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Fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X syndrome

(FXS) are primary examples of fragile X-related disorders (FXDs) caused by

abnormal expansion of CGG repeats above a certain threshold in the 5′-
untranslated region of the fragile X mental retardation (FMR1) gene. Both

diseases have distinct clinical manifestations and molecular pathogenesis.

FXTAS is a late-adult-onset neurodegenerative disorder caused by a

premutation (PM) allele (CGG expansion of 55–200 repeats), resulting in

FMR1 gene hyperexpression. On the other hand, FXS is a

neurodevelopmental disorder that results from a full mutation (FM) allele

(CGG expansions of ≥200 repeats) leading to heterochromatization and

transcriptional silencing of the FMR1 gene. The main challenge is to

determine how CGG repeat expansion affects the fundamentally distinct

nature of FMR1 expression in FM and PM ranges. Abnormal CGG repeat

expansions form a variety of non-canonical DNA and RNA structures that

can disrupt various cellular processes and cause distinct effects in PM and

FM alleles. Here, we review these structures and how they are related to

underlying mutations and disease pathology in FXS and FXTAS. Finally, as

new CGG expansions within the genome have been identified, it will be

interesting to determine their implications in disease pathology and treatment.

KEYWORDS

fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X syndrome (FXS), FMR1,
R-loop, hairpin

Introduction

CGG repeats are a type of microsatellite or short tandem repeat (STR) found in the

human genome, with the majority located in the 5′-untranslated regions (5′-UTRs),
suggesting that they may play a role in transcriptional regulation or translation initiation

(Bagshaw, 2017). Abnormal expansion of CGG repeat tracts above a certain threshold
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confers instability and chromosome fragility, resulting in various

clinical manifestations. CGG expansion in the FRAXA (folate-

sensitive fragile site, X chromosome, A) region has distinct effects

on the fragile X mental retardation1 (FMR1) gene located on the

X chromosome (Xq27.3) (Verkerk et al., 1991). The structure of

FMR1 is shown in Figure 1. It contains 56 CpG sites spread across

1 kb of its promoter and a naturally occurring CGG triplet-repeat

region in its first exon (Oberlé et al., 1991; Naumann et al., 2014).

However, in the general population, there are some

polymorphisms in the CGG repeat region in terms of the

length and content of AGG repeats, which are often

interspersed with a periodicity of the 9th to 11th repeats.

AGG interruptions significantly increase the stability of CGG

repeats (Nolin et al., 2013; Yrigollen et al., 2014). Carriers of

FMR1 alleles that are either normal (<55 repeats) or have

55–200 repeats (premutation (PM) alleles) have much lower

rates of chromosomal fragility. Longer CGG repeats are

extremely unstable during intergenerational transmission

(Nolin et al., 2019) and in somatic cells, resulting in CGG

repeat expansion (Lokanga et al., 2013). Therefore,

chromosome fragility is prominent in carriers of the

FMR1 allele with massive CGG repeat expansions

of >200 repeats (full mutation (FM) alleles) (Mila et al.,

2018). The FM allele is usually accompanied by

heterochromatization, transcriptional silencing, and

subsequent loss of FMR1 protein (FMRP) expression,

resulting in fragile X syndrome (FXS; OMIM #300624) (Mila

et al., 2018). FXS is the most common form of inherited

intellectual disability (ID) and is the leading genetic cause of

autism (Hagerman et al., 2010). However, PM alleles are

associated with transcriptional increases in FMR1, which

could be related to euchromatization of the FMR1 locus and

an upstream shift in the transcription start from the transcription

start site (TSS-I) of FMR1 (Tassone et al., 2000; Hagerman, 2012;

Schneider et al., 2020). Such hyperexpression of the PM allele

paradoxically leads to a relatively normal or gradual reduction in

FMRP with increasing repeat length (Hagerman and Hagerman,

2004). Hyperexpression of PM alleles is associated with specific

disorders, including fragile X premature ovarian insufficiency

(FXPOI; OMIM #311360), a condition associated with

menopause in women aged <40 years (Sullivan et al., 2011;

Sherman et al., 2014), and fragile X-associated tremor/ataxia

syndrome, a neurodegenerative disorder (FXTAS; OMIM

#300623) that affects PM carriers, mostly men over the age of

50 years, with clinical manifestations such as action tremors, gait

ataxia, Parkinsonism, and cognitive decline (Hagerman and

Hagerman, 2016). In model systems, hyperexpression of

riboCGG repeats in the PM range leads to defects in cell

development and cell toxicity (Hagerman, 2012; Hagerman

et al., 2018; Bhat et al., 2021). Unlike FM alleles, PM alleles

alter RNA-processing mechanisms, which may be related to

unusual secondary structures formed by DNA strands and

RNA containing CGG and antisense CCG repeats (Zhao and

Usdin, 2021). Such unusual secondary structures can potentially

impede translation within the PM range through an obscure

mechanism (Zhao and Usdin, 2021). In addition, such secondary

structures can sequester specific proteins from their normal

biological functions and/or undergo repeat-associated non-

AUG (RAN) translation from both sense and antisense

strands into toxic homopolymeric peptides (Todd et al., 2013).

Homopolymeric peptides, such as polyGlycine (FMRpolyG),

have been identified in neuronal inclusions of FXTAS patients

(Buijsen et al., 2014). Additionally, FMRpolyG overexpression is

toxic to cells in various FXTAS model systems (Kearse et al.,

2016; Sellier et al., 2017). This review focuses on how secondary

structures are related to the PM and FM alleles and their

associated diseases. Recent years has seen a flurry of papers

reporting novel CGG repeat expansions within the genome and

FIGURE 1
Representation of the canonical structure of the FMR1 gene and its alleles (normal, intermediate, PM, FM) as a result of CGG repeat expansion in
the 5′-UTR. Exons 1 to 17 that can be spliced in different ways, as well as sites for binding transcription factors and transcription start sites (TSS-I, TSS-
II, and TSS-III).
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some have been cloned and associated with neurodevelopmental

or neurodegenerative diseases (Deng et al., 2019; Ishiura et al.,

2019; Okubo et al., 2019; Sone et al., 2019; Tian et al., 2019; Jiao

et al., 2020; Ma et al., 2020; Sun et al., 2020; Annear et al., 2021).

Some share common genetic and clinical features, allowing for a

better understanding of disease mechanisms and development of

therapeutic strategies.

Structural polymorphism of CGG/CCG
repeats in the FMR1 gene

As shown in Figure 2, individual strands of expanded CGG

repeats form a variety of stable non-canonical DNA and RNA

structures during processes involving transient DNA

unwinding such as replication, repair, transcription, and/or

recombination. There is conflicting evidence regarding the

secondary structural preference of DNA and RNA strands.

CGG stem-loop/hairpins are relatively stable and easily

formed in vitro and in vivo using Watson-Crick G:C and

Hoogsteen G:G base pairs (Figure 2A) (Chen et al., 1995;

Mitas et al., 1995; Nadel et al., 1995; Usdin and Woodford,

1995; Yu et al., 1997; Handa et al., 2003; Sobczak et al., 2003;

Zumwalt et al., 2007; Ciesiolka et al., 2017; Ajjugal et al., 2021;

Poggi and Richard, 2021). However, in the presence of

physiological K+ concentrations, stable G-quadruplex (G4)

and intercalated-motif (i-motif) structures are formed from

CGG and CCG repeat strands, respectively (Figure 2B)

(Kettani et al., 1995; Fojtík and Vorlícková, 2001;

Weisman-Shomer et al., 2002; Weisman-Shomer et al.,

2003; Khateb et al., 2007; Renčiuk et al., 2011; Krzyzosiak

et al., 2012; Loomis et al., 2014; Malgowska et al., 2014; Yang

and Rodgers, 2014; Chen et al., 2018; Asamitsu et al., 2021).

The formation of hairpins or tetrahelical structures

(dimerization of hairpins) is altered by AGG interruption

and cell type (Jarem et al., 2010). The strands of CCG

repeats are also unpaired and form stable pathological

R-loops, which are RNA:DNA hybrid duplexes that are

formed in the transcribed region during transcription

(Figure 2C) (Abu Diab et al., 2018; Crossley et al., 2019). A

hairpin in the non-template strand could reduce duplex

reannealing behind the advancing transcription complex,

and thus aid in R-loop formation. The persistence of the R

loop, on the other hand, may favor the development of the

hairpin on the non-template strand. R-loop structures

composed of a G-rich RNA template and C-rich DNA

template are thermodynamically advantageous and stable

compared to DNA duplexes (Roberts and Crothers, 1992;

Belotserkovskii et al., 2013; Takahashi and Sugimoto, 2020).

Interestingly, unlike hairpins, the formation of the R-loop is

not affected by AGG interruption within the CGG repeat tract

(Reddy et al., 2011) suggesting that they are formed in most

repeat expansion disorders (REDs) that become

heterochromatinized.

CGG/CCG repeat associated secondary
structures play a role in the expansion of
CGG repeats in the FMR1 gene

FMR1 is flanked by two origins of replication (ORIs): One

45 kb upstream and one 45 kb downstream (Gerhardt et al.,

2014). Inactivation of upstream ORIs in FM human

embryonic stem cells (hESCs) and PM cells most likely

occurs during germ cell generation and the early stages of

embryogenesis when rapid cell division and more ORIs are

FIGURE 2
Representation of non-canonical secondary structures formed by CGG (blue) or CCG (red) repeat expansions on the respective strands of
FMR1. (A) Hairpin created on sense (blue) and antisense (red) strands, (B) a G-quadruplex formed on a sense (blue) strand or an i-motif structure
formed on the antisense strand (red), and (C) an R-loop formed by the annealing of nascent RNA and non-template strand (red). The unpaired loops
are shown in green.
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simultaneously required to complete genome replication.

During replication, hairpin and tetrahelical structures have

been observed to pause DNA polymerases in both in vitro and

in vivo studies (Viguera et al., 2001; Murat et al., 2020),

resulting in the probability of replication irregularities and

repeat instability. When such structures are formed on the

Okazaki fragments of the lagging strand, the polymerase slips,

resulting in the expansion of repeats in the daughter strand

(Figure 3A). In contrast, a hairpin on the template of the

leading strand causes the polymerase to skip the loop,

resulting in contraction of the repeat in the daughter strand

(Kim and Mirkin, 2013). Replication difficulties may also

explain why offspring from male PM carriers do not inherit

expanded or FM alleles. This is because, unlike post-mitotic

oocytes, sperm cells undergo multiple rounds of replication

before fertilization, which could provide selective pressure for

expansion in male PM carriers compared to female PM

carriers.

Repeat expansion can also occur during the repair of

secondary structures through redundant repair events that

are not protective but are harmful either by leading to repeat

expansion or contraction (Salinas-Rios et al., 2011; Pluciennik

et al., 2013). Genome-wide association studies (GWAS) in

patient cohorts with various repeat expansion disorders

(REDs) have implicated a variety of mismatch repair

(MMR) proteins such as mutS homolog 3 (MSH3), mutL

homolog 1 (MLH1), and mutL homolog 3 (MLH3) as

important modifiers of repeat expansion and disease

severity. These proteins are required for repeat expansion

in FXDs and in several RED mouse models (Schmidt and

Pearson, 2016; Kadyrova et al., 2020). For example, in an FX

PM mouse model, overexpression of MSH2 increased the

frequency of both intergenerational CGG repeat expansion

and somatic expansion, whereas ablation of MSH2 reduced

both repeat number and expansion frequency in a dose-

dependent manner (Lokanga et al., 2013; Lokanga et al.,

2014). Similarly, in mESCs derived from FX PM mice, the

point mutation D1185N in the endonuclease domain of

MLH3 precludes repeat expansion, suggesting its

importance in this process (Hayward et al., 2020). In

addition to MutSβ (an MSH2 and MSH3 heterodimer) and

MutSγ (an MSH2 and MSH6 heterodimer) (López Castel et al.,

2010; Zhao et al., 2015; Zhao et al., 2016), three other

mammalian protein complexes, MutSα, MutLα, and MutLβ,

FIGURE 3
Repeat instability models. (A) Model of repeat instability based on the Ori-switch. The absence of replication ORI upstream of the CGG repeat
track causes formation of hairpin-like secondary structures on the lagging strand, leading to polymerase slip and resulting in repeat expansion in the
new daughter strand. (B) Model of repeat instability based on mismatch repair (MMR). Repeat instability occurs by causing a nick at the base of
loopouts that are bound by mismatch repair factors MutSβ or MutLγ, and are processed via a DSB to generate expansions. MutLγ endonuclease
activity can be directed by a nick to cleave the opposite strand in a concerted manner to create a DSB. Out-of-register annealing could result in the
activation of via the non-homologous end joining (NHEJ) or microhomology-mediated end joining (MMEJ) pathway. (C) Base excision repair (BER)
model of repeat instability. DNA glycosylase recognizes the oxidized base and APEI creates a nick, leaving a single-stranded break. Strand slippage
results in the formation of repeat-associated hairpins either on the lesion or on the opposite non-lesion strand, leading to a multinucleotide gap. (D)
Nucleotide excision repair (NER) model of repeat instability. RNA polymerase stalls because of R-loop formation and/or the formation of secondary
structures on the non-template strand. Stalled transcription recruits transcription arrest factors, including CSB and XPG, which nicks the repeated
region at two different sites, and thus removes this fragment. DNA pol then refills this gap via transcription-coupled-NER (TC-NER). Repetitive
regions in DNA (green) and RNA (yellow) are shown.
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play important roles in expansion (Figure 3B) (López Castel

et al., 2010; Miller et al., 2020; Zhao and Usdin, 2021).

Although these studies have suggested that the MMR

pathway plays a role in repeat expansion, the mechanism

by which MMR substrates are generated remains unclear.

Secondary structures formed during replication or

transcription are vulnerable to oxidative damage and the

most common oxidation product is 7,8-dihydro-8-

oxoguanine (8-oxoG) (Jarem et al., 2011). As a result, base

excision repair (BER) of 8-oxoG results in strand displacement

synthesis due to polymerase slippage, resulting in the

formation of repeat-associated hairpins on either the lesion

or the opposite non-lesion strand (Lokanga et al., 2015)

(Figure 3C). Therefore, repairing one lesion increases the

possibility of generating additional oxidized bases and cycle

repeat instability (Jarem et al., 2011). The observation that the

treatment of FXD mouse models with potassium bromate

(KBrO3) resulted in a significant increase in both 8-oxoG

and the frequency of germline expansion supports the role of

oxidative damage in CGG repeat expansion (Entezam et al.,

2010). However, this study did not provide any evidence of

somatic expansion. MutLγ function is partly dependent on

cytosine deamination and AP endonuclease 1 (Apn1) activity,

which act on dsDNA (Su and Freudenreich, 2017; Zhao et al.,

2018). Therefore, R-loop displacement may act as a substrate

for MutLγ, resulting in a slipped strand structure with hairpins

on both strands (Reddy et al., 2014). Moreover, in FXS, MutLγ
recognizes hairpin junctions as Holliday junctions, nicks

both strands, and results in a double stranded break (DSB)

in the CGG repeats (Gazy et al., 2019). In addition, a nick can

direct MutLγ endonuclease activity to cleave the opposite

strand in a concerted manner to generate DSBs

(Figure 3D). A recent study has reported that FXS cells

show more DSBs that colocalize with R-loop-forming

sequences. These R-loop-induced DSBs decrease in number

once exogenous FMRP is expressed in FXS cells, suggesting

that FMRP prevents the gene from forming an R-loop

(Chakraborty et al., 2021).

CGG/CCG repeat associated secondary
structures play a role in the pathogenesis
of FXTAS

Normal FMR1 alleles are transcriptionally active and are

correlated with normal FMRP production (Figure 5A). The PM

allele is associated with euchromatization and transcriptional

activation of the FMR1 gene in PM-related disorders, such as

FXTAS and FXPOI. This was evidenced by the increased levels

of CGG-containing FMR1 mRNA (up to eight-fold) with

relatively unchanged or slightly reduced FMRP levels in PM

carriers. FMR1 RNA transcripts are present in the nuclear

FIGURE 4
Regions and epigenetic modifications in the FMR1 promoter are shown. (FREE1 region (blue), CpG island (red), CGG repeat (yellow), exon 1, and
FREE2 intron 1 segment are highlighted (yellow). (A) In normal and PM alleles, the CGG repeats in the promoter region are flanked by 5′ and 3′ stable
epigenetic boundaries (DNAmethylation (lower) and repressive histonemarks (lower), allowing transcription of the FMR1, ASFMR1, FMR4, FMR5, and
FMR6 genes. (B) The 5′ and 3′ epigenetic boundaries were abolished in FM, allowing DNA methylation to spread throughout the promoter
region. DNA methylation (higher) and repressive histone marks (higher).
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inclusions (NIs) of postmortem FXTAS brains (Tassone et al.,

2004). Related inclusions were found in FXTAS disease model

systems. Although higher RNA levels are associated with

increased transcription initiation, rather than increased

transcript stability (Tassone et al., 2007), the exact

mechanism of hyperexpression remains unknown. Several

points of evidence may explain hyperexpression of the PM

allele. First, both in vitro and in vivo studies have linked PM

alleles, as well as long tracts of CGG/CCG repeats, to a

transcriptionally active euchromatic configuration of the

FMR1 locus (Figure 4A). This may increase the accessibility

of transcription factors or chromatin modifiers to promote

transcription initiation. Consistent with this, the

FMR1 promoter in PM alleles showed almost two times

higher acetylation of histone-H3 and -H4 compared to

normal alleles (Todd et al., 2010). Secondly, FMR1 mRNAs

with CCG repeats in the PM range form hairpin structures.

These structures may directly bind to factors that remodel

chromatin to regulate FMR1 transcription or cause stalling

of the 40 S ribosomal subunits, resulting in altered

transcription start sites and decreased FMRP levels (Usdin

and Woodford, 1995). Third, unlike the stable R-loops found

in FXS, R-loops associated with PM alleles are susceptible to

chromatin decondensation (Wang et al., 1996; Wang, 2007;

Powell et al., 2013). As nascent FMR1 and R-loops have been

identified as targets of DNA methyltransferase 1 (DNMT1),

nascent FMR1 RNA and co-transcriptional R-loop structures

may interact with DNMT1, preventing it from performing

normal DNA methylation at the FMR1 locus (Di Ruscio

et al., 2013). The absence of FXTAS symptoms in FXS

patients and the absence of FXS in older FXTAS patients

suggests that FMR1 mRNA repeats play a direct role in

FXTAS pathology. In model systems, ectopic expression of

riboCGG repeats leads to the production of inclusions,

disruption of the nuclear lamin A/C architecture, and

induction of cell toxicity (Hagerman, 2013). Several mutually

non-exclusive molecular mechanisms have been proposed for

FXTAS (Figure 5B): RNA gain of function or sequestration

type of mechanism has been proposed for REDs such as

spinocerebellar ataxia type 8 (SCA8), as well as myotonic

dystrophy type 1 (DM1) (La Spada and Taylor, 2010; Todd

and Paulson, 2010). According to this model, cellular toxicity is

caused by partial sequestration of specific RNA-binding

proteins (RBPs) from their normal functions by hairpin

structures (Figure 5B). Some of the sequestered

proteins identified in FXTAS patients and model systems

include heterogeneous nuclear ribonucleoproteins (hnRNP

A2/B) and Pur α (Jin et al., 2007; Sofola et al., 2007;

FIGURE 5
The non-canonical DNA and RNA structures are linked to FXTAS and FXS. (A) The presence of normal alleles results in normal transcription and
FMRP synthesis. (B) The PM allele causes the formation of R-loops in DNA and hairpins (in DNA or RNA). Hairpin-containing FMR1 transcripts can bind
and sequester rCGG specific RBPs or induce RAN translation. (C) The development of a longer R-loop permits the recruitment of PRC2 to the
promoter for repressive histone modification.
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Hagerman and Hagerman, 2016), which are involved in various

processes of DNA metabolism, including transcriptional

activation. Sequestration of muscleblind-like splicing

regulator 1 (MBNL1) and SRC associated mitosis of 68 kDa

(Sam68) are involved in mRNA splicing defects in FXTAS

cellular models (Sellier et al., 2010). Similarly, the

sequestration of Drosha and DiGeorge syndrome critical

region 8 complex (Drosha-DGCR8) is involved in the

processing of miRNA precursors in the nucleus (Sellier et al.,

2013) and has been linked to the reduced generation of mature

miRNAs in the brains of FXTAS patients. Moreover,

overexpression of most RBPs has been shown to reduce

RNA toxicity and improve phenotypes in FXTAS disease

models (Hagerman, 2012). Recently, it has been found that

various DNA helicases, such as human DNA helicase B, remove

CGG repeat-associated secondary structures by unwinding

(Guler et al., 2018). Consistent with this, R-loop formation

can be prevented by RNA helicases, as overexpression of the

Drosophila ortholog of p68/DDX5 RNA helicase, Rm62 (one of

the sequestered proteins along with Pur α), prevents

neurodegeneration in transgenic flies expressing riboCGG

repeats within the PM range (Qurashi et al., 2011). Another

proposed mechanism for FXTAS pathogenesis is RAN

translation, which is thought to be triggered by RNA

hairpins acting as impediments to ribosomes that favor

noncanonical translation at suboptimal initiation codons

upstream of the true initiation codon. In FXTAS, the non-

coding region of FMR1 mRNA is translated into multiple RAN

translation products, including homopolymeric proteins such

as FMRpolyG, whose length correlates with the number of CGG

repeats (Todd et al., 2013). RAN translation has been detected

in several other REDs such as amyotrophic lateral sclerosis,

frontal dementia (ALS-FTD), and SCA8, suggesting shared

disease mechanisms (Cleary and Ranum, 2013). The

FMRpolyG peptide was found in ubiquitin-positive

inclusions in the brains of FXTAS patients, and has been

directly linked to CGG repeat-associated toxicity in FXTAS

disease models (Todd et al., 2013; Buijsen et al., 2014; Sellier

et al., 2017). FMRpolyG binds to CGG-RNA quadruplex

structures in vitro, promotes aggregate formation, and alters

the ubiquitin-proteasome system (UPS) in an FXTAS model

system. In addition, FMRpolyG interacts with lamina-

associated polypeptide 2 beta (LAP2β), a nuclear membrane

protein, and rescues neuronal cell death in a mouse FXTAS

model (Sellier et al., 2013; Todd et al., 2013; Hoem et al., 2019).

The third proposed molecular mechanism involves an altered

DNA damage response (DDR) molecular signalling pathway

due to co-transcriptional R-loops (Aguilera and García-Muse,

2012; García-Muse and Loops, 2019). Such R-loops are

susceptible to single- and double-strand breaks (Cristini

et al., 2019). Corroborating this, γH2AX, a marker of DSBs,

has been identified in NIs in FXTAS brains (Iwahashi et al.,

2006; Garcia-Arocena and Hagerman, 2010; Hoem et al., 2011).

Similarly, DSB-activated ataxia-telangiectasia mutated kinase

(ATM) has been observed in FXTAS animal models (Robin

et al., 2017).

CGG/CCG repeat associated secondary
structures play a role in the pathogenesis
of FXS

The transcriptionally inactive FM allele is linked to the

heterochromatic status of FMR1, as has been observed in

individuals with FXS. During embryonic development, de

novo DNA methyltransferases (DNMTs) establish cytosine

methylation across the entire promoter, including the fragile

X related element 1 (FREE1), CpG island, CGG repeat, and

fragile X related element 2 (FREE2) regions of FMR1 gene

(Oberlé et al., 1991; Naumann et al., 2009). However, in rare

FXS individuals, the unmethylated full mutation (UFM) allele

may represent the methylation status prior to FMR1 silencing,

which occurs around 11 weeks of gestation (Willemsen et al.,

2002; Colak et al., 2014; Mor-Shaked and Eiges, 2018). Thus, the

extent to which silencing occurs in early FXS embryos remains an

important open question. In addition, FMR1 silencing may

require several other epigenetic regulatory mechanisms.

Histone modifications occur in FMR1 promoter-associated

chromatin, with inhibitory histone marks (H3K9me2,

H3K9me3, H3K27me3, and H4K20me3) and fewer active

histone marks (H3K9ac and H4K16ac) catalyzed by histone

methyltransferase (HMT) and histone deacetylases,

respectively (Figure 4B) (Coffee et al., 1999; Biacsi et al., 2008;

Li et al., 2018). Polycomb group proteins cause the trimethylation

of histone 3, such as H3K9me3, H3K27me3, and H4K20me3.

Specifically, polycomb repressive complex 2 (PRC2), a

transcriptional repressor complex, is required for histone

3 trimethylation at lysine 27 (H3K27me3), which is a late

modification required for gene silencing. Consequently,

PRC2 inhibition prevents H3K27me3 in the FMR1 5′-UTR
(Kumari and Usdin, 2014). PRC2 binds to G-rich RNAs,

specifically G4-forming RNA sequences and R-loops, to

mediate gene silencing at multiple loci (Skourti-Stathaki et al.,

2019). Therefore, it is possible that the R-loops and

FMR1 transcript aid gene silencing by facilitating

PRC2 recruitment, either directly or indirectly (Figure 5C).

Accordingly, FMR1 mRNA, and thus R-loops prevents

PRC2 mediated gene silencing during the neuronal

differentiation of embryonic stem cells (Colak et al., 2014). In

addition, decreased PRC2 recruitment to FM alleles is reactivated

by 5-azadeoxycytidine (Kumari and Usdin, 2014). It is worth

noting that given the proposed role of R-loops in

hyperexpression of the PM allele, the role of the R-loop in

gene silencing in the case of the FM allele appears

paradoxical. The R loops associated with FM alleles are more

stable and longer, which may account for the differences in the
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effects of repeat length, transcriptional rate, protein expression,

and cell stage (Colak et al., 2014; Groh and Gromak, 2014;

Loomis et al., 2014). As a result, this R-loop may further

promote the loss of active chromatin marks in the flanking

regions of the FMR1 promoter, transcriptional termination,

and DNA damage.

Novel CGG/CCG repeats in the human
genome suggest their broad involvement
in neurological diseases

Long-read and whole-genome sequencing has revealed

additional STRs within the genome that are more widespread

than previously thought (Depienne and Mandel, 2021). A small

subset of these STRs has identical sequences, sizes, and genomic

locations. In addition, they may be unstable during

intergenerational transmission and exhibit expansions or

contractions that result in neurological disorders with related

clinical manifestations and pathogenic mechanisms (Liufu et al.,

2022). For example, similar to FXS, expanded CGG repeats are a

causative genetic contributor to Desbuquois dysplasia 2

(DBQD2) and Baratela-Scott syndrome (BSS). DBQD2 and

BSS are characterised by skeletal dysplasia and share several

clinical features. In both cases, CGG expansion in the 5′-UTR of

XYLT1 leads to gene silencing through hypermethylation

(LaCroix et al., 2019). Similarly, hypermethylation caused by

CGG expansion in the 5′-UTR of disco-interacting protein

2 homologue B (DIP2B) (Winnepenninckx et al., 2007) and

AF4/FMR2 family member 3 (AFF3) causes FRA12A-related

neurocognitive and ID disorders (Knight et al., 1993). Similar

clinical manifestations have been observed in individuals with

deletions or other loss-of-function mutations in these genes,

further supporting the hypothesis that CGG expansion in

these genes is pathogenic via a loss-of-function mechanism.

CGG expansion in several other genes can also manifest as

dominant neurodegenerative disorders via mechanisms similar to

those described for FXTAS. The GGC repeat, located in the 5′-UTR
of NOTCH2NLC, is a causative genetic contributor to neuronal

intranuclear inclusion disease (NIID) (Deng et al., 2019; Ishiura

et al., 2019). Pathogenic NOTCH2NLC expansions have been

identified in patients with essential tremor (ETM6, MIM

#618866), C9ORF72-associated amyotrophic lateral sclerosis/

frontal temporal dementia (ALS/FTD) (Tian et al., 2019; Jiao

et al., 2020), Parkinsonism (Ma et al., 2020), and multiple system

atrophy (Fang et al., 2020). In addition, oculopharyngodistal

myopathy type 1–4 (OPDM), group of adult-onset inherited

neuromuscular disorders, are caused by CGG repeat expansions

in the 5′UTR of LRP12 (Ishiura et al., 2019), GIPC1 (Deng et al.,

2020), NOTCH2NLC (Yu et al., 2021), and RILPL1 (Yu et al., 2022),

respectively. Similarly, CGG expansion in NUTM2B-AS1 has been

identified as the causative agent of oculopharyngeal myopathy with

leucoencephalopathy (OPML) (Ishiura et al., 2019). Interestingly,

NIID, OPDM, and OPML resemble FXTAS in terms of clinical

symptoms, radiological imaging, and histological characteristics,

such as the presence of distinctive eosinophilic ubiquitin-positive

NIs (Viguera et al., 2001). In patients with NIID, RNA molecules

with expanded CGG repeats form RNA foci that sequester RBPs

into p62-positive NIs (Mori et al., 2012). In addition, similar to

FXTAS patients, the translation of expanded GGC repeats resulted

in the accumulation of polyG-containing proteins in the NIs in both

the NIIDmodel system and patients. Together, these results suggest

a pathological mechanism involving toxic gain-of-function at the

RNA level and/or RAN translation. Although the formation of

polyG in OPML and OPDMs has not yet been elucidated, in the

C9ORF72-associated amyotrophic ALS/FTD, translation of the

polyglycine-alanine dipeptide repeat (polyGA DPR) protein

occurs because of G4C2 repeats located in the first intron of the

C9ORF72 gene (Tabet et al., 2018). While these examples

demonstrate common pathogenic mechanisms in several distinct

diseases, it remains unclear whether they reflect general disease

mechanisms. It is worth noting that DNA methylation may be

protective in some NOTCH2NLC-associated NIIDs (Ishiura and

Tsuji, 2020), however, it increases RNA and peptide toxicity in

C9ORF72-associated ALS/FTD (Zhu et al., 2020). Therefore,

understanding how DNA methylation affects the progression of

such disorders can lead to improved treatments such as those based

on Cas9 methylation editing, which has recently been proposed for

FXS (Liu et al., 2018).

Conclusion and perspective

FXTAS and FXS are two primary diseases caused by dynamic

mutations in FMR1, and have distinct clinical manifestations and

molecular pathogenesis. FXTAS is a late-onset

neurodegenerative disorder that typically affects

men >50 years of age. On the other hand, FXS is a

neurodevelopmental disease and the most common type of

inherited intellectual disability. Both are caused by the

abnormal expansion of CGG repeats beyond the normal range

in the 5′-UTR of the FMR1 gene. PM alleles (CGG expansions of

55–200 repeats) were associated with elevated FMR1 mRNA

levels and relatively normal FMRP levels. In contrast, FM alleles

(CGG expansion of ≥200 repeats) typically result in

transcriptional silencing and, consequently, the loss of

FMR1 protein (FMRP). Abnormal CGG expansions form a

variety of secondary structures that are linked to the

pathology and transmission risk in both diseases. As CGG/

CCG/GGC repeats with characteristics similar to those of

CGG repeat expansions associated with FXS or FXTAS are

abundant in the human genome, these studies suggest that

CGG repeats are broadly involved in neurological diseases.

Although several rare folate-sensitive fragile sites associated

with neurodevelopmental diseases have been cloned as

expanded CGG repeats, the number of studies of CGG/
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GGC repeat-related disorders has increased in recent years. A

recent study using whole-genome STR analysis discovered

hundreds of unique-CGG repeats with highly variable repeat

lengths and intergenerational instability, most of which are

linked to known neurodevelopmental disease genes or strong

candidate genes (Annear et al., 2021). Furthermore, several GGC

repeat-related disorders, such as ET and NIID, have been

identified to have clinical and molecular overlaps with FXTAS

(Xu et al., 2021). In these diseases, GGC repeats occur at the 5′-
UTR of the respective gene and do not involve the open reading

frame of the gene, implying that GGC and CGG repeat RNAs

share the same secondary structures that may play an important

role in disease pathogenesis and are thus amenable to

pharmacological or molecular therapy. In this context,

antisense oligonucleotides (ASOs) containing CCG repeats

have been shown to reduce R-loop formation and alleviate

the downstream effects of RNA hairpin formation (Derbis et al.,

2021). Similarly, small molecules that inhibit protein binding to

the hairpin structure or reduce RBP sequestration or RAN

translation have been shown to alleviate disease pathology in

FXTAS model systems (Disney et al., 2012; Hagihara et al.,

2012; Qurashi et al., 2012; Tran et al., 2014; Verma et al., 2019;

Verma et al., 2020). Despite these encouraging results, a deeper

understanding of the underlying pathophysiology of these

diseases is still required. Recently, small molecules that

reprogram the epigenetically determined transcriptional state

of key genes by stabilizing G4 structures in DNA have been used

to develop epigenetic therapies (Guilbaud et al., 2017).

Therefore, understanding the secondary structures formed by

CGG/GGC repeats and their downstream effects may lead to a

better understanding of disease pathology as well as the

development of therapeutics to alleviate their pathological

effects.
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