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Atherosclerosis is generally considered a human pathology of chronic inflammation, to
which endothelial dysfunction plays an important role. Here we investigated the role of
neogenin 1 (Neo-1) in oxidized low-density lipoprotein (oxLDL) induced endothelial
dysfunction focusing on its transcriptional regulation. We report that Neo-1 expression
was upregulated by oxLDL in both immortalized vascular endothelial cells and primary
aortic endothelial cells. Neo-1 knockdown attenuated whereas Neo-1 over-expression
enhanced oxLDL-induced leukocyte adhesion to endothelial cells. Neo-1 regulated
endothelial-leukocyte interaction by modulating nuclear factor kappa B (NF-κB) activity
to alter the expression of adhesion molecules. Neo-1 blockade with a blocking antibody
ameliorated atherogenesis in Apoe−/− mice fed a Western diet. Ingenuity pathway analysis
combined with validation assays confirmed that cAMP response element binding protein 1
(CREB1) and Brg1-associated factor 47 (BAF47) mediated oxLDL induced Neo-1
upregulation. CREB1 interacted with BAF47 and recruited BAF47 to the proximal Neo-
1 promoter leading to Neo-1 trans-activation. In conclusion, our data delineate a novel
transcriptional mechanism underlying Neo-1 activation in vascular endothelial cells that
might contribute to endothelial dysfunction and atherosclerosis.
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factor

INTRODUCTION

Coronary heart disease represents one of the major causes for heart failure, which affects ~30 million
patients annually and is the leading cause of deaths worldwide (Savarese and Lund, 2017).
Atherosclerosis is characterized by the deposition of fat-laden plaques in the arteries causing
progressive narrowing of the blood vessel and subsequently coronary heart disease (Libby, 2021a).
Decades of research have led to the consensus that atherosclerosis is a human pathology of chronic
vascular inflammation (Libby, 2021b). On the one hand, multiple different populations of immune
cells, including macrophages, granulocytes, lymphocytes, and natural killer cells, are present in the
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atherosclerotic plaque in a stage-dependent manner (Libby and
Hansson, 2015). On the other hand, modulating the
inflammatory response in the vessels has been shown to alter
the development and progression of atherosclerosis in model
animals (Libby et al., 2013). The most convincing piece of
evidence to support the long-held view that vascular
inflammation is the linchpin of atherogenesis comes from a
recently published clinic study that shows the efficacy of a
monoclonal antibody targeting the pro-inflammatory cytokine
IL-1β (Canakinumab) in the treatment of atherosclerosis (Ridker
et al., 2017).

Hyperlipidemia, or the presence of elevated levels of oxidized
low-density lipoprotein (oxLDL) in the circulation, is a major risk
factor for atherosclerosis (Steinberg and Witztum, 2010). High
levels of oxLDL contribute to atherosclerosis by skewing the
phenotypes of vascular cells including endothelial cells.
Endothelial dysfunction is considered one of the early
pathophysiological events during atherogenesis (Gimbrone and
Garcia-Cardena, 2016). Under physiological conditions, the
circulating leukocytes (e.g., macrophages) are unable for firmly
attach to the vessel wall. In the presence of oxLDL, however,
endothelial cells upregulate the expression of a plethora of
different adhesion molecules including intercellular adhesion
molecules (ICAMs), vascular adhesion molecules (VCAMs),
and selectins that mediate the rolling, adhesion, and
penetration of leukocytes (Blankenberg et al., 2003). Indeed,
blocking antibodies that targets either adhesion molecules
directly or their receptors expressed on the surface of
leukocytes have been shown to reduce atherogenesis with high
efficiency in mice (Galkina and Ley, 2007). Transcriptionally,
nuclear factor kappa B (NF-κB) is considered a master regulator
of adhesion molecules. Conserved NF-κB motifs have been
identified on the promoters of adhesion molecule genes (Tak
and Firestein, 2001). Consistently, manipulation of NF-κB
activity in endothelial cells, through deletion of its upstream
activator IKKγ or over-expression of its upstream inhibitor IκB,
protects the mice from Western diet feeding induced
atherosclerosis with concomitant down-regulation of adhesion
molecules and reduced leukocyte adhesion (Gareus et al., 2008).

Neogenin 1 (Neo-1) was originally identified as a receptor for
netrins, a group of guidance molecules; engagement of Neo-1 by
netrins provides the cue for neurons to expand and form
connections (Livesey, 1999). Recent investigations have
expanded the realm of pathophysiological events regulated by
Neo-1. A string of reports have suggested that Neo-1 may play a
role in regulating the inflammatory response in different tissues.
Genetic ablation or pharmaceutical inhibition of Neo-1 in mice
can lead to attenuation of ischemia-reperfusion induced hepatic
inflammation, zymosan A induced peritonitis, and high pressure
ventilation induced pulmonary inflammation (Konig et al., 2012;
Mirakaj et al., 2012; Schlegel et al., 2014). Based on these prior
observations, we hypothesized that Neo-1 might be involved in
atherogenesis by regulating vascular inflammation. We report
here that oxLDL upregulates Neo-1 in vascular endothelial cells at
the transcriptional level via the CREB1-BAF47 complex. Neo-1
promotes leukocyte adhesion to endothelial cells by modulating
NF-κB dependent trans-activation of adhesion molecules.

Importantly, Neo-1 inhibition in Apoe−/− mice dampens
atherosclerosis.

METHODS

Animals
All animal protocols were reviewed and approved by the intramural
Ethics Committee on Humane Treatment of Laboratory Animals of
Nanjing Medical University. The mice were maintained in an SPF
environment with 12 h light/dark cycles and ad libitum access to
food and water. To induce atherosclerosis, 8-wk male Apoe−/− mice
were fed a Western diet (D12109, Research Diets, New Brunswick,
NJ, United States) for 8 weeks as previously described (Zhang et al.,
2020). An anti-Neo1 antibody (5 μg per injection, R&D, AF 1079) or
isotype IgG was injected intravenously every day from week 5 of
Western diet feeding till the mice were sacrificed. The animals were
euthanized by pentobarbital sodium (100–120mg/kg) to obtain
their samples. Atherosclerotic lesions were gauged by en face
analysis of the whole aorta and by cross-sectional analysis of the
proximal aorta essentially described previously (Liao et al., 2020;
Huangfu et al., 2021).

Cell Culture, Plasmids, Transient
Transfection, and Reporter Assay
Human immortalized umbilical vein endothelial cells (HUVEC/
EAhy926, ATCC), human monocytic/macrophage cells (THP-1,
ATCC), and human embryonic kidney cells (HEK293,
Invitrogen) were maintained in DMEM (Invitrogen)
supplemented with 10% fetal bovine serum (FBS, Hyclone) as
previously described (Chen et al., 2020; Yang et al., 2021). Human
primary aortic endothelial cells (HAEC, Cambrex/Lonza) were
maintained in EGM-2 media with supplements supplied by the
vendor; experiments were performed in primary cells between
3rd and 6th passages as previously described (Li et al., 2020).
FLAG-tagged CREB1 (Mayr et al., 2005) and GFP-tagged BAF47
(Kadoch and Crabtree, 2013) have been described previously.
Neo-1 promoter-luciferase construct was made by amplifying
genomic DNA spanning the proximal promoter and the first exon
of Neo-1 gene (−1274/+101) and ligating into a pGL3-basic
vector (Promega). Truncation mutants were made using a
QuikChange kit (Thermo Fisher Scientific, Waltham, MA,
United States) and verified by direct sequencing. Small
interfering RNAs were purchased from Dharmacon. Transient
transfection was performed with Lipofectamine 2000. Cells were
harvested 48 h after transfection and reporter activity was
measured using a luciferase reporter assay system (Promega)
as previously described (Liu et al., 2021).

Protein Extraction, Immunoprecipitation
and Western Blot
Whole cell lysates were obtained by re-suspending cell pellets in
RIPA buffer (50 mM Tris pH7.4, 150 mM NaCl, 1% Triton X-
100) with freshly added protease inhibitor (Roche) as previously
described (Lv et al., 2021). Specific antibodies or pre-immune
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IgGs were added to and incubated with cell lysates overnight
before being absorbed by Protein A/G-plus Agarose beads (Santa
Cruz). Precipitated immune complex was released by boiling with
1X SDS electrophoresis sample buffer. Western blot analyses were
performed with anti-Neo1 (Abcam, ab183511, 1:1000), anti-
CREB1 (Proteintech, 12208-1, 1:1000), anti-BAF47
(Proteintech, 20654-1, 1:1000), anti-FLAG (Sigma, F1804, 1:
5000), anti-GFP (Proteintech, 50430-2, 1:1000), and anti-β-
actin (Sigma, A2228, 1:4000) antibodies.

Chromatin Immunoprecipitation
Chromatin Immunoprecipitation (ChIP) assays were performed
essentially as described before (Coarfa et al., 2020; Maity et al.,
2020;Wang J.-N. et al., 2020;Wang S. et al., 2020; Marti et al., 2021).
In brief, chromatin in control and treated cells were cross-linked
with 1% formaldehyde. Cells were incubated in lysis buffer (150mM
NaCl, 25 mM Tris pH 7.5, 1% Triton X-100, 0.1% SDS, 0.5%
deoxycholate) supplemented with protease inhibitor tablet and
PMSF. DNA was fragmented into ~200 bp pieces using a
Branson 250 sonicator. Aliquots of lysates containing 200 μg of
protein were used for each immunoprecipitation reaction with anti-
NF-κB/p65 (Santa Cruz, sc-372), anti-CREB1 (Millipore, 17-600),
anti-BAF47 (Cell Signaling Tech, 91735), or pre-immune IgG. For
re-ChIP, immune complexes were eluted with the elution buffer (1%
SDS, 100mM NaCO3), diluted with the re-ChIP buffer (1% Triton
X-100, 2 mM EDTA, 150mM NaCl, 20 mM Tris pH 8.1), and
subject to immunoprecipitation with a second antibody of interest.

RNA Isolation and Real-Time PCR
RNA was extracted with the RNeasy RNA isolation kit (Qiagen).
Reverse transcriptase reactions were performed using a SuperScript
First-strand Synthesis System (Invitrogen) as previously described
(Hong et al., 2020). Real-time PCR reactions were performed on an
ABI Prism 7500 systemwith the following primers: humanNEO1, 5′-
GGAGCCGGTGGATACACTCT-3′ and 5′-TGGCGTCGATCA
TCTGATACTA-3′; human ICAM1, 5′-ATGCCCAGACATCTG
TGTCC-3′ and 5′-GGGGTCTCTATGCCCAACAA-3′; human
VCAM1, 5′-GGGAAGATGGTCGTGATCCTT-3′ and 5′-TCT
GGGGTGGTCTCGATTTTA-3′; mouse Icam1, 5′-GTGATGCTC
AGGTATCCATCCA-3′ and 5′-CACAGTTCTCAAAGCACA
GCG-3’; mouse Icam2, 5′-ATGGTCCGAGAAGCAGATAGT-3′
and 5′-TGCTGTTGAACGTGGCTGT-3’; mouse Vcam1, 5′-TTG
GGAGCCTCAACGGTACT-3′ and 5′-GCAATCGTTTTGTAT
TCAGGGGA-3’; mouse Il1b, 5′-GAAATGCCACCTTTTGAC
AGTG-3′ and 5′-TGGATGCTCTCATCAGGACAG-3’; mouse
Il6, 5′-TGGGGCTCTTCAAAAGCTCC-3′ and 5′-AGGAACTAT
CACCGGATCTTCAA-3’; mouse Tnfa, 5′-CTGGATGTCAAT
CAACAATGGGA-3′ and 5′-ACTAGGGTGTGAGTGTTTTCT
GT-3′; mouse Infg, 5′-TCCTCGCCAGACTCGTTTTC-3′ and 5′-
ACGGCTCCCAAGTTAGAATCT-3’; mouse Mcp1, 5′-AAAACA
CGGGACGAGAAACCC-3′ and 5′-ACGGGAACCTTTATTAAC
CCCT-3’; mouse Rantes, 5′-GCTGCTTTGCCTACCTCTCC-3′ and
5′-TCGAGTGACAAACACGACTGC-3’. Ct values of target genes
were normalized to the Ct values of housekeeping control gene (18s
rRNA, 5′-CGCGGTTCTATTTTGTTGGT-3′ and 5′-TCGTCT
TCGAAACTCCGACT-3′ for both human and mouse genes)
using the ΔΔCT method and expressed as relative mRNA

expression levels compared to the control group which is
arbitrarily set as 1.

Leukocyte Adhesion Assay
Leukocyte adhesion assay was performed as previously described.
Briefly, THP-1 cells were stained with a fluorescent die (2′,7′-Bis-(2-
carboxyethyl)-5(6)-carboxyfluorescein tetrakis (acetoxymethyl)
ester) (Sigma) for 30min at 37°C. After several washes with PBS,
THP-1 cells were co-incubated for 30 min with endothelial cells.
Unbound leukocytes were removed by washing and the number of
adhered cells was visualized by fluorescence microscopy and
analyzed with Image-Pro Plus (Media Cybernetics). For each
group, at least six different fields were randomly chosen and the
positively stained cells were counted and divided by the number of
total cells. The data are expressed as relative EdU staining compared
to the control group arbitrarily set as 1.

Statistical Analysis
One-way ANOVA with post-hoc Scheff´e analyses were
performed by SPSS software (IBM SPSS v18.0, Chicago, IL,
United States). Unless otherwise specified, values of p ＜ .05
were considered statistically significant.

RESULTS

Neogenin 1 Expression is Upregulated by
Oxidized Low-Density Lipoprotein in
Endothelial Cells
In order to determine the effect of pro-atherosclerotic stimuli on
Neo-1 expression, immortalized human vascular endothelial cells
(EAhy926) and primary human aortic endothelial cells (HAECs)
were treated with different doses of oxidized low-density lipoprotein
(oxLDL). As shown in Figure 1A, oxLDL at 20 μg/ml upregulated
Neo-1message RNA levels by ~2xfold in both EAhy926 andHAECs
as measured by quantitative PCR whereas oxLDL at 50 μg/ml and
100 μg/ml comparably increased Neo-1 mRNA levels by more than
3xfold. Western blotting confirmed that Neo-1 protein levels were
similarly upregulated by oxLDL treatment in a dose-dependent
manner (Figure 1B). Next, a time course experiment was
performed in which the cells were treated with 50 μg/ml oxLDL
for different periods of time. QPCR analysis showed that Neo-1
mRNA peaked at 24 h but declined at 48 h followed oxLDL
stimulation whereas Western blotting showed that changes of
Neo-1 protein levels lagged those of Neo-1 mRNA levels
(Figures 1C,D). Of note, Western blotting showed that Neo-1
was exclusively located to the cell membrane and that oxLDL
stimulation did not appear to influence its sub-cellular
localization (Supplementary Figure S1).

Neogenin 1 Regulates Leukocyte Adhesion
One of the major mechanisms whereby oxLDL contributes to
endothelial dysfunction and atherosclerosis is the trans-activation
of adhesion molecules, which mediate leukocyte adhesion to
endothelial cells (Khan et al., 1995; Cominacini et al., 1997; Takei
et al., 2001). Because it was observed that Neo-1 could be
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upregulated by oxLDL in vascular endothelial cells, we asked
whether Neo-1 might play a role in leukocyte adhesion. To this
end, endogenous Neo-1 was depleted by two independent pairs of
siRNAs and knockdown efficiencies were verified by Western
blotting (Figure 2A). Neo-1 depletion significantly suppressed the
leukocyte adhesion to both EAhy926 cells and HAECs (Figure 2B).
Similarly, the addition of an anti-Neo-1 blocking antibody
diminished oxLDL-induced leukocyte adhesion to endothelial
cells (Figure 2C). In contrast, Neo-1 over-expression, mediated
by adenovirus mediated delivery of a Neo-1 vector (Figure 2A),
did not appreciably influence leukocyte adhesion alone but
enhanced leukocyte adhesion in the presence of oxLDL (Figure 2D).

The pro-inflammatory transcription factor NF-κB is considered
the master regulator for the trans-activation of a slew of adhesion
molecules including ICAM1 andVCAM1 (Collins et al., 1995). Both
ICAM1 expression and VCAM1 expression were upregulated by
oxLDL treatment whereas Neo-1 knockdown attenuated induction
of ICAM1 and VCAM1 (Figures 3A,B). Consistently, ChIP assay
showed that oxLDL treatment strongly promoted the recruitment of
NF-κB/p65 to the ICAM1 promoter and the VCAM1 promoter,
which was weakened by Neo-1 knockdown (Figure 3C). On the
contrary, Neo-1 over-expression enhanced the induction of ICAM1
expression and VCAM1 expression by oxLDL treatment (Figures
3D,E). The effect of Neo-1 over-expression on the adhesion
molecule expression was likely attributable to the stronger
association of NF-κB/p65 with target promoters (Figure 3F).

Neogenin 1 Inhibition Attenuates
Atherosclerosis in Mice
Next, we decided to extrapolate the finding that Neo-1 might be
involved in endothelial dysfunction in a classic animal model in

which Apoe−/− mice were fed a Western diet for 8 weeks to develop
atherosclerotic lesions (Figure 4A). Blockade of endogenous Neo-1
was achieved by a blocking antibody that has been tested previously
(Konig et al., 2012; Mirakaj et al., 2012; Schlegel et al., 2014); this
antibody targets the extracellular domain of the Neo-1 protein
(a.a.42-1033) thus disrupting the binding of Neo-1 to its ligands.
Neo-1 inhibition did not significantly alter plasma triglyceride levels
(Figure 4B) or plasma cholesterol levels (Figure 4C) suggesting that
Neo-1 probably does not regulate hyperlipidemia. Oil red O staining
of dissected aorta (Figure 4D) and aortic sinus (Figure 4E) indicated
that compared to the isotype IgG injection, anti-Neo-1 injection
significantly and markedly reduced atherosclerotic lesions. QPCR
profiling showed that Neo-1 inhibition significantly down-regulated
the expression of adhesion molecules and pro-inflammatory
mediators including interleukin 1 beta (Il1b), interleukin 6 (Il6),
tumor necrosis factor alpha (Tnfa), interferon gamma (Ifng),
macrophage chemoattractive protein 1 (Mcp1), and regulated
upon activation, normal T cell expressed and secreted (Rantes) in
the aorta (Figure 4F). ELISA assays confirmed that protein levels of
pro-inflammatory mediators were decreased by the administration
of the Neo1-blocking antibody (Figure 4G). In addition,
immunofluorescence staining confirmed that fewer leukocytes
were detected to be adhered to the endothelium as result of Neo-
1 inhibition (Figure 4H).

cAMP Response Element Binding Protein 1
and Brg1-Associated Factor 47 are
Essential for Transcriptional Activation of
Neogenin 1 in Endothelial Cells
The next set of experiments was designed to explore the
mechanism underlying upregulation of Neo-1 expression by

FIGURE 1 |Neo-1 expression is upregulated by oxLDL in endothelial cells. (A,B) EAhy926 and HAECswere treated with different concentrations of oxLDL for 24 h.
Neo-1 expression was examined by qPCR and Western. (C,D) EAhy926 and HAECs were treated with oxLDL (50 μg/ml) and harvested at indicated time points. Neo-1
expression was examined by qPCR and Western.
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oxLDL in endothelial cells. First, full-length (−1274/101) and
truncated (−783/+101, −409/+101, and −126/+101) Neo-1
promoter-luciferase fusion constructs were transfected into
EAhy926 cells followed by oxLDL treatment. As shown in
Figure 5A, oxLDL treatment robustly augmented the activities

of the longer Neo-1 promoters but not the shortest Neo-1
promoter indicating that oxLDL likely regulates Neo-1
expression at the transcriptional level and that a potential
response element might reside between −409 and −126 relative
to the transcription start site. Ingenuity pathway analysis (IPA)

FIGURE 2 |Neo-1 regulates leukocyte adhesion. (A) EAhy926 cells and HAECs were transfected with indicated siRNAs. Alternatively, these cells were transduced
with adenovirus carrying a Neo-1 vector (Ad-Neo1) or control adenovirus (Ad-EV). Neo-1 protein levels were examined by Western. (B) EAhy926 cells and HAECs were
transfected with indicated siRNAs followed by treatment with oxLDL (50 μg/ml) for 24 h. Leukocyte adhesion was performed as described inMethods. (C) EAhy926 cells
and HAECswere treated with oxLDL (50 μg/ml) in the presence or absence of an anti-Neo-1 antibody for 24 h. (D) EAhy926 cells and HAECswere transduced with
adenovirus carrying a Neo-1 vector (Ad-Neo1) or control adenovirus (Ad-EV) followed by treatment with oxLDL (50 μg/ml) for 24 h. Leukocyte adhesion was performed
as described in Methods. SCR, scrambled siRNA.
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FIGURE 3 | Neo-1 regulates expression of adhesion molecules by modulating NF-κB activity. (A–C) EAhy926 cells and HAECs were transfected with indicated
siRNAs followed by treatment with oxLDL (50 μg/ml) for 24 h. Expression levels of adhesion molecules were examined by qPCR andWestern blotting. ChIP assays were
performed with anti-NF-κB or IgG. (D–F) EAhy926 cells and HAECs were transduced with adenovirus carrying a Neo-1 vector (Ad-Neo1) or control adenovirus (Ad-EV)
followed by treatment with oxLDL (50 μg/ml) for 24 h. Expression levels of adhesion molecules were examined by qPCR and Western blotting. ChIP assays were
performed with anti-NF-κB or IgG.
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FIGURE 4 | Neo-1 inhibition attenuates atherosclerosis in mice. (A) Scheme of animal protocol. (B) Plasma triglyceride levels. (C) Plasma cholesterol levels. (D)Oil
red O staining of the thoracic aorta. (E)Oil red O staining of the aortic sinus. (F)Gene expression in aortic arteries was examined by qPCR. (G) Levels of pro-inflammatory
mediators were examined by ELISA. (H) Infiltration of macrophages was examined by immunofluorescence staining. N = 6 mice for each group. Error bars represent SD
(*p < .05, one-way ANOVA).
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FIGURE 5 | CREB1 and BAF47 are essential for transcriptional activation of Neo-1 in endothelial cells. (A) Neo-1 promoter-luciferase constructs were transfected
into EAhy926 cells followed by treatment with oxLDL (50 μg/ml) for 24 h. Luciferase activities were normalized by protein concentration and GFP fluorescence. (B)
Ingenuity pathway analysis. (C) EAhy926 cells were transfected with indicated siRNAs. Knockdown efficiencies were examined by Western. (D,E) EAhy926 cells and
HAECs were transfected with indicated siRNAs followed by treatment with oxLDL (50 μg/ml) for 24 h. Neo-1 expression was examined by qPCR andWestern. (F)
EAhy926 cells and HAECs were treated with oxLDL (50 μg/ml) and harvested at indicated time points. ChIP assays were performed with anti-CREB1, anti-BAF47,
or IgG.
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revealed cAMP response element binding protein 1 (CREB1) and
Brahma-related protein associated factor 47 (BAF47, encoded by
SMARCB1) as the upstream transcriptional regulators of Neo-1
(Figure 5B). Knockdown of endogenous CREB1 and BAF47 with
siRNAs (Figure 5C) suppressed the upregulation of Neo-1
expression by oxLDL stimulation in both types of endothelial
cells (Figures 5D,E). More important, ChIP assay showed that
oxLDL promoted the recruitment of both CREB1 and BAF47 to
the Neo-1 promoter in a kinetics similar to that of Neo-1
induction (Figure 5F).

cAMP Response Element Binding Protein 1
Interacts With and Recruits
Brg1-Associated Factor 47 to Activate
Neogenin 1 Transcription
Because BAF47 is a transcriptional co-factor without a DNAbinding
domain that recognizes and binds to specific DNA sequences, we
speculated that CREB1 might interact with BAF47 to cooperatively
regulate Neo-1 transcription.When FLAG-tagged CREB1 and GFP-
tagged BAF47 were co-transfected into HEK923 cells, an anti-FLAG
antibody immunoprecipitated both CREB1 and BAF47 whereas an
anti-GFP antibody simultaneously pulled-down both BAF47 and
CREB1 suggesting that these two proteins could interact with each
other (Figure 6A). Phosphorylation of CREB1 at serine 133 is key to

its transcriptional activity (Johannessen et al., 2004). Of note, S133
phosphorylation mutation did not appear to influence the CREB1-
BAF47 interaction. Interestingly, treatment with oxLDL enhanced
the interaction between CREB1 and BAF47 (Supplementary Figure
S3). More important, ChIP-on-ChIP (Re-ChIP) experiments
demonstrated that oxLDL treatment stimulated the formation of
a BAF47-CREB1 complex on the Neo-1 promoter (Figure 6B). In
addition, reporter assay showed that co-expression of CREB1 and
BAF47 enhanced the induction of the Neo-1 promoter activity by
oxLDL. The synergistic effect between CREB1 and BAF47 on the
Neo-1 promoter was not influenced by CREB1 phosphorylation
because the CREB1 S133Amutantwas able to cooperate with BAF47
to activate the Neo-1 promoter as potently as the wild type CREB1
(Supplementary Figure S4). However, when the putative CREB1
binding site wasmutatedwithin theNeo-1 promoter, neither CREB1
alone nor co-expression of CREB1 and BAF47 lost the ability to
influence the Neo-1 promoter activity (Figure 6C).

DISCUSSION

Vascular inflammation is considered the pathogenic cornerstone
of atherosclerosis. Adhesion of circulating leukocytes to the
vascular endothelium triggers and perpetuates the
inflammatory response. Here we describe a novel

FIGURE 6 | CREB1 interacts with and recruits BAF47 to activate Neo-1 transcription. (A) HEK293 cells were transfected with FLAG-tagged CREB1 and GFP-
tagged BAF47 as indicated. Immunoprecipitation was performed with anti-FLAG or anti-GFP. (B) EAhy926 cells and HAECs were treated with or without with oxLDL
(50 μg/ml) for 24 h. Re-ChIP assay was performed with indicated antibodies. (C)Wild type or mutant Neo1 promoter-luciferase construct (−409/+101) was transfected
into EAhy926 cells with indicated expression constructs followed by treatment with oxLDL (50 μg/ml) for 24 h. Luciferase activities were normalized by protein
concentration and GFP fluorescence. (D) A schematic model.
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transcriptional pathway that connects Neo-1 activation to
leukocyte adhesion in endothelial cells and potentially
atherogenesis (Figure 6D).

Despite the observation that Neo-1 inhibition by a blocking
antibody dampens atherogenesis in mice (Figure 4), several
lingering issues deserve further attention. First, we focused on
the regulation of Neo-1 by oxLDL in vascular endothelial cells.
However, the possibility that Neo-1 upregulation by oxLDL in
vascular smooth muscle cells (VSMCs) or macrophages may
similarly contribute to atherogenesis and thus offer
explanation to the observed phenotype cannot be ruled out.
Hadi et al. (2018) have recently reported that activation of
Neo-1 in VSMCs causes persistent stimulation of
metalloproteinase 3 (MMP3) and consequently aberrant
degradation of extracellular matrix leading to the pathogenesis
of abdominal aortic aneurysm. Because phenotypic switch of
VSMCs is a pathophysiological process shared by atherosclerosis
and aneurysm (Chakraborty et al., 2021), it is plausible to
speculate that Neo-1 might be upregulated by oxLDL in
VSMCs and steer VSMCs to switch from a contractile
phenotype to a pro-atherogenic phenotype. Alternatively,
several reports have suggested that Neo-1 in the myelocytic
compartment can potentially drive a pro-inflammatory
response in different tissues (Konig et al., 2012; Mirakaj et al.,
2012; Schlegel et al., 2014; Schlegel et al., 2019). Gulati et al. (2019)
using low-input RNA-seq technique, have shown that Neo-1
positivity in myelocytic cells is associated with a pro-
inflammatory signature of gene expression. In addition, motif
enrichment analysis reveals that Neo-1 specifically enhances NF-
κB activity (Gulati et al., 2019), which is in agreement with our
data that Neo-1 critically regulates NF-κB activity in endothelial
cells (Figure 3). These observations combined appear to suggest
that Neo-1 might promote vascular inflammation and hence
atherogenesis by skewing the phenotype of macrophages.
Second, we relied on the induction of adhesion molecules and
leukocyte adhesion as a readout to evaluate the effect of Neo-1 on
endothelial dysfunction. Other aspects of endothelial
deregulation in the context of atherogenesis should also be
considered. For instance, aberrant neovascularization, or
formation of new capillaries by endothelial cells, within the
atherosclerotic plaque is observed in humans and model
animals (Kwon et al., 1998; Moreno et al., 2006). In contrast,
inhibition of aberrant angiogenesis can cause regression of
atherosclerosis (Moulton et al., 1999; Gossl et al., 2009). Of
interest, several independent reports demonstrate that Neo-1
activation elicits strong angiogenic response in endothelial cells
(Park et al., 2004; Prieto et al., 2017; Yao et al., 2020). Therefore,
attenuation of atherosclerosis by Neo-1 inhibition could be
attributed to the suppression of aberrant neovascularization.
Third, it is not clear at this point the signaling cascade that
mediates the pro-atherogenic effect of Neo-1 in endothelial cells.
Typically, Neo-1 signaling can be activated by one of the netrins
(e.g., netrin 1). Indeed, netrin 1 deficiency has been shown to
attenuate atherosclerosis in Ldlr−/− mice likely through evicting
macrophages from the plaque and reining in chronic
inflammation (van Gils et al., 2012). Alternatively, the protein
structure of Neo-1 shares high degree of resemblance to that of

pattern recognition receptors (PRRs); both possess several
tandem immunoglobulin (Ig)-like domains and fibronectin
type III domains (FnIII) (Wilson and Key, 2007). Because
oxLDL can bind to and activate several different types of
PRRs, including scavenger receptor (MSR1) and CD36, it is
tempting to propose that Neo-1 could be directly bound and
activated by oxLDL in endothelial cells to provoke a pro-
atherogenic response. These unsolved issues clearly deserve
further attention in the future.

We show here that CREB1 is necessary for oxLDL induced
trans-activation of Neo-1 in endothelial cells by interacting with
and recruiting BAF47. The pathophysiological relevance of this
finding, however, remains to be determined. On the one hand,
CREB1 down-regulation is observed in the vessels isolated from
the atherosclerotic mice compared to the normal mice (Schauer
et al., 2010). On the other hand, activation of the pro-
inflammatory cytokine IL-17 by CREB1 is directly responsible
for macrophages accumulation and the ensuing inflammation in
the atherosclerotic plaque in mice (Kotla et al., 2013). Equally
ambiguous is the role of CREB1 plays in endothelial homeostasis.
A wealth of data seems to suggest that CREB1 deletion in
endothelial cells may lead to increased inflammatory response
and disrupted barrier function (Chava et al., 2012; Xiong et al.,
2020). In contrast, CREB1 can promote leukocyte adhesion by
directly binding to and activating the transcription of ICAM1 in
human umbilical endothelial cells (Hadad et al., 2011). This
apparent discrepancy likely alludes to the cell-type and context
specific effects of CREB1 in atherogenesis. Future studies should
exploit spatiotemporally controlled CREB1 transgenic animal
models to carefully delineate the role of CREB1 in atherosclerosis.

In conclusion, our data unveil a previously unrecognized role
for the CREB1-BAF47-Neo1 axis in regulating endothelial
dysfunction that might potentially contribute to
atherosclerosis. Additional functional and mechanistic studies
are warranted to further validate the impact of this axis in vivo so
that novel therapeutic solutions derived from this study can be
devised in the intervention of coronary heart disease.
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