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Abstract: Human embryonic stem cells (hESCs) have important roles in regenerative medicine,
but only a few studies have investigated the cytokines secreted by hESCs. We screened and identified
chemokine (C-X-C motif) ligand 14 (CXCL14), which plays crucial roles in hESC renewal. CXCL14,
a C-X-C motif chemokine, is also named as breast and kidney-expressed chemokine (BRAK), B cell
and monocyte-activated chemokine (BMAC), and macrophage inflammatory protein-2γ (MIP-2γ).
Knockdown of CXCL14 disrupted the hESC self-renewal, changed cell cycle distribution, and further
increased the expression levels of mesoderm and endoderm differentiated markers. Interestingly,
we demonstrated that CXCL14 is the ligand for the insulin-like growth factor 1 receptor (IGF-1R),
and it can activate IGF-1R signal transduction to support hESC renewal. Currently published literature
indicates that all receptors in the CXCL family are G protein-coupled receptors (GPCRs). This report
is the first to demonstrate that a CXCL protein can bind to and activate a receptor tyrosine kinase
(RTK), and also the first to show that IGF-1R has another ligand in addition to IGFs. These findings
broaden our understanding of stem cell biology and signal transduction.
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1. Introduction

Human embryonic stem cells (hESCs), isolated from the inner cell mass of blastocysts, are widely
known for their unique abilities for unlimited self-renewal and pluripotency [1,2]. These two important
potentials enable hESCs to generate vast quantities of multiple different tissue cells (except placental
cells), which sheds substantial light on regenerative medicine and stem cell biology [3,4].

The characteristics of hESCs are regulated by many essential factors, such as intracellular
transcriptional regulation and extracellular cytokine stimulation [5–7]. Cytokines can establish an
extensive microenvironment to support the properties of hESCs [8–10]. Most cytokines, such as basic
fibroblast growth factor (bFGF), epidermal growth factor (EGF), and insulin-like growth factor (IGF),
are secreted from feeder layers or supplemented in commercial media that support hESC renewal [8,11].
In contrast, only a few studies have noted that hESCs also can secrete autocrine cytokines such as bFGF,
growth differentiation factor-3 (GDF-3), transforming growth factor β (TGFβ) and activin, which are
essential for hESC self-renewal and survival [8,10,12,13]. However, studies of hESC-secreted cytokines
and their mechanisms require further exploration.

Chemokines are a type of cytokine first identified in immune cells, and they participate in
the immune response, cell migration, and cell proliferation [14–17]. Chemokines can be divided
into four classes (C, C-C, C-X-C, and C-X3-C) based on the number of cysteine residues on their
N-terminal chain, and the spacing of the first two cysteine residues with respect to one or more
intervening amino acids [18]. All currently identified chemokine receptors are G protein-coupled
receptors (GPCRs), which induce the activation of cAMP and trigger downstream signal transduction
in the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)-AKT pathways
to mediate cell mobilization [19]. Previously, the C–X–C motif ligands (CXCL) CXCL1 (GROα),
and CXCL8 (IL-8), secreted from human feeder cells, have been reported to be beneficial for the
self-renewal and pluripotency of hESCs [20,21]. CXCL1, CXCL2, and CXCL8 can sustain hESC growth
through CXCL receptor 2 (CXCR2) in the absence of bFGF supplementation [21]. The CXCR2-mTOR
axis mediates the renewal status of hESCs in association with β-catenin, while knockdown of CXCR2
leads to mesendoderm differentiation of hESCs [22]. These investigations indicated that CXCL proteins
play indispensable roles in the regulation of hESC characteristics. However, whether hESCs secrete
CXCL proteins to maintain their renewal status is unknown.

CXCL14, a 13 kDa chemokine, is involved in the progression and metastasis of many malignant cells,
such as prostate cancer, breast cancer, and lung carcinoma cells [23–25]. CXCL14 has been suggested to
compete for the binding of CXCL12 to its receptor, CXCR4, and block signaling activation stimulated
by CXCL12 [26]. However, in another paper, the authors used CXCR4-transfected HEK293 cells to
claim that CXCL14 could not inhibit the activation of CXCL12-induced CXCR4 phosphorylation [27].
These authors concluded that the CXCL14 pathway may depend on an unknown CXCL14 receptor [27].
To date, no prior study has reported the functions of CXCL14 in hESCs, and the corresponding receptor
for CXCL14 stimulation in hESCs is still unknown.

In this study, we found that CXCL14, a chemokine secreted by hESCs, can mediate the self-renewal
of hESCs. This was investigated by screening the phosphorylation profile of 49 human receptor
tyrosine kinases (RTKs) with an RTK array after stimulating the cells with CXCL14. Furthermore,
we provided the first demonstration that CXCL14 can bind the insulin-like growth factor 1 receptor
(IGF-1R), and thus activate the IGF-1R signaling pathway to support hESC renewal. Our study is the
first to prove that IGF-1R has other novel ligands in addition to IGFs and that the CXCL protein can be
a ligand for RTKs.

Overall, these findings significantly contribute to the knowledge about chemokine modulation in
stem cell biology and reveal a novel role of chemokines in RTK signal transduction.
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2. Materials and Methods

The methods followed the standard guidelines. All culture reagents, unless specified,
were obtained from Thermo Fisher Scientific (Waltham, MA, USA). All chemicals, unless specified,
were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.1. Cell Lines and Culture Conditions

The hESC H9 line was provided by WiCells (Madison, WI, USA) (Thomson et al., 1998). The other
hESC line, HUES6 (S6), was obtained from Harvard University (Dr. Douglas A. Melton, Boston, MA,
USA) (Cowan et al., 2004). Both hESC lines were maintained in Dulbecco’s modified Eagle’s medium
(DMEM)/F12 supplemented with 20% knockout serum replacement (KSR), 1% nonessential amino acids,
2 mM L-glutamine, 0.1 mM 2-mercaptoethanol (Sigma-Aldrich), and 8 ng/mL human bFGF and were
cultured on C57BL/6 MEFs. For feeder-free culture conditions, culture plates were coated with Matrigel
matrix (BD Biosciences, San Jose, CA, USA) to replace feeder cells, and hESCs were cultured with
feeder-free conditioned medium for all the experiments. For detecting the phosphorylation in 15 min,
cells were cultured in DMEM/F12 only with CXCL14 and IGF1. HEK293T cells were maintained in
DMEM supplemented with 10% inactivated fetal bovine serum (FBS) (Biological Industries, Cromwell,
CT, USA). All cells were cultured in a 37 ◦C incubator with 5% CO2. For embryonic body (EB) formation
assay, hESCs were digested with enzyme and cultured in DMEM with 10% FBS on a low attachment
plate. The EB will be generated spontaneously within 5 days.

2.2. Plasmids

Control shRNA targeting red fluorescent protein (shRFP, TRCN000007220) was acquired
from the National RNAi Core Facility (Taipei, Taiwan). shRNAs targeting CXCL14 (shCXCL14-1,
TRCN0000057923; and shCXCL14-2, TRCN0000057924) and IGF-1R (shIGF-1R-1, TRCN0000121192;
and shIGF-1R-2, TRCN0000121193) were also obtained from the National RNAi Core Facility. For the
CRISPR/Cas9 genome editing method, sgRNA sequences (Table S1) were designed by an online CRISPR
design program (crispr.mit.edu) and clone into a pgRNA-CKB vector (Addgene, Plasmid #73501).

2.3. Lentivirus Transfection and hESC Infection

To produce lentivirus for hESC infection, HEK293T cells were seeded on a 6-well plate (1 × 106

cells /well). On next day, HEK293T were transfected with 4 µg of lentiviral vectors containing 2 µg
of targeted shRNA, 1.8 µg of pCMVR8.91, and 0.2 µg of pMDG (National RNAi Core Facility, Taipei,
Taiwan) with Turbofect transfection reagent (Thermo Fisher Scientific). After 24 h, the medium was
substituted with DMEM containing 1% BSA and 10% FBS. After 48 h and 72 h, the supernatants
were harvested. For infection, hESCs were seeded in a 6-well plate (1 × 105 cells per well) with the
feeder-free system and subsequently treated with virus [multiplicity of infection (MOI) = 10] and
protamine sulfate (8 µg/mL) (P3369; Sigma-Aldrich) for 16 h. On the next day, cells were selected by
2 µg/mL puromycin (P8833; Sigma-Aldrich).

2.4. RNA Purification and Quantitative Real-Time PCR (qRT-PCR)

RNA was extracted by the standard RNeasy Micro (Qiagen, Hilden, Germany) protocol.
RNA (1 µg/sample) was treated with DNase and reverse transcribed with SuperScript III (Thermo Fisher
Scientific). For qRT-PCR, cDNA (20 ng/set) was combined with SYBR Green 2×master mix (KAPA
Biosystems, Wilmington, MA, USA). The relative cDNA amounts were measured and quantified using
an ABI 7900 Real-Time PCR System (Applied Biosystems, Carlsbad, CA, USA). The relative expression
levels of mRNA were analyzed by normalization to glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) expression levels by calculating the comparative Ct values. All the primer sequences were
listed in Table S1.
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2.5. Western Blotting and Phospho-RTK Array

Total protein was extracted with lysis buffer (20 mM Tris, 1% Triton X-100, and 150 mM NaCl)
supplemented with 1 mM Na3VO4 and protease inhibitors. After quantification, 30 µg of protein
lysates were segregated by SDS-PAGE and transferred on the PVDF membranes. Then, membranes
were blocked with 3% BSA-TBST for 1 h. Next, membranes were incubated with antibodies for 16 h at
4 ◦C. After membranes were washed with TBST (150 mM NaCl, 0.1 M Tris, and 0.1% of Tween 20),
they were treated with secondary antibodies for 1 h at room temperature. Membranes were exposed to
Western Chemiluminescent HRP Substrate (WBKLS0500; Millipore, Darmstadt, Germany), and signals
were detected with a UVP Imaging System (ChemiDoc-It, Sopachem Life Science, Nazareth, Belgium).
All antibodies are listed in Table S2. The Human Phospho-RTK Array Kit (Proteome Profiler Antibody
Array, R&D Systems, Minneapolis, MN, USA) was used following the manufacturer’s guidelines.

2.6. Immunofluorescence (IF) Staining

Cells were fixed with 4% formaldehyde for 10 min. After washing with PBS, cells were
permeabilized with Triton X-100 (0.3%) for 10 min and washed again with PBS. Then, cells were
incubated with antibodies in PBS containing 3% BSA for 16 h at 4 ◦C. After washing with PBS, cells were
incubated with Alexa Fluor-conjugated secondary antibodies (Thermo Fisher Scientific) for 1 h at
37 ◦C (light-protected). 4′,6-Diamidino-2′-phenylindole dihydrochloride (DAPI) (0.5 µg/mL) (D9542;
Sigma-Aldrich) was used for nuclei staining. All images were acquired with the immunofluorescence
microscope (Zeiss Axiovert 200M, Carl Zeiss Light Microscope, Göttingen, Germany) and visualized
by SPOT software 5.1 (SPOT IMAGINGTM, Sterling Heights, MI, USA). All antibodies were listed in
Table S2.

2.7. Enzyme-Linked Immunosorbent Assay (ELISA)

To measure the concentrations of secreted CXCL14, we followed the manufacturer’s instructions
(Broster Human CXCL14 ELISA kit, Tools, Taipei, Taiwan). Supernatants were collected on day 6 after
shRNA expression in hESCs. A total of 100 µL of each sample and CXCL14 standard solution were
added to a precoated 96-well plate. The sample was incubated at 37 ◦C for 90 min. After the contents
were removed, 100 µL of anti-CXCL14 antibody working solution was added and incubated at 37 ◦C
for 60 min. After the plate was washed with PBS, 100 µL of prepared ABC working solution was
added to each sample and incubated at 37 ◦C for 30 min. Next, the sample was washed with PBS 5
times, and 90 µL of TMB color-developing agent was added to the samples and incubated at 37 ◦C
for 20–25 min (in the dark). When the blue color was visible in some wells, 100 µL of prepared TMB
stop solution was added to the wells, and the absorbance was then detected at 450 nm by a microplate
reader (Bio-Rad Benchmark PlusTM, Hercules, California, USA) in 30 min. All procedures followed the
standard protocol.

For the in vitro protein interaction assay, 50 ng of BSA, IGF-1Rα-His (Sino Biological, Wayne,
PA, USA), CXCL14 (PeproTech, New Jersey, USA) or IGF-1 (PeproTech), in coating buffer (0.42 g
NaHCO3 in 50 mL double-distilled (dd) water) was added to the wells and incubated at 4 ◦C overnight.
The next day, each well was washed with 100 µL of PBST 3 times and blocked with 1% BSA in PBS
for 1 h. After CXCL14 or IGF-1Rα-His was added for interaction analysis for 1 h at RT temperature,
the wells were again washed with PBST 3 times and incubated with specific antibodies (1:1000 dilution
in blocking buffer) for 1 h at room temperature. Then, the samples were washed with PBST 3 times,
and secondary antibodies were added (diluted 1:1000 in blocking buffer) for 1 h at room temperature.
After 3 washes with PBST, 90 µL of TMB solution was added to the wells and incubated at 37 ◦C
in the dark until shades of blue were visible in the wells. Then, 100 µL of TMB stop solution was
added to the wells, and the absorbance at 450 nm was determined by a microplate reader (Bio-Rad
benchmark PlusTM, CA, USA) within 30 min. For the competition assay, an ELISA plate was coated with
IGF-1Rα-His at 4 ◦C overnight, incubated with 0.4 µM CXCL14 protein (5 µg/mL) and cotreated with
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or without different concentrations (0, 0.4, 2, and 4 µM) of IGF-1 protein for 1 h at room temperature.
After 3 washes with PBST and incubation with the anti-CXCL14 antibody for 1 h at room temperature,
secondary antibody and the TMP development assay were performed as above.

2.8. Flow Cytometry

For PI staining, cells were fixed with 70% ethanol. After 3 washes with PBS, cells were stained with
PI substrate (20 µg/mL) and RNase (200 µg/mL) for 1 h. The cells were analyzed using a FACSCantoTM

instrument (Becton Dickinson, Franklin Lakes, NJ, USA), and the results were processed and analyzed
by FASCDivaTM (BD Biosciences) software.

2.9. Co-Immunoprecipitation (Co-IP)

Cells were lysed in lysis buffer (the same buffer used for Western blot analysis). Cell lysates
(1 mg) were incubated with 1 µg antibodies or isotype IgG control overnight at 4 ◦C. Mag-Beads
Protein G (5 µL) (Tools, Taipei, Taiwan) was added and further incubated at 4 ◦C for 4 h to capture
antibody-bound proteins. All samples were washed with PBST (1.47 mM KH2PO4, 7.7 mM Na2HPO4,
137 mM NaCl, 2.7 mM KCl, and 0.1% of Tween 20) 5 times, denatured with 2× SDS sample buffer (5%
2-mercaptoethanol) and analyzed by Western blotting. All antibodies are listed in Table S2.

2.10. Duolink Proximity Ligation Assay (PLA)

A Duolink In Situ kit (Sigma-Aldrich) was used to detect protein interactions by fluorescence
imaging. Cells were fixed as the protocol of immunofluorescence staining. According to the standard
protocol, samples were incubated with blocking solution at 37 ◦C for 1 h and subsequently incubated
with diluted primary antibody at 4 ◦C overnight. Wells were washed with washing buffer A 2 times
for 5 min each. A diluted PLA probe was added to each sample and incubated at 37 ◦C for 1 h. Next,
samples were washed twice with washing buffer A. Then, the diluted ligation reagent was added
and incubated at 37 ◦C for 30 min. After 2 washes for 5 min each with washing buffer A, polymerase
solutions were incubated with the samples at 37 ◦C for 100 min. Then, the wells were washed with
washing buffer B 2 times for 10 min each and further washed with 0.01% washing buffer B for 1 min.
Finally, the samples were mounted with mounting reagents containing DAPI. After a 15 min incubation,
images were acquired with an immunofluorescence microscope (Zeiss Axiovert 200 M, Carl Zeiss Light
Microscope, Göttingen, Germany) and visualized by SPOT software 5.1 (SPOT IMAGINGTM, Sterling
Heights, MI, USA). The antibodies used are listed in Table S2.

2.11. Knockout CXCL14 in Inducible CRISPR iPSC Line

The inducible CRISPR iPSC line (CRISPRn) was kindly provided by Bruce R. Conklin’s lab [28].
We did not adopt any human tissue directly from human. The experiments were approved by Human
Subjects Research Ethics (Academia Sinica, Taipei, Taiwan). The ethical code is AS-IRB01-18023
(2018/05/02-2023/12/31). To generate CXCL14 knockout cells, CRISPRn cells were first seeded in a
12-well plate (1.5 × 105 per well). On the next day, the medium was changed with fresh StemFlex
medium (A3349401; Thermofisher) without doxycycline (as a solvent control) or with doxycycline
(2 µM) to induce the expression of Cas9 for further 24 h. The cells were transfected with a pair of
sgRNAs by TransIT®-LT1 Transfection Reagent (MIR2300; Mirus) on day 3. After 24 hrs, cells were
cultured in E8 medium with Blasticidin (2.5 µg/mL) on the first day and with Blasticidin (5 µg/mL)
on the third day to the fifth day with or without doxycycline to select cells. The selected cells were
seeded in a 96-well plate (1 cell per well) and cultured with E8 medium to get the clones of CXCL14
knockout cells.
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2.12. Statistical Analysis

All the repeat experiments were performed at least in 3 different samples for statistical analysis.
All the statistical results are presented as the means ± standard deviations (SD). Student’s t-test and
ANOVA were used for the statistical analysis, and significance was set at * P < 0.05, ** P < 0.01,
and *** P < 0.001.

3. Results

3.1. CXCL14 Expression is Enriched in Undifferentiated hESCs

The CXCL family of chemokines has many biological functions and plays crucial roles in
stem cell growth [21,29]. To investigate the roles of chemokines in pluripotency, we evaluated the
expression levels of chemokines in undifferentiated and differentiated hESCs. We spontaneously
differentiated two different hESC lines [H9 and HUES6 (S6)] by embryonic body (EB) formation.
By comparing the undifferentiated and differentiated hESCs, we first checked the differentiation
state by analyzing the mRNA expression levels of the crucial self-renewal marker OCT4 which were
specifically downregulated in EBs (Figure 1A). In addition, we further confirmed the differentiation
status by observing the protein expression level of self-renewal markers, OCT4, SOX2, and NANOG
(Figure 1B). Then, we analyzed the mRNA expression levels of all C-X-C motif chemokines between
the undifferentiated hESCs and differentiated EBs of H9 and S6 hESCs. The expression of CXCL1-8 and
CXCL14 was downregulated in EBs compared to that in undifferentiated hESCs (H9 and S6) (Figure 1C).
In contrast, CXCL9-13, CXCL16, and CXCL17 were upregulated in differentiated hESCs (H9) (Figure 1C).
However, the expression level of CXCL10 was non-detectable and CXCL16 was downregulation in
differentiated hESCs (S6) (Figure 1C). In previous studies, CXCL1-8 were reported to be secreted by
feeder cells, and CXCL1 and CXCL8 were involved in the self-renewal of hESCs [21]. Via quantitative
real-time PCR (qRT-PCR) and Western blot analyses, we further confirmed that a chemokine, CXCL14,
is enriched in both undifferentiated hESCs (H9 and S6) and depleted in differentiated EBs (Figure 1D,E).
These results indicated that CXCL14 expression is enriched in undifferentiated hESCs.

Figure 1. Cont.
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Figure 1. CXCL14 (C-X-C motif Ligand 14) expression is enriched in undifferentiated human embryonic
stem cells (hESCs). Embryonic bodies (EBs) are hESCs differentiated for 5 days. (A) qRT-PCR
(Quantitative Real-Time PCR) analysis of the self-renewal marker OCT4 (Octamer-binding transcription
factor 4) expression in both H9 and S6 undifferentiated hESCs and differentiated EBs. The data were
normalized to GAPDH (Glyceraldehyde-3-phosphate dehydrogenase), and the error bars represent the
standard deviations of three replicates. * P < 0.05, Student’s t-test. (B) Western blot analysis and
the quantification of OCT4, SOX2 (SRY-Box transcription factor 2) and NANOG (Homeobox protein
NANOG) protein expression levels in undifferentiated hESCs and EBs. β-ACTIN was applied as
the internal control. The error bars represent the standard deviations of three replicates. ** P < 0.01,
*** P < 0.001, Student’s t-test. ND, the data was nondetectable. (C) All C-X-C motif chemokines were
analyzed by qRT-PCR in undifferentiated H9/S6 hESCs and EBs. All qRT-PCR data were normalized to
GAPDH. The error bars represent the standard deviations of three replicates. ** P < 0.01, *** P < 0.001,
Student’s t-test. (D) The mRNA expression levels of CXCL14 were analyzed by qRT-PCR in both
H9 and S6 undifferentiated hESCs and EBs. The data were normalized to GAPDH. The error bars
represent the standard deviations of three and four replicates. ** P < 0.01, *** P < 0.001; Student’s t-test.
(E) Western blot analysis and the quantification of CXCL14 protein expression levels in undifferentiated
hESCs and EBs. β-ACTIN was applied as the internal control. The error bars represent the standard
deviations of three replicates. ** P < 0.01, Student’s t-test.

3.2. CXCL14 is Secreted by hESCs and is Essential for hESC Self-Renewal

To further investigate whether CXCL14 is involved in the regulation of hESC self-renewal,
we downregulated the expression of CXCL14 by two independent shCXCL14 clones. Six days after
infection with shCXCL14, the mRNA expression of CXCL14 was significantly downregulated in both
H9 and S6 hESCs (Figure 2A). The Western blot analysis results showed that the protein expression
of CXCL14 was also downregulated in both hESC lines (Figure 2B,C). Because CXCL14 is a secreted
protein, we also performed an enzyme-linked immunosorbent assay (ELISA) to measure the protein
content in the culture medium. While CXCL14 was easily detected in the supernatant of the shRFP
control group, it could not be detected in the culture supernatant of CXCL14 knockdown H9 hESCs
(Figure S1). Moreover, in both H9 and S6 hESCs, CXCL14 knockdown induced dramatic morphological
changes (Figure 2D). Although dome-shaped colonies were formed by shRFP-infected hESCs, shCXCL14
cells exhibited a fibroblastic phenotype (Figure 2D). These data suggested that shCXCL14-expressing
cells were differentiated.
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Figure 2. Knockdown of CXCL14 disrupts hESC self-renewal. Both H9 and S6 hESCs were infected
with shRFP or shCXCL14 for 6 days. (A) qRT-PCR analysis of the CXCL14 knockdown efficiency in two
independent shCXCL14 clones of H9 and S6 cells. All error bars represent the standard deviations of
four replicates. The significance level was set at *** P < 0.001; ANOVA (Dunnett’s multiple comparison
test). (B) Western blot analysis of CXCL14 expression levels in shRFP- and shCXCL14-expressing
hESC H9 and S6 cells. (C) Quantification of Western blot analysis B. The error bars represent the
standard deviations of three replicates. The significance level was set at ** P < 0.01; ANOVA (Dunnett’s
multiple comparison test). (D) Gross morphology of shRNA-expressing H9 and S6 cells. The scale
bar represents 100 µm. (E) An alkaline phosphatase (ALP) assay was performed to examine stem cell
marker expression. The ALP values were normalized to the relative cell number (Alamar blue assay,
AB). The error bars represent the standard deviations of four replicates. The significance level was set at
* P < 0.05, *** P < 0.001; ANOVA (Dunnett’s multiple comparison test). (F) qRT-PCR analysis of OCT4,
SOX2, and NANOG mRNA expression levels in both H9 and S6 hESCs expressing shRFP or shCXCL14.
The error bars represent the standard deviations of three replicates. The significance levels were set at **
P < 0.01 and *** P < 0.001; ANOVA (Dunnett’s multiple comparison test). (G) Western blot analysis of
OCT4, SOX2, and NANOG protein expression levels in shRNA-infected hESCs. β-ACTIN was applied
as the internal control. (H) Quantification of Western blot analysis G. The error bars represent the
standard deviations of three replicates of H9 and S6 cells. The significance level was set at * P < 0.05, **
P < 0.01, and *** P < 0.001; ANOVA (Dunnett’s multiple comparison test).
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We also found that in H9 and S6 hESCs, CXCL14 knockdown decreased alkaline phosphatase and
Alamar (ALP/AB) ratio, an ESC self-renewal marker, in shCXCL14-infected H9 and S6 hESCs (Figure 2E).
Also, the crucial self-renewal markers OCT4, SOX2, and NANOG were downregulated at both the
mRNA and protein levels in shCXCL14-infected hESCs (Figure 2F–H). Furthermore, by measuring the
expression levels of differentiated markers, we showed that CXCL14 depletion indeed led to hESC
differentiation. The mRNA expression results showed significant upregulation of TWIST, SNAIL2,
GATA4, GATA6, SOX7, and SOX17, which are mesoderm and endoderm lineage markers (Figure S2A).
However, the expression of ectoderm markers such as SOX1 and PAX6 was downregulated in hESCs
after CXCL14 knockdown (Figure S2A). Taken together, these results indicated that knockdown of
CXCL14 disrupts the self-renewal of hESCs and leads to the differentiation.

3.3. Exogenous CXCL14 Maintains the Disruption of Self-Renewal Mediated by shCXCL14

To exclude off-target effects of shRNAs, we used recombinant CXCL14 protein to restore the
disrupted self-renewal of shCXCL14-infected hESCs. In shCXCL14-infected H9 and S6 hESCs that
had knockdown endogenous CXCL14, the addition of exogenous CXCL14 proteins in the culture
supernatants maintained the cell morphology and protein expression levels of the self-renewal
markers OCT4, SOX2, and NANOG upon CXCL14 activity in both shCXCL14-infected H9 and S6 cells
(Figure 3A,B and Figure S2B). The immunofluorescence (IF) staining also indicated the downregulation
of hESC surface markers stage-specific embryonic antigen (SSEA)-3, SSEA-4, TRA-1-80 and TRA-1-60 in
shCXCL14-infected cells were all maintained by CXCL14 treatment (Figure 3C). Consistently, the protein
expression levels of the differentiation markers GATA binding protein (GATA) 4, SRY-box transcription
factor (SOX) 7, and SOX17 were decreased after the maintaining of self-renewal by CXCL14 treatment
(Figure S2C). Taken together, these results showed the maintaining effects of CXCL14 treatment on
shCXCL14-infected hESCs.

3.4. CXCL14 Regulates Cell Cycle Progression in hESCs

Regarding the regulation of CXCL14 on cell growth, the cell counting results showed significant
decrease in the cell number and cell viability of shCXCL14-infected H9 and S6 cells (Figure 4A). Hence,
we considered that CXCL14 may affect cell growth in hESCs. First, Propidium iodide (PI) staining
was performed to investigate cell cycle progression in hESCs. In both shCXCL14-infected hESC lines,
the number of cells in G0-G1 phase was significantly increased, while the number of cells in S phase
was decreased (Figure 4B). No sub-G1 phase was increased in shCXCL14-expressing cells (Figure 4B).
Then, we analyzed the proliferation markers, Ki-67 and phosho-HISTONE H3 (pH3) with IF staining,
the proliferative ability of hESCs were significantly decreased in shCXCL14-infected cells (Figure S3A).
Furthermore, the addition of recombinant CXCL14 protein restored the cell cycle distribution in both
the shCXCL14-expressing hESC lines; the numbers of cells in the G0-G1 and S phases were returned to
normal (Figure S3B,C). The Ki-67 and pH3 analysis also showed the maintenance effects of exogenous
CXCL14 treatment on cell proliferative ability of shCXCL14-infected hESCs (Figure S3A). Moreover,
we investigated cell cycle-associated markers, the cyclin-dependent kinases (CDKs), by Western blot
analysis. The protein expression of cyclin-dependent kinase (CDK) 1 and CDK6 was downregulated in
both H9 and S6 hESCs with CXCL14 knockdown (Figure 4C). However, no significant difference was
observed in the expression levels of CDK2 in hESCs with CXCL14 knockdown (Figure 4C). Consistent
with these findings, the expression of the cell cycle inhibitors P27 and P21 was upregulated after
CXCL14 depletion in both hESC lines (Figure 4D). To investigate the sequence of pluripotency and cell
cycle, we also examined the self-renewal markers in relation to cell cycle post shRFP and shCXCL14
infection. The downregulation of self-renewal markers was evident by Western blot analysis as early
as day 2 (Figure S4A,B). In contrast, the cell cycle distribution was no difference between shRFP- and
shCXCL14-expressing cells (Figure S4C,D). Hence, the changing of cell cycle might be the result of
cell differentiation in shCXCL14-infected hESCs. Taken together, knockdown of CXCL14 impacted
proliferation and cell cycle distribution in hESCs.
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Figure 3. Exogenous CXCL14 maintains the disruption of self-renewal mediated by shCXCL14.
Cells were treated with recombinant CXCL14 protein (100 ng/mL) for 5 days. (A) Morphology of
shCXCL14-expressing H9 and S6 cells cotreated with recombinant CXCL14 protein. (B) Western
blot analysis and quantification of OCT4, SOX2, and NANOG protein expression levels in shRFP- or
shCXCL14-infected H9 and S6 cells with or without CXCL14 treatment. β-ACTIN was applied as the
internal control. The error bars represent the standard deviations of three replicates of H9 and S6 cells.
The significance level was set at ** P < 0.01 and *** P < 0.001; ANOVA (Tukey’s multiple comparison test).
(C) Immunofluorescence assay of the self-renewal markers stage-specific embryonic antigen (SSEA)-3
(green), SSEA-4 (purple), TRA-1-80 (red), and TRA-1-60 (red) in shRFP- or shCXCL14-expressing hESCs
with or without CXCL14 treatment. Cell nuclei were stained with DAPI (blue). The scale bar represents
100 µm.
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Figure 4. Knockdown of CXCL14 affects cell cycle progression in hESCs. (A) Trypan blue exclusion assay
and Alamar blue (AB) assay for cell number counting and cell viability after shCXCL14 infection in both
H9 and S6 hESCs. The error bars represent the standard deviations of four replicates. The significance
level was set at *** P < 0.001; ANOVA (Dunnett’s multiple comparison test). (B) Propidium iodide
(PI) staining with flow cytometry in shRNA-expressing H9 and S6 cells. Quantification data showing
the distribution of shRNA-infected hESCs in G0-G1 phase, S phase and G2-M phase. The error bars
represent the standard deviations of three replicates. The significance levels were set at ** P < 0.01 and
*** P < 0.001; ANOVA (Dunnett’s multiple comparison test). (C) Western blot analysis and quantification
of the cell cycle regulators CDK1 (Cyclin-dependent kinase 1), CDK2, and CDK6 in shRNA-expressing
H9 and S6 cells. β-ACTIN was applied as the internal control. The error bars represent the standard
deviations of three replicates. The significance levels were set at ** P < 0.01 and *** P < 0.001; ANOVA
(Dunnett’s multiple comparison test). (D) Western blot analysis and quantification of the cell cycle
inhibitors P27, and P21 in shRNA-expressing H9 and S6 cells. β-ACTIN was applied as the internal
control. The error bars represent the standard deviations of three replicates. The significance levels
were set at * P < 0.05, ** P < 0.01, and *** P < 0.001; ANOVA (Dunnett’s multiple comparison test).

3.5. CXCL14 Binds and Activates IGF-1R in hESCs

From the current knowledge, the role of the CXCL14 receptor in hESCs is still unclear. We sought
to reveal the mechanism of CXCL14 in hESC self-renewal and hypothesized that CXCL14 could
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bind to a cell surface receptor and then trigger the corresponding signaling cascade to support hESC
renewal. Therefore, we used a human phospho-RTK array to identify the possible receptor by CXCL14
stimulation. After 15 min of stimulation, CXCL14 activated the phosphorylation of IGF-1R/IR, as
evidenced by the spots in the RTK array (Figure 5A). Western blot analysis further confirmed that
exogenous CXCL14 treatment dose-dependently increased the phosphorylation of IGF-1R and its
downstream effector AKT (Figure 5B,C).

Figure 5. CXCL14 binds to the IGF-1R (Insulin-like growth factor 1 receptor) in hESCs. (A) RTK
(Receptor Tyrosine Kinase) array analysis to determine phosphorylation patterns in hESCs treated with
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CXCL14 (20 ng/mL) for 15 min. (B) Western blot analysis for the phosphorylation pattern of IGF-1R
and its downstream effector AKT after cells were treated with CXCL14 (0, 5, 10, 20, or 50 ng/mL)
in DMEM/F12 only for 15 min. β-ACTIN was applied as the internal control. (C) Quantification of
Western blot analysis B. The error bars represent the standard deviations of three replicates. The
significance levels were set at * P < 0.05, ** P < 0.01, and *** P < 0.001; ANOVA (Dunnett’s multiple
comparison test). (D) Co-immunoprecipitation analysis of the CXCL14 and IGF-1R interaction. Isotype
IgG was used as negative control. (E) Duolink PLA (Proximity Ligation Assay) assay for analyzing
the interaction of CXCL14 and IGF-1R in vivo. Red fluorescence indicates the interaction of these
two proteins; cell nuclei were stained with DAPI (blue). IgG was the isotype negative control. The
interaction of endogenous CXCL14 with IGF-1R was investigated as the control (Ctrl). Cells treated with
exogenous CXCL14 (+CXCL14) were also monitored. The scale bar represents 100 µm. (F) ELISA for
detecting the direct interaction of purified CXCL14, IGF-1, and IGF-1Rα in vitro by precoating the plate
with IGF-1Rα (2 µg/mL). Different concentrations of CXCL14 (µg/mL) were added (green, left). ELISA
assay by precoating the plate with CXCL14 (2 µg/mL). Different concentrations of IGF-1Rα (µg/mL)
were added (yellow, middle). ELISA for detecting the direct interaction of purified IGF-1 and IGF-1Rα
in vitro by precoating the plate with IGF-1 (2 µg/mL). Different concentrations of IGF-1Rα (µg/mL)
were added (blue, right). The error bars represent the standard deviations of four and five replicates.
The significance level was set at ** P < 0.01 and *** P < 0.001; ANOVA (Dunnett’s multiple comparison
test). (G) Western blot analysis and quantification of the phosphorylation pattern of IGF-1R and AKT
after cells were treated with CXCL14 and/or IGF-1 for 15 min cells. B-ACTIN was applied as the internal
control. The error bars represent the standard deviations of three replicates. The significance levels
were set at ** P < 0.01 and *** P < 0.001; ANOVA (Dunnett’s multiple comparison test).

Since the phosphorylation of IGF-1R was induced by CXCL14 at 15 min, we investigated whether
IGF-1R could be the receptor for CXCL14. Therefore, we conducted Co-immunoprecipitation (Co-IP) to
analyze the interaction between CXCL14 and IGF-1R. When we used primary antibodies to pull down
IGF-1R or CXCL14 from hESC protein lysates, we could detect interaction signals for the CXCL14 and
IGF-1R proteins by Western blot analysis (Figure 5D). This result indicates the interaction between
CXCL14 and IGF-1R. To further confirm the interaction in vivo, we demonstrated the interaction by
Duolink proximity ligation assay (PLA) with IF staining. The interaction signals for CXCL14 and
IGF-1R could be detected and were further amplified by the PLA probes. The amplified RFP signals
could be observed in hESCs compared with those in the Control-IgG group, demonstrating that
endogenous CXCL14 and IGF-1R interacted with each other (Figure 5E, Ctrl). Moreover, when we
treated hESCs with exogenous CXCL14, the increase in the RFP signal suggested enhanced CXCL14
binding to IGF-1R (Figure 5E, +CXCL14).

To elucidate whether purified CXCL14 can directly interact with IGF-1Rα (the extracellular
domain), in vitro ELISA was performed. We precoated an ELISA plate with purified IGF-1Rα and
then incubated the plate with purified CXCL14 and anti-CXCL14 antibody and found that the optical
density (OD) values were increased in a dose-dependent manner (Figure 5F, left). This result suggests
the possibility of direct interaction between IGF-1R and CXCL14. Consistent with this finding, when
the plate was coated with CXCL14, the OD value also increased after the application of IGF-1Rα
(Figure 5F, middle). Similarly, incubation with IGF-1 and IGF-1Rα enhanced the ELISA readout in a
dose-dependent manner (Figure 5F, right). To further study the effects of CXCL14 and IGF-1 on the
IGF-1R pathway, we treated hESCs with CXCL14 and IGF-1 separately or in combination to examine
the downstream signals. The co-treatment synergistically activates the downstream signals while
compare to cells treating with CXCL14 or IGF-1 alone (Figure 5G). The result indicated a synergistic
effect of CXCL14 and IGF-1 on IGF-1R signaling pathway in hESCs (Figure 5G). Collectively, the results
indicated that CXCL14 can bind to IGF-1R and activate downstream signal transduction in hESCs.
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3.6. CXCL14 Regulates hESC Self-Renewal Through the Activation of the IGF-1R Signaling Pathway

To further examine whether CXCL14 could activate signals without activating IGF-1R signaling
cascades for hESC self-renewal, we treated hESCs with an IGF-1R inhibitor (NVP-AEW 541).
The phosphorylation of IGF-1R and AKT was stimulated by CXCL14 treatment, while NVP-AEW 541
treatment abolished the activation of the IGF-1R signaling pathway mediated by CXCL14 (Figure 6A).
Next, to further confirm that CXCL14 supports hESC self-renewal through the IGF-1R signaling
pathway, we disrupted IGF-1R expression by two independent shRNA clones. The successful
knockdown of shIGF-1R was demonstrated by Western blot analysis and the phosphorylation of IGF-1R
and downstream AKT was downregulated in shIGF-1R-expressing hESCs (Figure 6B). Interestingly,
shIGF-1R-expressing hESCs also decreased the protein expression levels of OCT4, SOX2, and NANOG
(Figure 6B). Then, we examined whether the regulatory ability of CXCL14 is via the IGF-1R signaling
pathway. When we knocked down the receptor, IGF-1R, the effect of CXCL14 activity on AKT activation
was abolished (Figure 6C). Moreover, CXCL14 was no longer maintaining the expression levels of the
self-renewal markers OCT4, SOX2, and NANOG while the IGF-1R was knocked down (Figure 6C).

Figure 6. CXCL14 regulates hESC self-renewal through the activation of the IGF-1R signaling pathway.
(A) Western blot analysis and quantification for detecting IGF-1R and AKT phosphorylation in H9 cells
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treated with CXCL14 (20 ng/mL) with or without the IGF-1R inhibitor (NVP-AEW-541, 2 µM) for
15 min. (B) Western blot analysis and quantification of IGF-1R-AKT phosphorylation and self-renewal
markers OCT4, SOX2, and NANOG in shIGF-1R-infected hESCs. (C) Western blot analysis and
quantification of IGF-1R-AKT phosphorylation and self-renewal markers OCT4, SOX2, and NANOG in
shIGF-1R-infected hESCs cotreated with or without CXCL14 (100 ng/mL). (D) Western blot analysis and
quantification of IGF-1R-AKT phosphorylation and self-renewal markers OCT4, SOX2, and NANOG in
shCXCL14-infected hESCs cotreated with or without IGF-1 (100 ng/mL). β-ACTIN was applied as the
internal control for all Western blot analyses. All the error bars represent the standard deviations of
three replicates. The significance level was set at * P < 0.05, ** P < 0.01, *** P < 0.001; ANOVA (Dunnett’s
multiple comparison test).

According to these results, we further hypothesized that IGF-1, an IGF-1R ligand, can activate
IGF-1R signaling and support the self-renewal of CXCL14 knockdown hESCs. In support of this
hypothesis, the decrease in IGF-1R and AKT phosphorylation in shCXCL14-infected hESCs was
restored by the IGF-1 stimulation (Figure 6D). We also demonstrated that in shCXCL14-infected hESCs,
treatment with IGF-1 restored the expression levels of three critical self-renewal markers, OCT4, SOX2,
and NANOG (Figure 6D).

Taken together, these results indicated that CXCL14 maintains hESC self-renewal through the
activation of the IGF-1R signaling pathway.

3.7. Knockout of CXCL14 Impairs Self-Renewal of hPSCs

To further exclude the off-target of shRNA, we knocked out CXCL14 in hPSCs by inducible
CRISPR/Cas9 genome editing method [28]. Both Western blot and immunofluorescence staining
assay indicated the complete depletion of CXCL14 protein expression in two CXCL14-/- cell lines
(Figure S5A,B). Similar to the knockdown effects of shCXCL14-expressing hESCs, knockout CXCL14 also
disrupted the activation of IGF-1R-AKT signaling pathway and the expression levels of self-renewal
markers OCT4, SOX2, and NANOG (Figure S5C,D). Taken together, our results suggested that knockout
of CXCL14 disrupted the self-renewal ability in hPSCs.

4. Discussion

The cytokines and chemokines in the hESC environment maintain the self-renewal ability of stem
cells [29]. Only a few cytokines, such as bFGF, TGF-β, and GDF3, have been demonstrated as autocrine
factors of hESCs [8,10,13]. In this study, a C-X-C motif chemokine, CXCL14, was demonstrated to
maintain the self-renewal and pluripotency abilities of hESCs. CXCL14 expression was enriched in
undifferentiated hESCs, and the expression level was decreased upon hESC differentiation (Figure 1).
Knockdown of CXCL14 disrupted the expression levels of the self-renewal markers OCT4, SOX2,
and NANOG, which further resulted in hESC differentiation (Figure 2 and Figure S2). In addition,
CXCL14 depletion decreased the cell number, reduced cell proliferation, and changed the cell cycle
distribution of hESCs (Figure 4 and Figure S3). To exclude off-target effects of shRNA, recombinant
CXCL14 protein added to the culture medium was provided to restore the self-renewal status, recover
the proliferative ability, and alter the cell cycle distribution of shCXCL14-infected hESCs (Figure 3,
Figures S2 and S3). Interestingly, CXCL14 bound directly to IGF-1R and activated its downstream
effector AKT (Figures 5 and 6). Consistent with these findings, knockdown of IGF-1R inhibited hESC
self-renewal, whereas IGF-1 can restore the knockdown phenotype of shCXCL14 (Figure 6). To further
rule out the possibility of off-target effect by using shRNA, we established the CXCL14 knockout
hPSCs according to the inducible CRISPR/Cas9 genome editing method [28]. Consistent with the
phenomenon of shCXCL14-infected hESCs, the results of CXCL14-/- cells also shown the downregulation
of self-renewal markers and inactivation of IGF-1R-AKT signaling pathway (Figure S5). In summary,
we elucidated that CXCL14 can maintain hESC self-renewal through the activation of the IGF-1R
signaling pathway (Figure 7).
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Figure 7. CXCL14 regulates hESC self-renewal and cell cycle through IGF-1R signaling pathway.
A summary shows the cell signaling events in this study. In short, hESCs can release CXCL14, which
further binds to the IGF-1R of hESCs. CXCL14 activates the signaling activation of IGF-1R-AKT axis to
support the expressions of self-renewal markers, OCT4, SOX2, and NANOG. CXCL14 also regulates the
cell cycle distribution and the expression of cell cycle markers, CDK1, CDK6, P21, and P27 in hESCs.

Chemokines are well known for their chemoattractant functions in many cell types [16,30,31].
In recent years, niche-dependent chemokines have been shown to maintain the renewal status of stem
cells [20,21,29]. Most cytokines and chemokines that regulate hESC renewal are secreted by feeder
cells [mouse embryonic fibroblasts (MEFs) or human fibroblasts] or supplemented in commercial
media [20,32]. Human placental cells, as feeder cells, can release CXCL1, CXCL2, and CXCL8 to
mediate the self-renewal and pluripotency of hESCs through CXCR2 [21]. In addition, both hESCs and
human induced pluripotent stem cells (hiPSCs) can secrete CXCL1, CXCL2, CXCL8, and CXCL10 and
support cell migration and self-renewal [29]. However, whether additional chemokines are involved
in the regulation of hESC growth was unclear. Our results showed that hESCs can express all CXCL
proteins and that the expression of CXCL1-CXCL8 and CXCL14 was enriched in both undifferentiated
hESCs (Figure 1). In contrast, the mRNA expression of CXCL9, CXCL10, CXCL11, CXCL12, and CXCL13
was upregulated in differentiated hESCs (EBs) (Figure 1). Similar to our results, one report showed by
chemokine array screening that CXCL8, CXCL10, and CXCL12 were secreted in the culture supernatant
of hESCs [29]. However, this article did not assess whether these chemokines were autocrine factors
and also there is no investigation about the potential mechanisms by further analysis. Thus, chemokine
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regulation in hESC self-renewal remains a great mystery. Here, we found that the chemokine CXCL14
is secreted by hESCs and uncovered the roles of CXCL14 in self-renewal maintenance. The discovery
of the detailed mechanisms by which additional chemokines participate in hESC renewal will need
further study.

In recent years, CXCL14 has been shown to modulate the regulation of cellular trafficking, immune
responses, cell metabolism, and tumor progression in different cell types [17,30,33]. CXCL14 promotes
the progression and metastasis of breast cancer, lung cancer, and pancreatic cancer [23,25,34]. However,
the receptor for CXCL14 remains to be elucidated. In human leukemia-derived cell lines and CD34+

hematopoietic progenitor cells, CXCL14 can compete with CXCL12 and thus inhibit CXCL12-CXCR4
signaling [26]. In 2014, Otte et al. demonstrated in CXCR4-transfected HEK293 and Jurkat T cells that
CXCL14 could not bind CXCR4 and inhibit CXCL12-CXCR4 signal transduction [27]. Recent studies
have suggested that the G protein-coupled receptor GPR85 and atypical chemokine receptor 2 (ACKR2)
could be the target of CXCL14 in breast cancer cells [34,35]. Indeed, the binding of CXCL14 to GPR85
has been demonstrated [35]. Activation of GPR85 by CXCL14 triggered ERK1/2 and AKT pathway
activation, which promoted breast cancer cell progression [35]. CXCL14 also stimulated ACKR2 to
mediate tumor invasion and metastasis. However, no direct interaction of CXCL14 and ACKR2 was
found in further investigation by these authors [34]. According to those studies, the receptors and the
signal transduction pathways mediated by CXCL14, which are complicated and cell-type dependent
processes, may be different from those of conventional C-X-C-type chemokines [36]. Our investigation
identified a novel CXCL14 receptor model in hESCs. By analyzing protein interactions both in vivo and
in vitro (via Duolink PLA staining, Co-IP, and ELISA), we confirmed that CXCL14 bound to IGF-1R,
an RTK, and can subsequently activate downstream signal transduction (Figures 5 and 6). This report
is the first to indicate that IGF-1R is a CXCL14 receptor, and to identify a CXCL receptor that is not a G
protein-coupled receptor. Previously, only IGFs were recognized as ligands for IGF-1R. This evidence
may contribute to new knowledge leading to the discovery of other chemokine and receptor pairings
in hESCs and other cell types.

IGF-1R, a heterotetrameric RTK consisting of two α and β form subunits, is important for cell
growth and differentiation in many cell types [37,38]. IGF-1R was indicated to be strongly associated
with hESC growth through the activation of IGF-1 from medium supplementation or secretion by the
feeder layers [32,39]. A reduction in IGF-1R-PI3K-AKT pathway activity resulted in the differentiation
and poor proliferation of hESCs [32]. The binding of IGFs to IGF-1R was found to support hESC
growth and survival [32,40]. The expression level of IGF-1R was reduced by miR-223 during hESC
differentiation [41]. Signaling downstream of IGF-1R involves the phosphorylation of PI3K-AKT,
which was reported to contribute to the self-renewal of undifferentiated hESCs [42].

However, no prior study has indicated whether IGF-1R knockdown in hESCs affects the expression
levels of self-renewal markers. Here, we found that CXCL14 bound to IGF-1R and activated downstream
AKT signaling to support hESC self-renewal (Figures 5 and 6). Furthermore, knockdown of IGF-1R
in hESCs disrupted self-renewal status (Figure 6). Similar to previous investigations, this study
demonstrated that the IGF-1R signaling pathway is important for hESC self-renewal and pluripotency.
Moreover, an IGF-1R inhibitor blocked the activation of the IGF-1R-AKT signaling pathway triggered
by CXCL14 treatment, and the addition of CXCL14 treatment did not restore the self-renewal
status of shIGF-1R-expressing hESCs (Figure 6). This evidence indicated that CXCL14 mediates
hESC self-renewal through binding to IGF-1R and the activation of the IGF-1R signaling pathway.
Notably, IGF-1-stimulated IGF-1R signaling activation rescued the phenotypes associated with CXCL14
knockdown in hESCs (Figure 6). The co-treatment of CXCL14 and IGF-1 could enhance the activation
of IGF-1R signals (Figure 5). Therefore, this finding may suggest that these two proteins may have
different binding sites on IGF-1R to support hESC self-renewal.

Chemokines and chemokine receptors have been studied to regulate growth and cell cycle
progression in different cell types [43–45]. In hESCs, a shortened G1 phase can maintain self-renewal,
and a high proliferation rate is required for hiPSC reprogramming [46,47]. Therefore, we investigated
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cell growth and cell cycle distribution in hESCs by adopting a gain- and loss-of-function approach.
Our results revealed that CXCL14 knockdown reduced the expression levels of CDK1 and CDK6 but
increased the expression levels of the cell cycle inhibitors, P27 and P21 (Figure 4). The increase in G0-G1
arrest and the truncation of S phase in shCXCL14-infected hESCs indicated the reduction in rapid hESC
self-renewal (Figure 4). According to previous investigations, G0-G1 arrest of hESCs was induced by
the downregulation of CDKs and upregulation of P27 and P21, which were highly related to the loss of
hESC renewal [48,49]. CDK6 was reported to regulate the G1-S transition, and CDK1 downregulation
was reported to impair hESC self-renewal and promote hESC differentiation [48,50], similar to our
results in hESCs with knockdown of CXCL14 (Figure 4). Disruption of CDK2 also causes G1 arrest,
loss of pluripotency, and upregulation of P21 and P27 [51]. However, a further investigation from the
same group also suggested that CDK2 plays a role in the modulation of hESC apoptosis [52]. On the
other hand, hESCs with knockdown of CHAC2, an essential hESC gene, also exhibited a decrease in
CDK2 expression, accompanied by apoptosis [53]. According to these studies, the expression levels of
CDK2 were not significantly decreased in shCXCL14-expressing hESCs, eliciting the downregulation of
CXCL14 and possibly facilitating the differentiation of hESCs rather than inducing apoptosis through
CDK2 downregulation. Consistent with this reason, PI staining demonstrated no sub-G1 phase was
increased in shCXCL14-expressing cells (Figure 4). The IF staining also indicated the downregulation
of proliferation markers Ki-67 and pH3 in shCXCL14-infected cells (Figure S3). Based on this evidence,
knockdown of CXCL14 impacted cell proliferation but may not affect apoptosis in hESCs.

To establish a suitable microenvironment for hESC growth and self-renewal maintenance,
the balance of chemokines, cytokines, and other growth factors is indispensable [11,29,54]. In this
study, we not only investigated the critical roles of CXCL14 in hESC coordination, but also found a
novel link between CXCL14 and IGF-1R in signal transduction. The CXCL14-IGF-1R axis may also
apply to the physiological regulation of and mechanistic studies in other cell types. Thus, our research
contributes to the current knowledge of hPSCs and the signal transduction of chemokines.
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