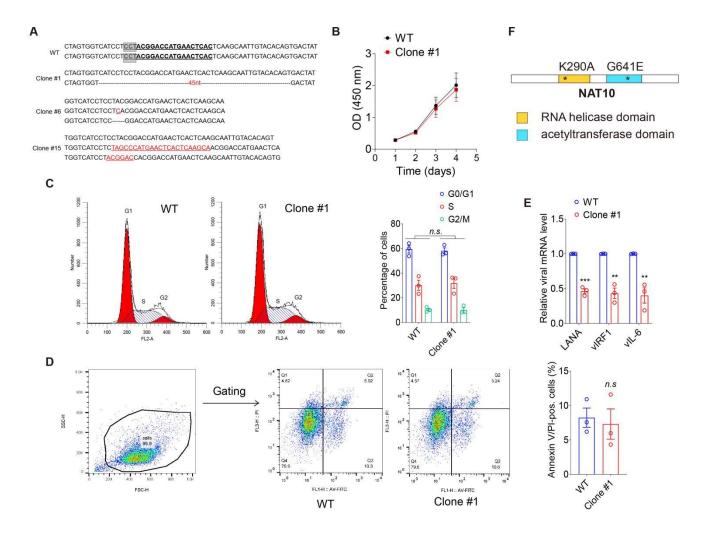
Supplementary Information

NAT10-dependent *N*⁴-acetylcytidine modification mediates PAN RNA stability, KSHV reactivation, and IFI16-related inflammasome activation

Qin Yan, ^{1, 2, 3, 4†} Jing Zhou, ^{2†} Ziyu Wang, ^{2†} Xiangya Ding, ^{1†} Xinyue Ma, ² Wan Li, ^{2, 3, 4} Xuemei Jia, ^{1*} Shou-Jiang Gao, ⁵ and Chun Lu ^{1, 2, 3, 4*}

¹ Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing 210004, P. R. China


² Department of Microbiology, Nanjing Medical University, Nanjing 211166, P. R. China

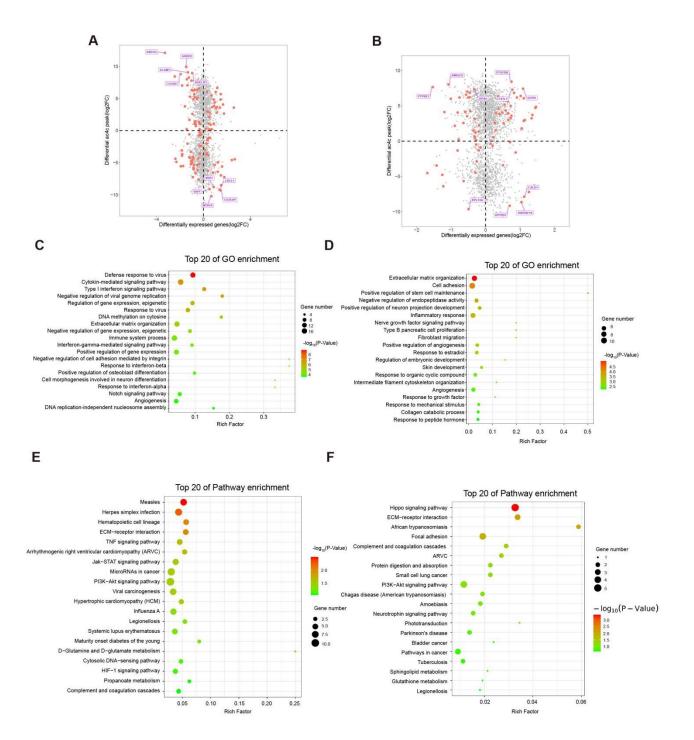
³ Changzhou Medical Center, Nanjing Medical University, Nanjing 211166, P. R. China

⁴ Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing 211166, P. R. China

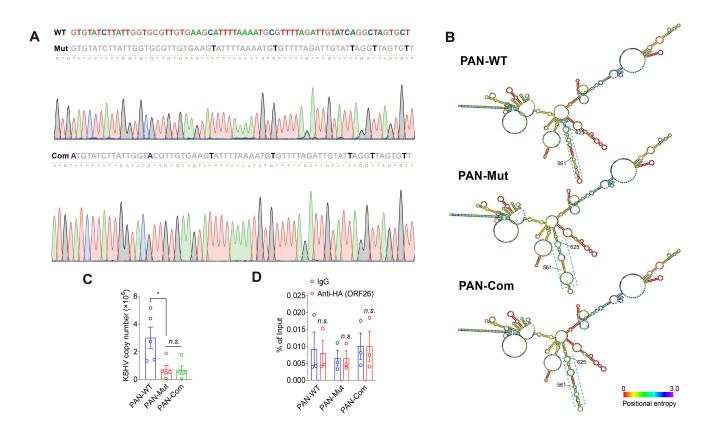
⁵ Tumor Virology Program, UPMC Hillman Cancer Center, and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pk 15232, USA

† These authors contributed equally to this work

Supplementary Figure 1. Generation of NAT10 knockdown cells based on CRISPR/Cas9 editing technology.

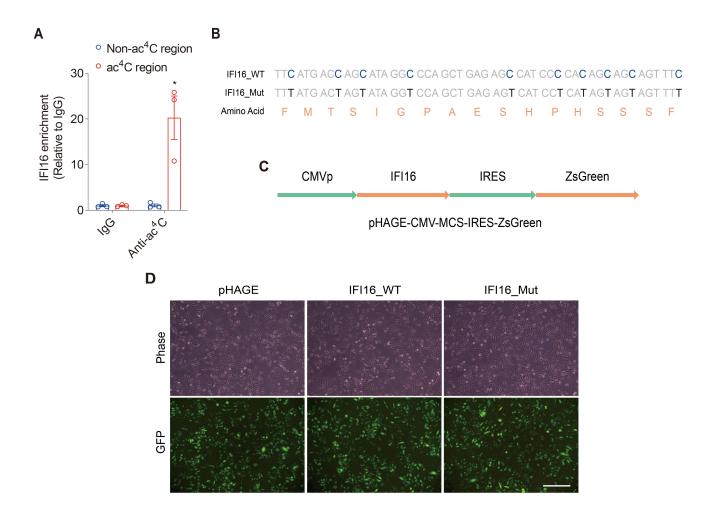

- (A). Diagram of the CRISPR-targeted genomic exon 5 region of NAT10 in iSLK-KSHV cells (WT) and three CRISPR-Cas9 clones. The mutated sequences of CRISPR Clones #1, #6, and #15 were shown. The Cas9 PAM (5'-NGG-3') was shown in grey boxes, while the indels and substitutions were shown in red. The sequences targeted by the gRNAs were marked underlined and bolded. Unless otherwise specified, the NAT10+/- clones used in this study was Clone #1.
- **(B).** CCK8 assays were performed with cells shown in Clone #1 on days 1, 2, 3 and 4. Data were analyzed by two-way ANOVA versus the WT group.
- **(C).** Cell cycle assays were performed with cells shown in Clone #1. *n.s.*, not significant by two-sided *t* test.
- **(D).** Cell apoptosis assays were performed with cells shown in Clone #1. Gating strategy is shown in the left lane. *n.s.*, not significant by two-sided *t* test.
- **(E).** Viral transcripts were quantized by RT-qPCR in NAT10^{+/+} (**WT**) or NAT10^{+/-} (**Clone #1**) cells. **, P < 0.01 and ***, P < 0.001 by two-sided t test.
- (F). Schematic illustration of NAT10 functional domains and point mutations.

Data represent mean \pm SEM from n = 3 biological replicates shown as points. Source data are provided in a Source data file.


Supplementary Figure 2. Mappings and motifs of ac⁴C peaks and NAT10-binding sites.

- (A). ac⁴C peaks in 18S rRNA, 28S rRNA and KSHV vIL-6 transcript were compared between iSLK-KSHV cells with (NAT10+/-) or without (WT) NAT10 knockdown by acRIP-seq. Input and acRIP reads are marked as blue and red, respectively.
- **(B).** Metagene analysis of the distribution of acRIP-seq-mapped ac⁴C sites and RIP-seq-mapped NAT10-bound RNA sites in induced iSLK-KSHV cells, across the untranslated regions (UTRs) and coding regions (CDS) of cellular transcripts (left lane) or lncRNAs (right lane).
- (C). Enriched sequence motifs in ac⁴C peaks (acRIP-seq, upper lane) and NAT10-binding sites (NAT10-RIP, lower lane).

Supplementary Figure 3. GO and KEGG enrichment analysis of cellular ac⁴C mRNA regulated by KSHV and NAT10.


- (A-B). Volcano plots of top 10 differential mRNAs in iSLK-Puro and iSLK-KSHV cells (A), or in NAT10^{+/+} and NAT10^{+/-} iSLK-KSHV cells (B).
- (C-D). Top 20 GO enrichment of dysregulated mRNAs in iSLK-Puro and iSLK-KSHV cells (C), or in NAT10^{+/+} and NAT10^{+/-} iSLK-KSHV cells (D).
- **(E-F).** Top 20 KEGG pathways enrichment of dysregulated mRNAs in iSLK-Puro and iSLK-KSHV cells (**E**), or in NAT10^{+/+} and NAT10^{+/-} iSLK-KSHV cells (**F**).

Supplementary Figure 4. The structure prediction of PAN RNA with mutation.

- **(A).** The ac⁴C sites in wild type (**WT**) PAN RNA (561 to 625 nt) were mutated from C (marked as blue) to T (marked as black) to obtain ac⁴C mutant PAN (**Mut**), while G561 and G576 in ac⁴C mutant PAN were mutated to A576 and A561 (marked as orange) to generate compensated mutant PAN (**Com**). The mutation sites were verified by Sanger sequencing (below).
- **(B).** WT PAN (**PAN-WT**), ac⁴C mutant PAN (**PAN-Mut**) and compensated mutant PAN (**PAN-Com**) were submitted to the RNAfold web server (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi) for structure analysis. The blue dashed box indicates the mutation region.
- **(C).** iSLK-KSHV cells with WT PAN (**PAN-WT**), ac⁴C mutant PAN (**PAN-Mut**) and compensated mutant PAN (**PAN-Com**) were induced by doxycycline for 72 h. Real-time DNA-PCR was then performed to detect viral copy number by the assessment of ORF26. *, P < 0.05 by one-way ANOVA. n.s., not significant.
- **(D).** The iSLK-Puro cells transduced by HA-tagged KSHV ORF26 were subjected to the anti-HA (ORF26) or immunoglobulin G (IgG) RNA immunoprecipitation, and the WT PAN (**PAN-WT**), ac⁴C mutant PAN (**PAN-Mut**) and compensated mutant PAN (**PAN-Com**) were examined by RT-qPCR. *n.s.*, not significant by two-sided *t* test versus the IgG group.

Data represent mean \pm SEM from n = 3 (**D**) or n = 5 (**C**) biological replicates shown as points. Source data are provided in a Source data file.

Supplementary Figure 5. Construction of IFI16 mutant into pHAGE plasmid.

- **(A).** RNA immunoprecipitation was performed with anti-ac⁴C antibody (**Anti-ac⁴C**) or IgG (**IgG**), and subsequent RT-qPCR was used to detect ac⁴C enrichment on acetylated (**ac⁴C region**) or non-acetylated (**Non-ac⁴C region**) regions of IFI16 mRNA. *, P < 0.05 by two-sided t test versus the non-ac⁴C region.
- **(B).** ac⁴C sites in IFI16 mRNA (exon 9) were mutated from C to T without changing its amino acids sequence in an internal ribozyme entry site (IRES).
- (C). IFI16 coding sequence was constructed into an IRES based plasmid.
- (**D**). The fluorescent intensity was showed after IFI16_WT (**IFI16_WT**) and IFI16_Mut (**IFI16_Mut**) or their control (**pHAGE**) plasmids transfection in HEK293T cells. Scar bars, 40 μm.

Data represent mean \pm SEM from n = 3 (**A**) biological replicates shown as points. Source data are provided in a Source data file.

Supplementary Table 1. Oligonucleotides used for RT-qPCR, PCR and CRISPR/Cas9

TGGCGAGGTCAAGCTTAACTTC KSHV ORF57-F CCCCTGGCCTGTAGTATTCCA KSHV ORF57-R ATATGTCGCAGGCCGAATAC KSHV ORF65-F CCACCCATCCTCCTCAGATA KSHV ORF65-R CGGATTGAGTGTAAATCGGGC KSHV PAN-F (Also for ac4C-RIP) TGCTTCACAACGCACCAATAAG		
ATATGTCGCAGGCCGAATAC KSHV ORF65-F CCACCCATCCTCAGATA KSHV ORF65-R CGGATTGAGTGTAAATCGGGC KSHV PAN-F (Also for ac4C-RIP)		
CCACCCATCCTCAGATA KSHV ORF65-R CGGATTGAGTGTAAATCGGGC KSHV PAN-F (Also for ac4C-RIP)		
CGGATTGAGTGTAAATCGGGC KSHV PAN-F (Also for ac4C-RIP)		
TGCTTCACAACGCACCAATAAG KSHV PAN-R (Also for ac4C-RIP)		
CCGAGGACGAAATGGAAGTG KSHV LANA (ORF73)-F		
GGTGATGTTCTGAGTACATAGCGG KSHV LANA (ORF73)-R		
AAAGCGTCCAGGCCACCAGA KSHV K8.1-F		
GGCAGAAAATGGCACACGGTTAC KSHV K8.1-R		
AGCCGAAAGGATTCCACCAT ORF26-F		
GCTGCGGCACGACCAT ORF26-R		
TCCAGCAGTTTCTCACCA IFI16-F		
GTCCTGGAAAATGACTCCC IFI16-R		
GTATTCTAGAGCCCGCTGCTA vIL-6-F		
TTAAATCCTATTAACCCGCAG vIL-6-R		
GTCTCTGCGCCATTCAAAAC vIRF1-F		
CCGGACACGACAACTAAGAA vIRF1-R		
CAACAACCTGCATGGATTCGAG POLR2H-1F		
AAGGCTAGCTTCTTCATCAGGA POLR2H-1R		
TTTTCCCACATTGGCCTGAGAGC PAN-F (non-acetylated region)		
TGAATCCAATGCAATAACCCGCAAG PAN-R (non-acetylated region)		
ACAAATAAGCATTGATTCCTGCAT IFI16-F (non-acetylated region)		
ATCTTTACAGACATAAGTGAGCCT IFI16-R (non-acetylated region)		
PCR primers		
TTGCATGACCAGCCCTTTCTAACGCCCCCTTC Validation of CRISPR editing-F		
TAGGCATACTCATGGACCCTG Validation of CRISPR editing-R		
CGCTTCACCTATGGATTTTGTGCTC Validation of PAN mutant-F		
AGCTCTAGGCACGTTAAATTGTCA Validation of PAN mutant-R		

GCCACTTTGCCCTAAATGTGACAATCTGGATGTGTA		
TCTTATTGGTGCGTTGTGAAGTATTTTAAAATGTGTT	Amplification of PAN ac ⁴ C mutant-F	
TTAGATTGTATTAGGTTAGTGTTAGGATGACGACGAT	Amplification of LAN ac C mutant-	
AAGTAGGG		
CTTACACTGGAAAAATAAACACACCATTACAACACT		
AACCTAATACAATCTAAAACACATTTTAAAATACTTCA	Amplification of PAN ac⁴C mutant-R	
CAACGCACCAATAAGATACACACCAACCAATTAACCA	Amplification of PAN ac C mutant-N	
ATTCTGATTAG		
GCCACTTTGCCCTAAATGTGACAATCTGGATATGTA		
TCTTATTGGTACGTTGTGAAGTATTTTAAAATGTGTT	Amplification of PAN compensatory	
TTAGATTGTATTAGGTTAGTGTTAGGATGACGACGAT	mutant-F	
AAGTAGGG		
CTTACACTGGAAAAATAAACACACCATTACAACACT		
AACCTAATACAATCTAAAACACATTTTAAAATACTTCA	Amplification of PAN compensatory	
CAACGTACCAATAAGATACATACAACCAATTAACCAA	mutant-R	
TTCTGATTAG		
CRISPR guide RNAs for cloning into LentiCRISPRv2		
CCTACGGACCATGAACTCAC	NAT10	
E Familia D. Daviana		

F, Forward; R, Reverse