrosine was found to be favored at P1 (immediately
upstream of the cleavage site; John et al., 2004). In contrast to
this, selectivity for small residues such as alanine at the P1 was
described by Caescu et al. (2009) and specificities for proline
and basic residues were recently reported (Tucher et al., 2014).
In sum, these reports show the methodological limitations and
uncertainties involved in pinpointing cleavage site specificities
from linear unmodified peptide libraries. In addition, the activity
state of the cell may also influence shedding capacity, as is the
case for NG2 (Sakry et al., 2014) as well as the synaptic marker

neuroligin 1 (Suzuki et al., 2012), further complicating work in
this direction.

At present, a wide variety of substrates has been identified
for ADAM10 and some of them have been confirmed not only
in primary culture but also in vivo. In line with its ubiquitous
expression, ADAM10 substrates are linked to a number of
biological systems and physiological as well as pathological
functions (c.f. chapter 4), including the immune and nervous
system but also cancerogenesis (e.g., Vincent and Checler, 2012).
In their review Pruessmeyer and Ludwig reported on the “good,
the bad and the ugly” ADAM10 substrates (Pruessmeyer and
Ludwig, 2009). Since then, a number of additional ADAM10
substrates were identified and have resulted in a more complete,
albeit even more complex picture of ADAM10 (Table 1).

TABLE 1 | ADAM10 substrates identified within the last years.

Protein Type Evidence References Expression

Leda-1/Pianp Type I membrane protein Cell culture, MEFs (no distinction

between ADAM10 and 17)

Biswas et al., 2016 CNS cells, murine melanoma cell

line B16F10 and rat liver

sinusoidal endothelial cells

gp130 Type I membrane protein Cell culture Wolf et al., 2016 Ubiquitous

IL-11R Type I membrane protein Cell culture, MEFs Lokau et al., 2016 e.g., bone, heart, lung, spleen,

gastrointestinal tract, and uterus

LDLR MT4MMP LRRC4B NRCAM NEO1

CNTN2 (only substrates validated by

immunoblot are included)

Type I membrane protein GPI

anchored (CNTN2)

ADAM10 ko neurons Kuhn et al., 2016 Diverse

NKG2D MIC ligands Type I membrane protein Cell culture, plasma cells Wolpert et al., 2014;

Zingoni et al., 2015

Induced by different types of

stress in cells

SIRPα Type I membrane protein Cell culture Londino et al., 2015 Monocyte lineage and neuronal

cells

TACI Type III membrane protein Cell culture, B-cells Hoffmann et al., 2015 Activated B-cells

NG2 Type I membrane protein Cell culture, acute brain slices,

isolated OPC

Sakry et al., 2014 Glia lineage

FAT1 Type I membrane protein Cell culture Wojtalewicz et al., 2014 Various tissues, upregulation in

cancer

TREM2 Type I membrane protein Cell culture Kleinberger et al., 2014 Microglia

Cad6B Type II membrane protein Cell culture, neural crest cells Schiffmacher et al.,

2014

E.g. neural crest cells

CD154 Type II membrane protein Cell culture Yacoub et al., 2013 T cells

Coxsackievirus and Adenovirus Receptor

(CAR)

Type I membrane protein Cell culture Houri et al., 2013 Highly expressed in the

developing nervous system

Neuroligin 1 Type I membrane protein Primary neurons Suzuki et al., 2012 Synaptic

Cell adhesion molecule 1 (CADM1) Type I membrane protein Cell culture Nagara et al., 2012 Various tissues

Annexin A1 Cell culture Blume et al., 2012 Necrotic cells

Alcadeins Type I membrane protein Cell culture, MEFs Hata et al., 2009 Neuronal

collagen XVII/BP180 Type II membrane protein Primary keratinocytes, MEFs Franzke et al., 2009 Skin

Pmel17 Type I membrane protein Cell culture Kummer et al., 2009 Melanocytes and retinal epithelial

cells

Klotho Type I membrane protein Cell culture, MEFs Bloch et al., 2009 Predominantely in kidney and in

brain in the choroid plexus

C4.4A GPI anchored Cell culture Esselens et al., 2008 Various tissues, upregulation in

cancer

Bri2 (ITM2b) Type II membrane protein Cell culture Martin et al., 2008 Brain

Putative ADAM10 substrates (ordered from newest to oldest publication date) identified since 2009 or not included in Pruessmeyer and Ludwig (2009) are listed. (PubMed search

29-11-2016: “ADAM10 and substrate” or “ADAM10 and proteolysis”).
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Functions of ADAM10 at the Synapse and
in Non-neuronal Cells
ADAM10 processes other proteins and thus, influences the
functions of its substrates by in-/activating them or by liberating
biologically active fragments. Thereby, the biological effects of
ADAM10 activity are tightly linked to the functions of the
substrates and their cleavage products. Because of the large
number of ADAM10 substrates identified to date, we focus in this
review on those which are known to have an important impact on
brain function and which are likely to co-localize with ADAM10
at the synapse or in glial cells.

The earliest study on the distribution of ADAM10 at
synapses was based on immunocytochemistry and suggested
that ADAM10 co-localizes with the postsynaptic scaffold protein
Synapse-associated protein 97 (SAP-97) but not with the
presynaptic vesicle protein synaptophysin (Marcello et al.,
2007). However, a more recent study using the sensitive
proximity ligation assay reported proximity of the enzyme
with synaptophysin in mouse primary hippocampal neurons
(Lundgren et al., 2015). This suggests that ADAM10 can be
present in both parts of a synapse. One example where this could
be functionally relevant is the neurexin-neuroligin-interaction:
neurexins and neuroligins are cell-adhesion molecules which
form transsynaptic complexes (e.g., Tsetsenis et al., 2014). They
appear to be important for normal synapse specification and
function (Jedlicka et al., 2011, 2015). For the postsynaptic protein
Neuroligin 1, ADAM10 has been found to act as the major
sheddase, as could be shown by pharmacological and genetic
means in primary rat cortical neurons (Suzuki et al., 2012).
NMDA receptor activation as well as prolonged epileptic seizure
condition increased shedding, suggesting a role for neuronal
activity in this context. Interestingly, shedding of Neuroligin 1
could be induced by soluble neurexin 1α or β derived from
overexpressing HEK293 cells (Suzuki et al., 2012), indicating that
ligand binding at the cell surface also regulates Neuroligin 1
shedding. Similar observations have been made for the Notch-
Delta complex where Notch1 cleavage by ADAM10 is induced by
Delta binding (e.g., reviewed in Van Tetering and Vooijs, 2011).
Intriguingly, Notch 1 as well as its ligands - Delta or Jagged -
have been found to be cleaved by ADAM10 (for example: Pan
and Rubin, 1997; Lavoie and Selkoe, 2003). A recent publication
regarding systemic characterization of ADAM10 substrates from
neurons highlighted that ADAM10 is also in principle capable
of shedding the Neuroligin ligands Neurexins 2 and 3, although
deletion of the proteinase resulted only in a comparably mild
reduction of the shedding (Kuhn et al., 2016). If this role for
ADAM10 in the cleavage of major anchoring proteins can be
verified in vivo and in human brain, interfering with ADAM10
activity may indeed be a powerful tool to influence synaptic
structure and function.

ADAM10 has also been found to process substrates of
non-neuronal cells. Since neurons and glial cells are highly
interdependent and jointly regulate synapse functions, ADAM10
may also influence network activities through glial cells.
For example, the marker transmembrane proteoglycan nerve-
glia antigen 2 (NG2), commonly found on the so-called
“NG2-glial cells” (Eugenín-Von Bernhardi and Dimou, 2016),

has also been identified as a substrate of ADAM10 (Sakry et al.,
2014). Similar to what has been reported for Neuroligin 1,
shedding of NG2 is also regulated by neuronal activity. Moreover,
neurons from NG2-knock-out mice exhibited diminished
amplitudes of AMPA receptor-currents which could be rescued
by application of the partial NG2 ectodomain (Sakry et al., 2014).
This suggests that an NG2-cell derived ectodomain produced by
ADAM10 processing regulates synaptic activity and plays a role
in neuron-glia communication.

Another non-neuronal substrate of ADAM10 with
implications for glial and neuronal function is the microglial
surface protein triggering receptor expressed on myeloid cells
2 (TREM2). TREM2 has been suggested to play a role in
phagocytosis and has been recently recognized as a genetic
risk-factor for AD (Frank et al., 2008; Colonna and Wang,
2016). Using HEK293 Flp-In cells and enzymatic inhibitors,
the release of soluble TREM2 ectodomain was demonstrated
to depend on ADAM10 but not on ADAM17 or beta-secretase
(beta-site amyloid precursor protein cleaving enzyme 1; BACE1)
(Kleinberger et al., 2014). Reduction of cell surface TREM2
decreases the ability of microglia to phagocytose and remove
cellular debris or apoptotic neurons (Kleinberger et al., 2014).
Of note, TREM2 ligands were identified on Neuro2A cells and
on cultured cortical and dopamine neurons (Hsieh et al., 2009),
suggesting an impact of a non-neuronal shedding event on
neurons.

Finally, there is growing evidence for a role of exosomes in
neuron-glia communication (Frühbeis et al., 2013). In this regard
it is of interest that functionally active ADAM10 has been found
in exosomes from ovarian carcinoma cells where it contributes
to L1 and CD44 cleavage (Stoeck et al., 2006) and in exosomes
of primed B-cells (Padro et al., 2013). Whether microglial or
neuronal cells also use exosomes to deliver ADAM10 or shedded
substrates among themselves is currently unknown.

REGULATION OF ADAM10

ADAM10 is a multifunctional protease active throughout the life
of an organism and its regulation is controlled at transcriptional,
epigenetic, translational and post-translational levels. These
different levels of regulation allow a cell to adapt ADAM10 levels
rapidly to functional perturbations as well as to slower changes
induced by aging and/or maturation.

Transcriptional Regulation of ADAM10
The human ADAM10 gene is localized on chromosome 15,
whereas its murine homolog is found on chromosome 9
(Yamazaki et al., 1997a,b). Both genes are comprised of about
160 kb with high sequence preservation within the first 500 bp
upstream of the translation initiation site (Prinzen et al., 2005).
The human core promoter is positioned at −508 to −300 bp
and contains no TATA box but several functional binding sites
for common transcription factors such as Sp1 and USF (Prinzen
et al., 2005). SNPs in the human promoter region at position
−279 and−630 indicated no association with AD (Prinzen et al.,
2005), whereas a SNP located at −644 was correlated with CSF
APPs-alpha levels (Bekris et al., 2011). The 5′ UTR of the human
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gene was located 444 bp upstream of the start codon (Lammich
et al., 2010), the 3′ UTR up to 1254 bp downstream of the stop
codon (Augustin et al., 2012).

Even before the promoter of human ADAM10 was described,
several pathways regulating the enzyme’s expression had been
identified: for example, in the prostate cancer cell line
LNCaP insulin-like growth factor I combined with 5 alpha-
dihydrotestosterone increased mature and immature ADAM10
protein amounts (McCulloch et al., 2004). Similarly, EGF led to
the up-regulation of ADAM10 mRNA and protein in those cells.
In addition, the Tcf/Lef-family of transcription factors which
is known to interact with beta-catenin (Wisniewska, 2013) also
seems to be involved: Wang et al. demonstrated in transgenic
AD mice the induction of Wnt signaling by huperzine A. This
was accompanied by elevated beta-catenin levels and increased
ADAM10 protein levels (Wang et al., 2011). These findings
were corroborated by the observation that NMDA receptor
activation in primary neurons similarly increased ADAM10 via
Wnt/MAPK signaling (Wan et al., 2012).

Using different cell systems Paired Box Genes (PAX)
were similarly identified as putative ADAM10 regulators. In
melanoma cells chromatin immunoprecipitation assay and
overexpression as wells as siRNA-mediated knock-down gave
evidence that PAX2 can regulate ADAM10 expression (Lee
et al., 2011). Downregulation of PAX2 via siRNA in A498
(renal carcinoma), EAhy (endothelial), T98G (glioblastoma), and
SKOV3ip (ovarian carcinoma) cells revealed a nearly total loss
of ADAM10 protein as demonstrated by Western blot analysis
(Doberstein et al., 2011). Therefore, PAX2 seems to play an
important role in ADAM10 expression control—at least in cancer
cells. Interestingly, the related PAX4 has been shown to regulate
ADAM10 post-transcriptionally (see paragraph “Regulation of
ADAM10 at the translational level”).

Another signaling pathway that increases ADAM10 amount
within the cell via gene regulation requires melatonin. It has
been reported that melatonin elevates ADAM10 level in HEK293
and neuronal SH-SY5Y cells via G protein-coupled receptor-
induced PKC/Erk activation (Panmanee et al., 2015; Shukla et al.,
2015). This effect seems to depend on humanADAM10 promoter
region −1193 to −555 as a respective deletion construct failed
to respond in a reporter gene assay (Shukla et al., 2015).
The authors of the report discuss that the binding sites of
cAMP response element-binding protein (CREB) and octamer-
binding transcription factor 1 (Oct-1) which were described
earlier (Prinzen et al., 2005) might contribute to the regulation
or that a yet unidentified Hypoxia-inducible factor 1 (HIF-1)
binding site might be responsible. The regulation of ADAM10
via the sleep hormonemelatonin seems highly interesting as sleep
disturbances are considered characteristic symptoms of AD (for
example Sung et al., 2017).

Agonists specific for Peroxisome Proliferator-Activated
Receptor alpha (PPARalpha) but not PPARbeta, delta, or
gamma elevated ADAM10 protein amount in primary murine
hippocampal neurons (Corbett et al., 2015). Seven PPAR
responsible elements were identified by in silico analysis and
the specific agonist GEM led to enrichment of PPARalpha
and its heterodimer Retinoid X Receptor alpha (RXRalpha)

binding partner at two direct repeat 1 PPAR responsive elements
(PPRE) located in the ADAM10 promoter in wild type, but not
in PPARalpha knock-out hippocampal neurons. 9-cis retinoic
acid failed to synergistically increase ADAM10 amount in this
context, therefore a non-permissive PPARalpha/RXRalpha
heterodimer seems to regulate ADAM10 expression similar
to the RARalpha/beta/RXR dimer from earlier investigations
(Tippmann et al., 2009). PPARalpha is known to be involved
in fatty acid metabolism. In this regard, it is of interest that
lowering the cholesterol amount of cells increased ADAM10’s
catalytic but not transcriptional activity (Kojro et al., 2010) and
that various fatty acids and lipids such as Docosahexaenoic acid
(DHA) interfere with the balance of APP processing (e.g., Eckert
et al., 2011; Grimm et al., 2016). Additionally, Sex-determining
region Y-box 2 (Sox2), a major factor of adult tissue homeostasis
and regeneration control, was recently identified to upregulate
ADAM10 expression in HEK293 cells using overexpression
experiments (Sarlak et al., 2016).

The retinoic acid receptor (RAR) family is particularly
interesting with regard to ADAM10 regulation because of its
therapeutic potential. Both, RAR alpha and beta are capable of
inducing human ADAM10 promoter activity (Tippmann et al.,
2009). Moreover, the commercially available drug acitretin which
intracellularly liberates retinoic acid (Ortiz et al., 2013), shifts
APP processing in AD model mice toward the alpha-secretase
cleavage pathway (Tippmann et al., 2009). The neuroprotective
property of RARalpha agonists has been shown in cortical
cultures, an AD mouse model (Tg2576 mice) (Jarvis et al., 2010),
as well as in hippocampal tissue of aged SAMP8 mice (Kitaoka
et al., 2013). Cilostazol-stimulated N2A cells with overexpression
of human mutated APP also displayed ADAM10 elevation
which was significantly attenuated by a RARbeta inhibitor and
RARbeta-gene silencing (Lee et al., 2014). The effect of cilostazol
on ADAM10 expression could be antagonized by sirtinol and by
Sirtuin 1 (SIRT1)-gene silencing, suggesting that RARbeta and
this class of deacetlyase together act on the ADAM10 promoter.

For a systematic approach on transcription factors relevant
to ADAM10 regulation, we performed a screening approach
(Reinhardt et al., 2014). Figure 3 sums up transcription factors
that showed a significant influence on ADAM10 expression in
these investigations. One has to consider that the screening
approach was performed in human neuronal SH-SY5Y cells
and only included single expression plasmids for 704 human
transcription factors. Therefore, accessory proteins for single
factors might not have been present in the cell line or
combinations of transcription factors might be needed for full
activation. However, we identified 11% transcription factors
with a comparably strong influence on promoter activity of
ADAM10 with nine factors inhibiting and 74 factors increasing
transcriptional activity (Figure 3). Starting from this screening
we were able to further characterize regulation of ADAM10 via
one of the strongest inducers—X-Box binding protein 1 (XBP-
1, Calfon et al., 2002). The active transcription factor is built
upon ER stress sensor Inositol requiring enzyme 1 alpha (IRE1
alpha) activation and leads to increase in ADAM10mRNA as well
as protein and subsequent release of the APP cleavage product
APPs-alpha (Reinhardt et al., 2014). Interestingly, we also found
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FIGURE 3 | Transcription factors influencing human ADAM10 promoter activity in SH-SY5Y cells. Original data published in: Reinhardt et al. (2014). Factors

filtered for effect size (promoter activity above 100+5xSD or below 100-2.5xSD of control) and reproducibility (SD≤ 15% of effect size in at least three independent

experiments). Percentage of activating or repressing factors are indicated (left), factors with a general mode of action on transcription such as activator of basal

transcription 1 (ABT1) were excluded. The table (right) shows the nine transcription factors with either strongest activating or inhibiting effects on the human ADAM10

promoter ranked from strongest to weakest.

the amount of XBP1-mRNA to be decreased in Alzheimer model
mice at higher age and also in Alzheimer’s disease patients.

Epigenetic Regulation of ADAM10
Currently, little is known about the epigenetic regulation of
ADAM10. The 5′-untranslated region of the human ADAM10
gene contains a large GC-rich domain at −700 to +200 bp.
The GC content of the first 600 bp upstream of the ATG
of the human ADAM10 gene is 67% and nine CpG islands
have been predicted (Prinzen et al., 2005). This abundance of
CpGs suggests that cytosine methylation could play a role in
regulating the proteinases’ expression. SIRT1 an evolutionarily
conserved NAD+-dependent deacetylase pivotal for metabolic
control has been identified to increase ADAM10 expression (Lee
et al., 2014). SIRT1 is involved in histone deacetylation and
methylation, promoter CpG island methylation, and inactivation
of non-histone transcription factors (Zhang and Kraus, 2010).
Conceivably, SIRT1 is also involved in deacetylation of RAR or
in chromatin modifications upon recruitment by the receptor but
currently this has not yet been demonstrated. Investigations into
these regulatory mechanisms are non-trivial and complicated by
the fact that SIRT1 also acts on the cellular retinoid binding
protein II (CRABPII) and also has a more general effect on RA
signaling (Tang et al., 2014).

In transgenic ADmodel mice (5× FAD) a significant increase
in global DNA methylation, measured by 5-methyl cytosine,

has been reported and additional changes in e.g., demethylase
Dnmt3b or enzymes of histon acetylation/ deacetylation such as
Hdac2, Jarid1a, or G9a (Griñán-Ferré et al., 2016). Surprisingly,
no changes of ADAM10 expression were observed when using
whole brain mRNA preparations. Although ADAM10 was found
within the top CpG sites of an epigenomic analysis of psychiatric
tic-diseases using peripheral blood samples (cg00785856, Zilhão
et al., 2015), the methylation site did not reach significance at the
genome-wide threshold.

Finally, as melatonin seems to be able to increase the level
of deacetylase in young and aged primary neurons (Tajes
et al., 2009), the observed induction of ADAM10 by melatonin
(Panmanee et al., 2015; Shukla et al., 2015) might also rely on
deacetylase activation.

Regulation of ADAM10 at the Translational
Level
Besides regulation on the transcriptional/epigenetic level,
translational modifiers can regulate the amount and availability
of ADAM10: RNA structure, RNA-binding proteins (RBPs), and
miRNAs have been reported to play a role.

The working group of Christian Haass explored a suppression
of ADAM10 expression by its 5′UTR (Lammich et al., 2010) and
identified a stable G-quadruplex structure of ADAM10 mRNA
(Lammich et al., 2011). The stability of a G-quadruplex structure
depends in part on binding proteins, such as fragile X mental
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retardation protein (FMRP; Oostra and Willems, 1995) and
indeed, FMRP immunoprecipitated from cortical mouse tissue
revealed bound ADAM10 mRNA (Pasciuto et al., 2015). Mice
lacking FMRP displayed a shift of APP processing toward the
non-amyloidogenic pathway during early stages of development,
which subsequently led to synaptic and behavioral deficits
(Pasciuto et al., 2015). Lack of FMRP could increase ADAM10
levels because FMRP stabilizes the G-quadruplex structure and
can thus perturb translation initiation, as has been previously
suggested for two other mRNAs (MAP1B and PP2A) that are
FMRP targets (Lu et al., 2004; Castets et al., 2005). Another
RNA-binding protein found to regulate ADAM10 is the neuronal
ELAV protein: nELAV was shown by using immunoprecipitation
to bind ADAM10 mRNA via an adenine- and uridine-rich
element (Amadio et al., 2009). This might result in an increase in
amyloidogenic APP processing. Since A-beta peptides have been
found to inhibit ELAV-binding to ADAM10 mRNA (Amadio
et al., 2009), this could reduce the ADAM10 amount even further,
potentially leading to a vicious cycle.

miRNAs can silence cytoplasmic mRNAs either by triggering
degradation or by promoting translation repression. For
ADAM10 a prominent example for such a regulatory mechanism
is hepatic miR-122, which decreased ADAM10 protein in human
hepatic cancer cell lines (Bai et al., 2009). Using a systematic
approach, i.e., a combination of different bioinformatics tools, we
identified several candidate miRNAs that should act on ADAM10
and evaluated three of them via reporter gene assay—miR-
103, -107, and -1306 (Augustin et al., 2012). Additionally, miR-
144/451 which has been shown to be induced by A-beta peptide
in SH-SY5Y cells decreased ADAM10 protein amount (Cheng
et al., 2013). This regulation might be indirect and based on the
transcription factor PAX4 (Zhang et al., 2015). In gastric cancer
tissue miR-448 (Wu et al., 2016) and in tumor initiator cells of
head and neck squamous cell carcinoma miR-494 (Chang et al.,
2015) were also identified as novel regulators of ADAM10.

Post-translational Regulation of ADAM10:
Maturation and Interaction Partners
After their synthesis, membrane proteins mature along the
secretory pathway; they are transported to distinct compartments
of the cell and finally, they locally interact with proteins and
lipids of the phospholipid-bilayer. Eventually, they are degraded.
Protein synthesis and removal are in homeostasis and thus
determine the concentration of functional intramembranous
proteins. In principle, ADAM10 can be regulated at all of these
stages, offering possibilities for intervention.

The ADAM10 zymogen is cleaved by proprotein convertases
within the secretory pathway to yield the active enzyme (see
paragraph 1). Removal of the prodomain of ADAMs likely
involves a canonical consensus site for the proprotein convertase
Furin (Roebroek et al., 1994), which is located between the pro-
and the catalytic domain of ADAM10 (Anders et al., 2001).
More recently, a novel cleavage site upstream of the prodomain
has been identified (Wong et al., 2015). ADAM10 has four
potential N-glycosylation sites of which three are located in the
metalloprotease domain (N267, N278, and N439) and one in the

disintegrin domain (N551). In bovine ADAM10 all four have
been found glycosylated and required for full in vivo activity
(Escrevente et al., 2008).

Binding of ADAM10 to synapse associated protein 97 (SAP97)
is required for inserting ADAM10 into the synaptic membrane
(Marcello et al., 2013). Interaction of SAP97 with ADAM10
is mediated via a protein kinase C (PK C) phosphorylation
site within the SAP97 SRC homology domain (Saraceno et al.,
2014). Removal of ADAM10 from excitatory synapses occurs
by clathrin-mediated endocytosis in human hippocampal tissue
(Marcello et al., 2013). This is mediated by the clathrin adaptor
protein AP2 which interacts with the ADAM10 C-terminal
domain. In addition to control of surface concentrations of
ADAM10 by transport mechanisms, further cleavage events
may occur: the ectodomain of ADAM10 can be processed by
ADAM9/15 or gamma-secretase (Cissé et al., 2005; Parkin and
Harris, 2009; Tousseyn et al., 2009). Using recombinant mouse
ADAM9 prodomain as a competitive inhibitor of ADAM9,
Moss et al. demonstrated an increase of ADAM10-dependent
APP processing in human neuronal SH-SY5Y cells (Moss et al.,
2011). However, a truncated soluble ADAM10 construct was
incapable of shedding cell-associated amyloid precursor protein
while earlier reports described that shedded ADAM10 had the
ability to cleave endogenous Prion protein in fibroblasts (Cissé
et al., 2005).

The intensity of ADAM10 cleavage may further depend
on the cytoskeleton: a dominant negative dynamin I mutant
not only increased surface expression of both, immature, and
mature ADAM10 but also strongly increased the amount of
the C-terminal cleavage product of ADAM10 (Carey et al.,
2011). In addition to its role as a protease acting at the cell
surface it has been speculated that the soluble ADAM10 C-
terminus could act as a signaling molecule, facilitating nuclear
entry of other proteins (Endsley et al., 2014). A protein
class which is deeply involved in for example cytoskeletal
anchoring and protein-trafficking is the tetraspanin family
(Charrin et al., 2014). Several tetraspanins have been identified
to interact with ADAM10: tetraspanin 12 (Tspan 12) binds
to ADAM10 in a palmitylation-dependent mechanism and
increases non-amyloidogenic shedding of APP by increased
enzymatic maturation of the protease (Xu et al., 2009).
Co-immunoprecipitation experiments also identified specific
ADAM10 interactions with Tspan5, Tspan10, Tspan14, Tspan15,
Tspan17, and Tspan33/Penumbra (Haining et al., 2012), which
all led to enhanced enzyme maturation. Interestingly, only
overexpression of Tspan15 resulted in a reduction of ligand-
induced Notch-1 processing by ADAM10 (Jouannet et al.,
2016). This led to the assumption that the tetraspanins might
differentially influence compartimentalization of ADAM10.
Indeed, the apparent diffusion coefficient of ADAM10 was
higher in cells overexpressing Tspan15 as compared to control
cells or Tspan5 overexpressing cells and also decreased the co-
immunoprecipitation of proteins of the tetraspanin web with
ADAM10 (Jouannet et al., 2016). Tspan12 and 17 also seem to
stabilize a high molecular weight protein complex that tethers
ADAM10 to the gamma-secretase allowing rapid sequential
processing of substrates (Chen et al., 2015).
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ADAM10 is known to be mainly located outside of lipid rafts
and alpha-secretase cleavage of APP occurs in non-raft domains
(Kojro et al., 2001). Targeting ADAM10 artificially into lipid raft
domains of the plasmamembrane resulted in impaired enzymatic
activity in human neuroblastoma cells (Harris et al., 2009; Kojro
et al., 2010). Depletion of one of the constituents of lipid rafts,
i.e., cholesterol, enhanced ADAM10 activity in different cellular
models (Kojro et al., 2001, 2010; Matthews et al., 2003). The
sigma-1 receptor contains a cholesterol recognition domain in
its C-terminus and is able to remodel lipid rafts by changing
the relative distribution of cholesterol between raft and non-raft
fractions (Takebayashi et al., 2004). Interestingly, overexpression
of sigma-1 in HEK293 or COS cells diminished Betacellulin
cleavage by ADAM10 further substantiating the lipid-sensitivity
of the enzyme (Li et al., 2012). Several investigations also report
on influence of different lipid species such as trans fatty acids on
APP processing balance (e.g., Eckert et al., 2011; Grimm et al.,
2012) but in this regard it is not clear if this has a direct influence
on ADAM10 or whether indirect mechanisms are involved.

ROLES OF ADAM10 IN NEURAL
HOMEOSTASIS AND PATHOLOGY

ADAM10 has a number of physiological functions (see above)
contributing to brain development or neural homeostasis.
Diseases challenge this physiological state and the brain reacts
to such perturbations with adaptations at the molecular, cellular,
and functional level. The picture that is currently emerging
from studies using animal models and human brains suggests
a two-faced role of ADAM10 in diseases: beneficial as well as
detrimental effects can be attributed to the protease depending on
the specific setting and the substrates involved. In the following
we review some of the conditions and diseases in which ADAM10
has been implicated.

ADAM10 in Aging and Alzheimer’s Disease
ADAM10’s role in these contexts is of particular interest because
of its function as in vivo alpha secretase (Jorissen et al.,
2010; Kuhn et al., 2010). Cleavage of APP along the non-
amyloidogenic pathway yields APPs-alpha, which is important
for neuroprotection (Kögel et al., 2012), learning and memory
(Taylor et al., 2008; Hick et al., 2015; Xiong et al., 2016), and
the structural integrity of neurons (Lee et al., 2010; Tyan et al.,
2012; Weyer et al., 2014; Hick et al., 2015). Because cleavage
of APP along the non-amyloidogenic pathway decreases with
aging (Kern et al., 2006) and reduced APPs-alpha levels were
found in CSF of some AD patients (Lannfelt et al., 1995; Sennvik
et al., 2000), it is likely that insufficient APPs-alpha levels could
contribute to the cognitive deficits of AD patients.

What is known about age-dependent changes in ADAM10
levels or activity in human brain? Unfortunately, with the notable
exception of a publication from Bernstein et al. (2003) who
compared still-born children with normal aged adults and found
an increase in ADAM10 amount, data on ADAM10 in human
brain are scarce. To study ADAM10 in humans, peripheral
surrogate markers have been used, although it is unclear how

comparable they are to CNS expression levels. A study aiming
at comparing brain and leukocyte APP processing reported that
while ADAM10 is present in brain it remains undetectable in the
blood leukocyte fraction (Delvaux et al., 2013). Others, however,
demonstrated ADAM10 expression in peripheral mononuclear
blood cells as well as in platelets (Colciaghi et al., 2002).
Using three groups of cognitively healthy subjects, we recently
described an elevation of ADAM10 protein amount as well as
catalytic function with cognitively healthy aging (Schuck et al.,
2016). The reason why ADAM10 should be up-regulated is
unclear. It is conceivable that it is a reaction to age-dependent
changes in stress signatures (such as ER stress; e.g., Taylor, 2016)
and thus represents a protective response. Although more data
are needed, "healthy agers" show an ADAM10-increase whereas
AD patients show a decrease (see below). In the former case
APPs-alpha could be present in sufficient amounts protecting
the brain whereas in the latter case APPs-alpha levels might be
insufficient.

Using animal models of AD the role of ADAM10 as a
protective protease has been demonstrated: overexpression of the
protease at low level (30% above endogenous expression) was
sufficient to nearly abolish plaque deposition in APP/PS1 AD
model mice (Postina et al., 2004). These changes went hand-in-
hand with improvements of learning and memory. In line with
this gain-of-function approach, overexpression of a dominant
negative ADAM10 mutant reduced alpha-secretase activity and
worsened cognitive deficits (Schmitt et al., 2006). Interestingly,
investigations using peripheral platelets of AD patients and
healthy controls reported a decreased ADAM10 amount in AD
patients (Colciaghi et al., 2002). Furthermore, ADAM10 levels
in patient platelets were highly correlated with performance of
the patients in psychological tests (Manzine et al., 2013, 2014).
Together, these data suggest that normalizing or even increasing
ADAM10 levels in AD could have a disease-modifying or at least
disease-protracting effect.

Finally, it should be kept in mind that ADAM10 is
multifunctional and that some effects of ADAM10 in the
context of aging and AD could depend on ADAM10-mediated
cleavage of other substrates than APP, such as Klotho (Chen
et al., 2007; Bloch et al., 2009). This protein is linked to
longevity (Kurosu et al., 2005) and soluble Klotho (s-Klotho)
may be cardioprotective (Xie et al., 2012). Lower CSF s-Klotho
levels have also been associated with endothelial dysfunction
and neuronal damage in neuropsychiatric systemic lupus
erythematosus patients (Ushigusa et al., 2016). Thus, lower
ADAM10 levels in the aged brain may have detrimental effects on
several levels involving APP processing as well as the processing
of other ADAM10 substrates.

ADAM10, Dendritic Spines and Fragile X
Syndrome
The level and/or activity of ADAM10 affect neuronal structures
in the adult brain, in particular dendritic spines. This was
shown using conditional ADAM10-deficient mice (Prox et al.,
2013), which exhibited hippocampal neurons with fewer and
abnormally shaped spines. The effect of ADAM10 on spines may
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depend on several substrates involved in the regulation of spine
density, geometry and dynamics, including APP, N-cadherins,
Neurexins, Neuroligins, and Nectin-1 (Prox et al., 2013). These
substrates act as cell adhesion molecules and are known to
influence spine morphology as well as synaptic transmission.

Of particular interest in this context is again the link between
ADAM10 and APP. APP and in particular its cleavage product
APPs-alpha have been shown to regulate dendritic complexity as
well as spine numbers of hippocampal neurons (Lee et al., 2010;
Tyan et al., 2012;Weyer et al., 2014). This effect appears to be age-
dependent: whereas young APP-deficient mice had normal spine
numbers, older APP-deficient mice showed a decrease in their
spine density (Tyan et al., 2012). It may also depend on the brain
region, since APP levels may show regional variations (Del Turco
et al., 2016). Since APPs-alpha is generated by ADAM10 cleavage
of APP, it is likely that some of the structural effects on spines
seen in conditional ADAM10 knock-out mice (Prox et al., 2013)
are the result of reduced APPs-alpha levels. Indeed, Prox et al.
(2013) reported a reduction of APPs-alpha in brain of conditional
ADAM10 knock-out mice to 5% of control levels. Since aging
is also associated with reduced dendritic complexity and spine
densities (Dickstein et al., 2007), it is attractive to speculate that
reduced ADAM10 levels/activity and reduced APPs-alpha levels
could play a role in this context (Lannfelt et al., 1995; Sennvik
et al., 2000).

Whereas, reduction of ADAM10may contribute to conditions
in which fewer dendritic spines are observed, toomuch ADAM10
could contribute to diseases with the opposite phenotype, i.e.,
too many spines. Fragile X syndrome (FXS) is a good example
for such a disease and is characterized by increased spine
numbers and abnormally long spines. Mice with a fragile X
mental retardation protein (FMRP) knock-out at an early adult
age (P21, Pasciuto et al., 2015) showed a parallel increase in
the expression of APP and mature ADAM10, suggesting that
ADAM10 processing of APP could play a role. Indeed, primary
fibroblasts obtained from adolescent and adult patients with FXS
showed similar changes (Pasciuto et al., 2015), suggesting that an
upregulation of ADAM10 and APP could also occur in brains of
FXS-patients. In line with these findings, overexpression of APP
(Lee et al., 2010) caused FXS-like spine changes in vitro.

In sum, under healthy conditions ADAM10 and its processing
of cell adhesion molecules at synapses is in a homeostatic
balance. Reduction of ADAM10 levels may cause a reduction in
spine densities. Conversely, an increase in ADAM10 levels may
increase the density of spines. Normalizing ADAM10 levels could
be a potential therapeutic strategy.

Synaptic Function and Epilepsy
Dendritic spines and excitatory synaptic neurotransmission
are intimately linked (Kasai et al., 2010). It is, therefore,
in line with the effects of ADAM10 on dendritic spines
that conditional ADAM10 knock-out mice show functional
abnormalities at excitatory synapses: electrophysiological
analysis of hippocampal CA1 neurons revealed almost normal
basal synaptic transmission and short-term-plasticity but a
grossly impaired induction of long-term-potentiation (Prox
et al., 2013). These electrophysiological abnormalities were

accompanied by reduction of postsynaptic density protein-95
(PSD-95) and several NMDA-receptor subunits, suggesting a
severe disruption of synaptic architecture and function. Spatial
learning was impaired at the behavioral level (Prox et al., 2013).
Mechanistically, the impairment of synaptic plasticity and
learning could be linked to several of the substrates of ADAM10
at the synapse. Again, APP is one of the more interesting
candidates because its fragment APPs-alpha has been shown to
be involved in synaptic plasticity, as well as learning and memory
in the hippocampus (Taylor et al., 2008; Hick et al., 2015). At
present it is unknown whether some of the abnormalities of the
conditional ADAM10 mice could be rescued by recombinant
APPs-alpha. Answering this question could help to better
understand the relative importance of APP in this context.

Gain-of-function experiments resulted in an increased
susceptibility of neurons for seizures: in mice overexpressing
ADAM10 under the Thy1 promoter (∼postnatal day 1), kainate-
treatment evoked stronger and longer episodes of seizures as
compared to wild type mice (Clement et al., 2008). Moreover, a
dominant negative variant of ADAM10 seemed protective against
this form of experimental epilepsy as shown e.g., by decreased
neuronal damage score. The role of ADAM10 in epilepsy is
complex, however, since conditional ADAM10 knock-out mice
also showed seizures. However, these seizures may be linked
to the gliosis observed in these mice (Prox et al., 2013). Thus,
different disease mechanisms could play a role and additional
work is needed before the role of ADAM10 in epilepsy can be
assessed.

ADAM10 and Traumatic Brain Injury
ADAM10 is upregulated at injury sites (Zohar et al., 2011)
and in denervated areas of the brain following brain injury
(Warren et al., 2012; Del Turco et al., 2014). Reactive astroglia
but not microglia has been shown to upregulate the protease
following denervation (Warren et al., 2012; Del Turco et al.,
2014). ADAM10’s role in traumatic brain injury is still poorly
understood and different modes of action have been proposed,
which may not be mutually exclusive. First, the protease could
be involved in the reorganization of the extracellular matrix of
denervated regions (e.g., Deller et al., 2000), which may be a
requirement for denervation-induced synaptic reorganization to
occur (Warren et al., 2012). Secondly, ADAM10 could process
synaptic adhesion molecules such as N-cadherin (Malinverno
et al., 2010; Warren et al., 2012), neuroligins (Suzuki et al., 2012),
or ephrins (Janes et al., 2005), which could tether degenerating
terminals to their postsynaptic membranes. Cleaving the
transsynaptic molecular bridge could be a necessary first step for
re-innervation. Thirdly, ADAM10 could cleave APP and liberate
APPs-alpha (Del Turco et al., 2014), which is neuroprotective in
vitro (Kögel et al., 2012) and protects neurons in vivo following
brain injury (reviewed in: Plummer et al., 2016). Of note, in
these contexts upregulation of ADAM10 is associated with a
short-term neural “defense”-reaction. This reaction seems to be
transient and ADAM10 levels return to normal within a few
days. In contrast, under lesioning conditions resulting in long-
term upregulation of ADAM10 (Warren et al., 2012) synaptic
reorganization failed and functional deficits persisted. Under
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these conditions, pharmacological blockade of ADAM10 helped
to restore function, suggesting that long-term upregulation
of ADAM10 is detrimental for brain rewiring. Collectively,
these findings suggest the following model for ADAM10’s role
in brain injury: ADAM10 plays a plasticity-enhancing and
neuroprotective role during the first phase following injury. It
shapes the extracellular environment for sprouting fibers, clears
synaptic sites, and liberates neuroprotective APP fragments.
During the second phase, however, sprouting of surviving fibers
occurs and new synapses form. If ADAM10 is still upregulated
at this time point it could interfere with the stabilization of new
synapses by cleaving the molecular bridge that binds pre- and
postsynaptic structures (Figure 4).

Stroke and Psychiatric Diseases
A positive association between the rs653765 polymorphism of
ADAM10 and atherosclerotic cerebral infarction has been found
in a Chinese population cohort (Li et al., 2013). Patients that
carried the rs653765 C > T mutation also showed increased
ADAM10 mRNA in PBMCs as did aged patients in comparison
to younger patients or healthy controls (>70 years). As already
mentioned, an association between CpG-site methylation in the
ADAM10 locus and psychiatric tic-disorders has been identified
(Zilhão et al., 2015). Beside this epigenetic association, ADAM10
has been characterized as one of the candidates within a low
density GWA study for conduct disorder (Jian et al., 2011).
Further associations with psychiatric disorders are conceivable,
since ADAM10 processes neuroligins, which have also been

FIGURE 4 | ADAM10’s potential two-faced role under conditions of

brain injury. Whereas a transiently increased activity/amount of ADAM10

seems to be part of a protective and restorative response to mild neural

lesions, a persistent upregulation of ADAM10 as seen following severe lesions

may be deleterious.

identified as candidate genes in autism spectrum disorders and
schizophrenia (e.g., Sun et al., 2011; Chen et al., 2014). In this
regard it is of interest that Ray and colleagues recently reported
alterations of APP processing and amount not only in FXS
patients but also in autism spectrum disorder patients (Ray et al.,
2016). However, they also reported age-dependent elevation of
ADAM17 in the latter so that this protease might be due to
observed changes instead of ADAM10.

Brain Tumors
ADAM10 may have deleterious effects for patients with brain
tumors because it may promote the spreading of tumor cells.
Reduced motility of glioblastoma cells treated with ADAM10-
targeted siRNA has been observed (Kohutek et al., 2009) and
invasiveness of pituitary adenomas correlated with ADAM10
expression level (Pan et al., 2012). Both publications suggests
that ADAM10 may process putative barriers restricting tumor
cells. With regard to cancer stem cells Bulstrode et al. reported
that ADAM10 promotes the self-renewal of brain tumor sphere
forming cells (Bulstrode et al., 2012). Additionally, treatment
with inhibitors specific for ADAM10 or ADAM17 increased
immune recognition of glioblastoma-initiating cells by natural
killer cells (Wolpert et al., 2014). This seemed to be due
to enhanced cell surface expression of UL16-binding protein
2 (ULBP2), which is shedded by both proteinases. In sum,
stimulating ADAM10 expression, as suggested for AD patients
(see below), may not be an option for oncology patients.

CONCLUSION AND
OUTLOOK—ADAM10-TARGETING DRUGS
AS NOVEL THERAPEUTICS?

ADAM10 is a biologically multifunctional protease involved in
many important processes. It is expressed almost ubiquitously in
the body. High amounts of ADAM10 are found in neural tissue
during development, maturation and aging. Under conditions
of neuronal activity and under some pathological conditions,
ADAM10 expression is altered which, in turn, leads to changes
in the processing of its substrates. The biological activity of these
substrates and their cleavage products lead tomeasurable changes
in function, biochemistry and even neural structures.

How can ADAM10 be considered a target for therapy in spite
of the large number of substrates with multiple functions? First of
all it has to be kept in mind that the majority of data on ADAM10
was obtained using in vitro systems. Although these studies can
show putative interactions, such in vitro interactions require in
vivo verification. ADAM10 can only cleave putative substrates
if protease and substrate are in the same microcompartment
at the same time. Since the availability of substrates and
their distribution changes during development and aging, it is
likely that changes in ADAM10 expression result in different
effects depending on the age and stage of development of an
organism. Of particular importance for the use of drugs targeting
ADAM10 is the fact that ADAM10 shows an increasing overlap
with its substrate APP with age (Marcinkiewicz and Seidah,
2000), suggesting that ADAM10-mediated APP cleavage may

Frontiers in Molecular Neuroscience | www.frontiersin.org 12 March 2017 | Volume 10 | Article 56

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Endres and Deller Regulation of Alpha-Secretase ADAM10

become more relevant at later stages in life. Regardless of these
considerations, a rational approach to therapy development will
take all these possibilities into account and will look at the
net biological effects changes in ADAM10 expression induce in
neural tissue. Complex in vitro systems, such as organotypic slice
cultures (e.g., Gähwiler et al., 1997; Del Turco and Deller, 2007)
and in vivo models (e.g., Postina et al., 2004) will help to address
these questions.

The duration of ADAM10 expression changes may also play
a critical role during the course of a disease. The enzyme
can be briefly upregulated or persistently increased, depending
on the specific conditions. Thus, ambivalent or even opposite
outcomes can be expected for ADAM10 effects on brain structure
and function, as has been shown for its role in brain injury
(see Figure 4). Finally, patients may have different genetic
predispositions or constitutively elevated ADAM10 levels, which
might also harm the brain as has been shown for infarction and
cancerogenesis (Pan et al., 2012; Li et al., 2013).

In sum, there are drug safety-issues which need to be explored
before ADAM10 targeting drugs can be considered for therapy.
The complex expression patterns and time courses of ADAM10
and its substrates may constrain the use of ADAM10-targeting
drugs to specific situations, aged patients or some diseases.
A clinical pilot study using acitretin was, however, promising

(Endres et al., 2014). Acitretin (Neotigason), which increases
APP processing along the non-amyloidogenic pathway in vitro,
in primary cells, and in AD model mice (Tippmann et al.,
2009; Reinhardt et al., 2016), was given to patients with mild
to moderate AD for 4 weeks. Compared to the placebo group,
treated patients showed a significant increase in their CSF
APPs-alpha levels. Acitretin-treatment was well-tolerated and
considered overall safe (Endres et al., 2014). Longer and larger
trials will now be needed to evaluate the potential of acitretin as a
novel AD-therapeutic. In any case, the pilot study raises hopes
that at least for some AD patient groups ADAM10-targeting
therapies may eventually prove to be useful.
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