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Tracking Cancer Genetic Evolution 
using OncoTrack
Asoke K. Talukder1, Mahima Agarwal1, Kenneth H. Buetow2 & Patrice P. Denèfle3

It is difficult for existing methods to quantify, and track the constant evolution of cancers due to high 
heterogeneity of mutations. However, structural variations associated with nucleotide number changes 
show repeatable patterns in localized regions of the genome. Here we introduce SPKMG, which 
generalizes nucleotide number based properties of genes, in statistical terms, at the genome-wide 
scale. It is measured from the normalized amount of aligned NGS reads in exonic regions of a gene. 
SPKMG values are calculated within OncoTrack. SPKMG values being continuous numeric variables 
provide a statistical metric to track DNA level changes. We show that SPKMG measures of cancer DNA 
show a normative pattern at the genome-wide scale. The analysis leads to the discovery of core cancer 
genes and also provides novel dynamic insights into the stage of cancer, including cancer development, 
progression, and metastasis. This technique will allow exome data to also be used for quantitative LOH/
CNV analysis for tracking tumour progression and evolution with a higher efficiency.

Precision medicine is based on the concept of treatments tailored to patients’ molecular profiles1. SNPs (Single 
Nucleotide Polymorphisms) are the most frequent genetic variations in humans. For some monogenic diseases, 
some SNPs are directly linked to the cause2 of the disease; whereas, for many polygenic diseases, SNPs may even-
tually contribute to an often complex signature linked to the disease phenotype. With the goal of advancing pre-
cision medicine for cancer, most research has been focused on identifying SNPs for the stratification of patients 
at baseline and now more regularly when the patient disease relapses. The SNP profile in cancer is however 
extremely diverse, displaying inter-patient, intra-tumour, inter-metastatic, and intra-metastatic heterogeneity3, 
and is further compounded by genome mosaicism4. This mutational heterogeneity in tumours makes it difficult 
to develop therapies which will benefit many patients5. Additionally, one of the major challenges in anti-cancer 
therapeutics is the evolution of tumours to develop new mutations, making the previous treatments ineffective6. 
In addition, the rapid development of novel cancer immunotherapies is calling for a more holistic approach 
to neo-antigen biomarker and mutational load analysis than targeted sequence analysis7,8. Therefore, if robust, 
reproducible patterns, based on tumour evolution, can be identified within patient populations, this would propel 
the efforts for developing targeted therapies and precision medicine in cancer, benefiting a larger group.

In addition to SNPs, CNVs (Copy Number Variations) and LOH (Loss of Heterozygosity) are present in 
the genome. In CNVs, portions of the genome are deleted, amplified, translocated (intra-chromosome or 
inter-chromosome), or inverted9. Theoretically the number of copies of a section of DNA throughout the human 
genome will be 2 (bi-allelic). But in reality, the number of copies of a localized genomic region could in fact be 
0, 1, 2, 3, 4 or more (any integer value). Copy numbers 0 and 1 represent deletion and LOH respectively. Copy 
numbers 3 and higher integers signify amplification. Thiagalingam et al. in their paper on LOH found that each 
of the five chromosomes analysed was affected by LOH with high frequencies, ranging from 47% to 78%10. The 
experiment showed that there are repeatable patterns in LOH in regions within DNA. Ni et al., showed that CNVs 
also exhibit localized reproducible patterns in cancer11. There is also evidence for the heritability of some localized 
CNVs and LOHs in familial tumours12.

While LOHs/CNVs show some patters at a population level, the phenotypic associations of CNVs, particularly 
with respect to disease association, are not trivial, and are not well understood. Some studies failed to identify sub-
stantial association of overall CNV burden or specific CNVs with disease in genome-wide association studies13,14. 
On the other hand, others have found higher overall CNV burden in tumour samples compared to healthy15,16. 
While one study14 concluded that common CNVs are unlikely to contribute much to disease heritability for many 
diseases, another found that the proportion of rare CNVs was higher in the tumour samples compared to healthy 
samples17. Additionally, despite the uncertainty in association patterns, locus specific associations with CNVs 
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have been described for many diseases, including cancer. For example, homozygous deletion of GSTM1 is found 
to be correlated with cancer prognosis18.

SNPs are binary, categorical, and heterogeneous. CNVs, when looked at as absolute sequence alterations are 
categorical and heterogeneous too. The boundaries (breakpoints) of CNVs can vary over a population, making 
phenotypic association difficult as ‘consensus’ CNV loci need to be identified19. While disease association of 
CNVs may be directly associated with change in copy number (as in the case of deletions or amplifications), it 
is more related to the length of the CNV and the number of genes covered20. This feature of CNVs implies that 
it may be more useful to study phenotypic associations at localized gene level, rather than for the large genomic 
region, where one CNV may span genic, multi-genic, and non-genic regions. Localized CNV polymorphisms 
have been associated with many cancers21,22. There is also evidence that localized CNVs have an impact on phar-
macodynamics due to altered metabolism of compounds23. Such CNVs affect the efficacy and toxicity of drugs 
through regulation of proteins involved in metabolism23. Some CNVs have been associated with high drug toxic-
ity and increased incidence of adverse events due to increase in copy number23.

Although all this evidence indicates that LOHs/CNVs have inherent characteristics specific to a disease, there 
is insufficient evidence to conclusively define locus-disease associations. Since CNVs generally result in a change 
in nucleotide number at specific locations, this presents an opportunity for the quantification of these DNA level 
variations. Though, this will exclude the regions with copy number neutral variations. We hypothesized that the 
disease-specific concordance for localized CNVs is a disease characteristic. We therefore hypothesized that nucle-
otide level loss (or gain) in the coding regions of DNA with copy number 0, 1, 3, …​, N, will show a cancer specific 
homogeneous statistical pattern. Moreover, this gene specific measure will have phenotype association. In other 
words, our hypothesis generalizes the principle of localized LOHs/CNVs for cancer, through the quantification of 
DNA, based on the change in nucleotide number (loss or gain) in the coding regions of the DNA.

DNA pileup is a technique that was originally used by SAMtools24 for measuring the depth of coverage of NGS 
data, and is used in many tools such as, GATK25, XHMM26 etc. We explored the concept of pileup in the context 
of LOHs/CNVs at a quantitative level, but with a different approach. Any LOH, CNV or structural variation in an 
exon, be it a deletion, amplification, or translocation, will have a quantitative effect on the protein product. The 
nucleotide count within the exonic regions of a gene will decrease in case of a deletion, and increase in case of an 
amplification. In the case of translocation, it will decrease at some gene and increase at some other.

Using an adaptation of the pileup concept, we quantified DNA content variation within a gene at the 
genome-wide scale and named this SPKMG. We formulated SPKMG (Sequence Per Kilobase of exon, per 
Megabase of the mappable Genome) measures for each gene. Unlike mutations, which are binary, the SPKMG 
measure for a gene is a real number – i.e., both numeric and continuous. A very high SPKMG value signifies 
amplification of a portion of a gene; a low SPKMG value signifies deletion of a part of the gene; whereas, zero 
SPKMG means the gene has been entirely deleted. Since SPKMG values are real numbers, we will be able to 
employ statistical techniques to unleash the structure and functional relationship of these numbers for a popula-
tion. SPKMG values are calculated within a software which we have named OncoTrack.

We hypothesized that if nucleotide count alterations due to structural variations in the genome are truly 
associated with a tumour state, then we will be able to capture these and find some meaningful phenotypic 
associations through SPKMG. For this, we looked at the SPKMG measure from two perspectives, case/control 
comparative analysis, and control-free analyses using correlation and mutual information. Our goal was to assess 
the usefulness of SPKMG as an improved way of looking for population level patterns for tracking and predicting 
molecular changes in tumours. In this paper we explore the efficacy of SPKMG as a more efficient quantification 
technique for precision medicine and for tracking cancer progression.

To establish our theory, we have used total 69 exome datasets that comprise of 11 non-BRCA1/2 familial breast 
cancer (BC)27, 19 Esophageal Squamous Cell Carcinoma (ESCC) tumour samples (T) with 19 ESCC matching 
germline normal (N) samples28, and 20 healthy (control) samples (H)27,29. The OncoTrack analysis pipeline archi-
tecture is shown in Fig. 1.

Results
Non-BRCA1/BRCA2 Familial Breast Cancer Population.  The SPKMG was computed for the breast 
cancer patients’ data. These are given in Supplementary Table 1. We compared the SPKMG values for the 11 breast 
cancer patients with the reference population of 20 healthy data (Supplementary Table 2). Figure 2(a,b) show the 
MDS plot, constructed using the edgeR30,31 MDS algorithm, and hierarchical clustering for SPKMG for all 31 
samples. It is seen that the breast cancer patients are clustering closely compared to healthy patients (Fig. 2). This 
is in line with Thiagalingam et al.10 and Ni et al.11 observations that there are reproducible patterns in LOHs and 
CNV across the cancer patients. This shows that SPKMG follows a quantitative and normative pattern that has the 
potential to be used to define quantitative properties of a cancer population. To further examine the properties 
of SPKMG, we compared the values between the healthy samples and breast cancer patients, as well as within the 
breast cancer patients.

Breast Cancer Comparative Analysis (Case/Control).  We performed the comparative analysis of the 
breast cancer population and the control population (Supplementary Table 2) using edgeR. We selected the most 
statistically significant genes with p-values ≤​ 1.0e-20 (or adjusted p-values ≤​ 1.0e-17). This gave us 28 genes with 
adjusted p-values ranging from 6.3E-063 to 5.5E-018 (Table 1). An analysis of the COSMIC32 database showed 
that all these 28 genes have been discovered in multiple cancer studies, with study counts ranging from 6 for 
KIR3DL1 to 43 for FLG. All these genes have been widely researched with the number of PubMed citations 
ranging from 8 for SPRRD2 to 92 for FLG (in the References section of COSMIC database). We also performed 
a manual bibliomic analysis to verify the role of these 28 genes in cancer progression; the results are listed in 
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Supplementary Information 1. We hypothesize that these genes are the driver genes for breast cancer, because, all 
these genes are derived from DNA data and are common across multiple cancers.

Enriched Pathways.  From the results of the comparative analysis between cancer and healthy populations, we 
selected the genes with adjusted p-values ≤​ 1.0e-5. 1106 genes were significant following this criteria. Out of these 
1106 genes, 146 genes are part of the 168 KEGG cancer and metabolism related pathways33. The pathway enrich-
ment analysis results from XomPathways34 are in Supplementary Table 3. Seven pathways with adjusted p-values 
(Benjamini-Hochberg) less than 0.05 were obtained. These are, ‘Antigen processing and presentation’, ‘Natural 
killer cell mediated cytotoxicity’, ‘Androgen and estrogen metabolism’, ‘Custom calcium channel’, ‘Toll-like recep-
tor signalling pathway’, ‘Pentose and glucuronate interconversions’, ‘Custom calcium channel A1’. These pathways 
formed three individual clusters, associated with the immune response and initiation of tumours, representing 
oncogenesis and associated inflammation35, calcium channels involved in proliferation and differentiation36, and 
metabolic pathways known to be associated with breast cancer37. These results show that the predisposition to 
breast cancer can be picked up from the peripheral blood of the familial breast cancer patients. The most central 
pathway and gene in the gene-pathway interaction network were the ‘Phosphatidylinositol signalling system’ 
pathway and the gene ITPR1. There is much evidence to support the role of the ‘phosphatidylinositol signal-
ling pathway’ in cancer and its role in insensitivity to calorie restriction38,39. Figure 3 shows the pathway-gene, 
gene-gene, and pathway-pathway graphs for the case/control significant genes and their respective pathways.

Figure 1.  Architecture of OncoTrack pipeline. 

Figure 2.  Clustering of Breast cancer and healthy individuals. (a) MDS plot of SPKMG values of 11 breast 
cancer and 20 healthy samples. Distances were calculated using log fold changes. Marker 1 and Marker 2 in this 
figure are the top two leading log fold change dimensions in the data. (b) SPKMG heatmap and hierarchical 
clustering of the breast cancer and healthy samples.
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Breast Cancer Control-free Analysis using Mutual Information.  The breast cancer control-free 
Mutual Information (MI) network was constructed by using 0.05 as threshold for removing the weakest edge 
of each triple of nodes in parmigene (using ARACNe)40,41 and removing all gene-pairs with MI coefficients less 
than 1. This gave us 1405 genes with high MI. We then did graph theoretic analysis using igraph package42. The 
MI network of the breast cancer population is shown in Fig. 4(a). We selected the top 18 genes that had highest  
degrees (8 and above). All these genes are responsible for multiple carcinomas. These genes are PPP1R15B  
(30 tissues), TTC21B (35 tissues), XIRP2 (47 tissues), KIAA1143 (16 tissues), BCHE (36 tissues), GLRB  
(33 tissues), JAKMIP2 (40 tissues), OR13C8 (19 tissues), ZNF790 (29 tissues), POF1B (38 tissues), ARHGAP24 
(26 tissues), DACH1 (40tissues), LIPI (38 tissues), SPAM1 (34 tissues), DIAPH3 (38 tissues), CSMD3 (49 tissues), 
DCC (44 tissues), and FLRT3 (22 tissues). The tissue numbers are taken from the COSMIC database.

We then looked at the properties of the breast cancer MI network and how it compares with other biological 
networks. The MI network of 1405 genes had 1172 edges. The network had a diameter of 13 and a clustering coef-
ficient of 0.446. Metabolic networks have a clustering coefficient of 0.6743. The degree distribution, P(k), gives the 
probability that a randomly selected node will have k links. We found that the MI network followed a power law 
degree distribution, P(k)~k−α as shown in Fig. 4(c) with an α​ (Alpha) of 2.44. Typically the value of α​ is 2 <​ α​ <​ 3 
with occasional outliers for natural scale-free networks. Biological networks such as protein interaction networks 
and metabolic networks have similar values of alpha (2.4, and 2.2, respectively)43,44. The scale free nature of net-
works is expected to make them more resilient to general attacks. Such networks are less vulnerable to random 
node removal45.The largest degree for the MI network was 12 while the average degree was 1.67. Average path 
length of the MI network was 5.12; whereas, the average shortest path length for protein interaction network is 
6.8, and, it is 2.56 for metabolic networks43. The network centralization was 0.0074, implying deviation from a 
star like topology. The degree based assortativity of the MI network was 0.638, implying that the network was 
assortative in nature. Assortativity of a network is measured from the correlation in degrees of pairs of connecting 
nodes46. In an assortative network, hubs tend to connect to other hubs in the network, whereas in disassortative 
networks, hubs connect to lower degree nodes. Biological networks have been found to display disassortativity, 
where high degree nodes (hubs) are more likely to connect to nodes of lower degree46,47. The assortativity of a 
network is associated with properties such as resilience and evolvability46,48. For gene regulatory networks, it 

Gene Description P-value
Number of Unique 
Samples (COSMIC)

COSMIC 
Studies

COSMIC 
References

TCEAL5 transcription elongation factor A (SII)-like 5 3.26E-67 28,859 13 14

PRB4 proline-rich protein BstNI subfamily 4 1.44E-34 28,981 24 32

PRB2 proline-rich protein BstNI subfamily 2 6.63E-33 28,772 24 26

SPRR2D small proline-rich protein 2D 1.83E-27 28,792 8 8

FLG Filaggrin 6.01E-27 28,983 43 92

FAM47C family with sequence similarity 47, member C 1.23E-26 28,796 35 52

MKI67 marker of proliferation Ki-67 1.26E-26 28,903 38 77

OTOP1 Otopetrin 1 4.45E-25 28,815 38 42

AHNAK AHNAK nucleoprotein 5.35E-25 29,029 41 83

OR10A2 olfactory receptor, family 10, subfamily A, member 2 2.01E-24 28,838 19 23

MYH1 myosin, heavy chain 1, skeletal muscle, adult 2.83E-24 29,073 41 81

CSH2 chorionic somatomammotropin hormone 2 6.53E-24 28,814 15 9

SPRR2B small proline-rich protein 2B 7.71E-24 28792 7 9

GH2 growth hormone 2 3.07E-23 28,815 21 19

CSH1 chorionic somatomammotropin hormone 1 
(placental lactogen) 4.41E-23 24,523 20 19

TCEAL6 transcription elongation factor A (SII)-like 6 4.88E-23 28,814 20 18

KIR3DL1 killer cell immunoglobulin-like receptor,  
three domains, long cytoplasmic tail, 1 8.85E-23 28,831 6 11

MAGEC1 melanoma antigen family C1 4.17E-22 28,937 40 72

KRT33A keratin 33A, type I 5.09E-22 28,816 28 25

OR10G8 olfactory receptor, family 10, subfamily G, member 8 2.18E-21 28,816 26 33

RFPL1 ret finger protein-like 1 2.69E-21 28,815 24 18

MAGEA3 melanoma antigen family A3 2.72E-21 28,814 19 16

KRT6B keratin 6B, type II 3.18E-21 28,815 31 35

PDE4DIP phosphodiesterase 4D interacting protein 4.75E-21 25,256 39 67

SPRR2F small proline-rich protein 2F 6.69E-21 28,792 12 10

KRTAP21-1 keratin associated protein 21-1 7.27E-21 28,855 9 12

IFNA21 interferon, alpha 21 7.94E-21 24,540 13 15

OR4A47 olfactory receptor, family 4, subfamily A, member 47 7.99E-21 28,815 23 32

Table 1.   Genes with highest statistical significance in Breast Cancer case/control comparative analysis. All 
28 most significant genes have been discovered in multiple cancer studies.



www.nature.com/scientificreports/

5Scientific Reports | 6:29647 | DOI: 10.1038/srep29647

has been observed that higher assortativity leads to higher robustness and lower evolvability of the network48,49. 
Whether this property extends to the MI network requires further investigation.

We also used the 1405 MI network genes in cluster analysis. We got a total of 474 clusters with gene memberships 
ranging from 2 to 119. We selected the clusters that have 10 or more members for further analysis. Figure 4(b) shows 
the subnetwork of genes from the clusters with 10 or more genes. We combined the resulting 9 clusters and top 19 
highest degree genes to get 264 unique genes. We looked at the COSMIC database for these 264 genes. Out of these 264 
genes, only 4 genes were not present in the COSMIC database as cancer genes. This implies that 98.5% of the genes that 
form clusters with high degree of connectedness within the MI network are already known to be associated with cancer.

We looked at the functional enrichment of these 264 genes in DAVID50,51. The enrichment analysis returned 
the terms ‘Cell-cell adhesion’, ‘Cell adhesion’ and ‘Biological adhesion’, with adjusted p-values less than 0.01 
(Supplementary Information 2). These results indicate that the main modules in the network are associated with 
cell-cell adhesion. Further, we performed degree centrality, closeness centrality, betweenness centrality, and 
eigenvector centrality on the MI network, to obtain 28 unique genes (Supplementary Information 2). Out of these 
28 genes, genes like DCC, DIAPH3, ARHGAP24, BCHE, DMD, LRP1B, BRWD3, DSC2, and HAS2 are known to 
be associated with metastasis and tumorigenesis (Supplementary Information 2).

We can see that the pathways that were significantly enriched in the case/control and control-free analyses are 
very different. However, the functions of these pathways tell a very interesting story. The case/control pathways, 
where we are comparing breast cancer samples with healthy data, are telling us that the pathways implicated 
are related to cancer initiation, growth and immune response, and even specifically an androgen and estrogen 
metabolism associated cancer. However, when we look at control-free MI results of breast cancer, we see enriched 
pathways that are mainly related to cell adhesion, with hub genes involved in metastasis. While the case-control 
analysis talks about the presence of cancer in the samples, the MI network genes and the implicated pathways are 
telling us that the cancer is displaying metastatic properties.

Figure 3.  Enrichment networks from XomPathways for Breast cancer Comparative Analysis. (a) Enriched 
pathways – gene network. (b) Gene-gene network, with most central gene highlighted in red. (c) Pathway-
pathway interaction network, with most central pathway in red.

Figure 4.  Breast cancer mutual information network. (a) The entire MI network for breast cancer samples 
consisting of 1405 genes and 1172 edges. (b) 9 clusters with 10 or more genes identified and isolated from the 
whole network. (c) The degree distribution follows power law with an alpha of 2.44.
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Esophageal Squamous Cell Carcinoma.  To understand the power of OncoTrack, we took another type of 
cancer data. In this case, we took 38 exome samples from the study28. These 38 samples contained tumour (with >​70%  
malignant cells) and matched germline tissues (5 cm away from the tumour) from 19 esophageal squamous cell 
carcinoma (ESCC) patients. For this data, we examined the information that we obtained from the SNV and CNV 
analysis along with the SPKMG results.

ESCC SNV and CNV Analysis.  We used the GATK23 protocol for analysis of point mutations in the sam-
ples. We did this by considering both the tumour and matching normal tissue (germline) samples, unlike the 
original study28, where the focus was on identifying the somatic variants associated with cancer. Such a compar-
ison enabled us to look at both the similarities as well as dissimilarities between the samples. After application 
of filtering criteria as described in Methods, we obtained between 567 to 1392 pathogenic variants across all 
samples. 20 mutations were common across all tumour samples, while 36 were common across the germline 
samples. All 20 mutations common in the tumour samples were also present in the germline samples. These are 
listed in Supplementary Information 3. When we looked at the mutations at the gene level, we found that 25 genes 
carrying the mutations were common across all 19 tumour samples. On the other hand, 39 genes were common 
across the 19 normal samples. All 25 genes which were common between the tumour samples were also com-
mon amongst the normal matching tissues. These genes are CDCP2, HRNR, GPATCH4, LOC375190, EDAR, 
TTN, ZNF717, SCAMP1, SMAD5, CYFIP2, PRIM2, SRRM3, EMID2, PRKDC, ZNF518A, TMEM216, DIXDC1, 
VPS11, EI24, PLCB2, C15orf57, SLC24A5, NPRL3, NLRC3, and CDC27.

We used XHMM26 protocol to identify the CNVs in the tumour and matching normal samples from the 
ESCC patients. The detailed analysis steps are given in Methods with the results in Supplementary Table 4. The 
minimum and maximum length of CNVs in tumour were 0.21 and 11989.11 Kbases respectively; whereas they 
were 0.12 and 12110.46 Kbases for matching normal tissues. The number of genes impacted by the CNVs ranged 
from 1 to 163 for tumour and 1 to 105 for normal tissues. We found a consistent pattern of more CNVs present 
in tumour compared to the normal samples. The average length (and total length) of the CNVs was also higher 
in the tumour samples. These results are consistent with some of the previous findings related to CNV burden15. 
While these common patterns were identified, there was little consistency across samples with respect to the 
genes present in the CNV regions. No genes were common across either the tumour samples or the matching nor-
mal samples. However, we did find varying levels of similarity between the tumour and matching tissue samples 
from the same patients. The number of common genes having CNV for this comparison ranged from 0 to 409. 
Therefore, we found an absence of gene specific consistent patterns across CNVs which limit its use for general-
izability of characteristics and for cancer diagnosis and tracking.

ESCC Comparative Analysis.  We compared the SPKMG values across the healthy, tumour, and matched 
normal samples to get four different comparisons. We used edgeR to obtain the four sets of comparative analysis 
tables for healthy versus tumour comparison (represented as HxT), healthy versus matched normal comparison 
(represented as HxN), healthy samples versus all cancer patients samples, i.e. tumour and matched normal sam-
ples (represented as HxTN), and tumour versus matched normal samples (represented as NxT). The comparative 
analysis results for these are given in Supplementary Table 2.

We selected all genes with adjusted p-value <​ 1.0e-50 (Benjamini-Hochberg correction) from the HxT, HxN, 
and HxTN comparisons. With 1.0e-50 as the threshold for p-value, we got 598 genes in the HxT; 869 genes in 
HxN, and 897 genes in HxNT comparisons. A large overlap was seen in the genes as shown in Fig. 5. We selected 
all common genes from these 3 sets (adjusted p-value <​ 1.0e-50) and found 594 unique genes. Enrichment anal-
ysis for these genes using DAVID showed that they are overrepresented for pathways and processes related to 
Cadherin and Wnt signalling, and cell adhesion with adjusted p-values <​ 0.01. Therefore, when compared to 
healthy controls, both tumour and matched normal samples are similar and differ from healthy for these proper-
ties. The Cadherin mediated cell adhesion and Wnt signalling pathways together provide invasive and metastatic 
properties to cells and are involved in processes such as epithelial to mesenchymal transition52. We also observed 
that 62 out of the most significant 100 genes in the HxT comparison were common in the top most significant 100 
genes in the HxN comparison. These genes were overrepresented for cell adhesion with an adjusted p-values of 
0.0038. These results show large similarities between the tumour and matched normal samples in terms of CNVs 
which was not seen using the conventional CNV analysis.

For the NxT comparison, the genes with adjusted p-values less than 0.01 were identified. This returned 6 
genes, all of which are located on chromosome 11q13. Amplification of this region (11q13) is of known signifi-
cance in many cancers and is associated with metastasis53. Out of the 11 genes used for experimental validation of 
11q13 amplification in oral squamous cell carcinoma54, 5 genes were present amongst the identified list of 6 signif-
icant genes. We found that these genes are overrepresented for the ‘Melanoma’ KEGG pathway with an adjusted 
p-value of 0.0038. Therefore, it appears that the main difference between the tumour and matching germline sets 
is amplification of 11q13 region containing cancer associated genes in the tumour samples.

ESCC Control-free Analysis using Mutual Information.  We performed MI network analysis of the 
ESCC tumour and germline populations with 19 samples. The weakest edge cut-off of each triple of nodes was set 
to 0.01, and MI coefficients greater than 1.4 were retained. Further, all genes with degree equal to 0 in the network 
were removed. We then studied the clustering of genes and clusters with 10 or more genes followed by functional 
analysis.
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ESCC Tumour MI Network.  The tumour MI network had 1520 genes with 1308 edges. The entire MI network 
for the tumour samples is given in Fig. 6(a). On isolation of key network clusters, the resulting graph contained 17 
clusters and had 592 genes, and is shown in Fig. 6(b).

ESCC Germline MI Network.  The germline MI network contained 2680 genes with 3597 edges (Fig. 7(a)). The 
subgraph formed from the identified gene clusters is shown in Fig. 7(b). This subgraph contained 1875 genes 
which formed 6 clusters. The functional annotation of this subnetwork was carried out using DAVID. These 
genes were significantly overrepresented for ‘Protein amino acid phosphorylation’ with adjusted p-value of 0.003. 
Amino acid phosphorylation plays a critical role in the activity of cellular enzymes and signal transduction.

ESCC Control-free Analysis using Pearson Correlation.  Mutual information provided us information 
about the relationship between genes, but it is neutral to the directionality of this relationship. To look at the inter-
relations along with the directionality, we used Pearson correlation (PC) to discover a different type of inherent 
relationship between the ESCC samples and genes. We first looked at how the germline and tumour samples cor-
relate. We found that most samples show a correlation higher than 0.9 (Supplementary Table 5). The correlations 
were also calculated after removing the gene TTN, which had very high values across samples and could bias the 
results. The observed correlations remained very similar for most samples.

ESCC Pearson Correlation Network Link Analysis.  We then studied the properties of the gene-gene correla-
tion networks for the tumour and germline samples. The resulting complete germline PC network was much 
more interconnected compared to the complete tumour network. We did a link analysis for both the germline 
and tumour PC networks. We looked at the top 15 genes with highest degree of connectivity (links) in both the 
networks. The most linked genes in the tumour network were TAL1, HES2, FZD10, IER2, FRAT2, CLDN19, 
COL9A2, PHLDA1, LPPR2, TMEM125, KCNQ4, FAM19A5, ZBTB17, TTC22 and GSC2. Of these, genes such as 
FZD10, HES2 and COL9A2 with 2597, 2626 and 2572 degrees respectively are known to be involved in Cadherin, 
Wnt, and Integrin signalling pathways. Additionally, FZD10 promotes metastasis and promotes epithelial to mes-
enchymal transition through aberrant activation of WNT3-FZD10-β​-catenin signalling55. IER2 is also known to 
promote tumour motility and metastasis, and is a potential prognostic and therapeutic target56. The most linked 
genes in the germline network were COL18A1, RNF26, CRB2, FZD10, NTN3, ACKR3, MRI1, NFATC1, HTR5A, 
SLC18A3, XKR8, NXPH4, WNT10A, DGKQ and ISLR2. Only FZD10 was common for both the networks. Of 
these, genes such as NFATC1, which is an oncogene57 and ACKR3 (6719 and 6721 degrees/links respectively), 
which is involved in tumour development and metastasis in many tumours58, are recognized as potential thera-
peutic targets. Other interesting genes include WNT10A, which promotes ESCC migration and invasion59 and 
RNF26 which is expected to be involved in carcinogenesis, but needs further investigation60.

ESCC Germline/Tumour Control-free Network Properties.  We further examined the properties of the 
PC and MI networks. The MI networks for both tumour and germline populations displayed scale free topology, 
with similar values of alpha (α​tumour =​ 2.54, α​germline =​ 2.52). The power law fits for both these networks are shown 
in Figs 6(c) and 7(c) for the tumour and germline networks respectively. The subnetworks with highly clustered 
genes for the tumour and germline samples contained 592 (17 clusters) and 1875 (6 clusters) genes respectively. 
Since the same filtering criteria were used for both germline/tumour networks, the difference in the number of 
genes and clusters indicates that the genes in the germline sub-network are more interconnected compared to the 

Figure 5.  Overlap of significant genes from the comparative analyses for HxT, HxN and HxTN. 
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tumour. This pattern of more interconnections in the germline network were observed in the PC networks as well. 
The PC tumour network was more diffuse, with a diameter of 28, average path length of 5.6 and 0.6 clustering 
coefficient, compared to the germline network with 20 diameter, 3.37 average path length and a 0.8 clustering 
coefficient. Neither the germline, nor tumour complete PC networks displayed scale-free topology.

To track the changes in the network states, and to identify the key genes involved in the transformation from 
germline to tumour state, we looked at the network topology and the degrees (links) of connectivity of the genes 
in the PC networks. The overall correlation between the links in the germline and tumour correlation networks 
was 0.676. We then identified stretches of chromosomes (50 genes long) which showed large deviations from this 
value (Supplementary Table 6). We hypothesized that these regions would provide tracking information regard-
ing the perturbation of the germline network and the transition to tumour state, and provide potential therapeu-
tic targets. 4 regions with absolute correlation less than 0.3 were identified. These were located on chromosomes 
3q13, 6q14-16, 8q22-24 and 11q13. Of these, regions such as 11q13 and 8q23-24 are known to be associated with 
cancers53,61. The regions showing very high correlations (>​0.95) were on chromosomes 3q11-13, 10q25-26, 11p15 
and large portions of chromosome X. Interestingly, while regions on 3q11-13 were highly correlated, the adjacent 
regions on 3q13 showed no correlation. Changes in neighbourhood for genes in such regions could be indicative 
of the shift from the germline to tumour state.

We also looked at the change in degrees of genes between the germline and tumour state. Following the 
hypothesis of the previous analysis, any genes displaying substantial alteration in their network behaviour and 
preferential attachment should be markers of the tumour development process, and can be potential therapeu-
tic targets. The change in degrees from germline to tumour are given in Supplementary Table 7. The top 15 
genes which showed a breakdown of preferential attachment and reduced from high degree genes in germline 
to tumour include genes such as SORBS2, ZHX2 which have tumour suppression activities62,63, whereas others 

Figure 6.  ESCC Mutual Information network for 19 tumor samples. (a) The entire MI network for ESCC 
tumor samples with 1520 genes and 1308 edges. (b) 17 clusters with 10 or more members identified and isolated 
from the complete network. (c) The degree distribution of the tumor MI network follows power law with an 
alpha of 2.54.

Figure 7.  ESCC Mutual Information network for 19 germline samples. (a) The entire MI network for ESCC 
germline samples consisting of 2680 genes and 3597 edges. (b) 6 clusters with 10 or more genes identified and 
isolated from the MI network. (c) The degree distribution for the complete MI network follows power law with 
an alpha of 2.52.



www.nature.com/scientificreports/

9Scientific Reports | 6:29647 | DOI: 10.1038/srep29647

such as EIF2S2, ZBTB14 and PPFIA1 promote tumour proliferation and invasion64–66. Of the top 6 genes with 
higher degrees in tumour network compared to germline, expression of KLK12 is known to be a diagnostic and 
prognostic marker of gastric cancer67.

We also found that for four genes significant in the NxT comparative analysis, there was a large loss in their 
connectivity (links) and preferential attachment in the tumour network compared to the germline network, as 
shown in Supplementary Table 7. This indicates that the changes in gene-gene interaction patterns of these genes 
are important in altering the state of the network and in the transition from the germline state to the tumour 
state. Therefore, these genes may be the driver genes for the transformation of the tissue. These results indicate 
that link count is a potential quantitative tracking biomarker which needs further investigation. We also looked 
at the negative and positive PC networks for the tumour and germline states. Both these networks showed similar 
trends as for the whole network, with higher density in germline compared to tumour state. Additionally, both the 
tumour and germline negative PC networks showed disassortative mixing patterns, with assortativity coefficients 
of −​0.48 and −​0.66 respectively. The positive PC networks on the other hand were more assortative in nature, 
with assortativity coefficients of 0.63 and 0.36 for the germline and tumour networks respectively.

Discussion
Lack of combinatory tools and technologies, have for long, prohibited looking at DNA for quantitative molecular 
pathology. In this paper, we have presented a novel technique called SPKMG for quantitative DNA analysis. The 
SPKMG values are similar to RPKM values, applied in the exonic context. We have used various types of analytics 
to study properties of the SPKMG measure within OncoTrack software, and have found that the results from the 
different analyses show high levels of concordance. We have used cancer patients’ exome data to measure SPKMG 
and showed that it shows a normative pattern, and can be used as a tracking mechanism for a complex hetero-
geneous disease like cancer. This technique identifies common patterns across populations which can be used to 
define and track the phenotypic properties of cancer at a population level and provide interesting insights into the 
state of the cancer and cancer development. A comparison with CNV and SNV analysis showed the advantage of 
a continuous quantitative measure like SPKMG compared to categorical binary measures such as CNV calls and 
point mutations. While these measures are able to identify patterns at the individual patient level and show some 
characteristics at the overall level, specifically for CNV burden, they cannot be used for population level statistics 
which are useful in diagnosis and precision medicine.

The demonstration of the efficacy of SPKMG was further enhanced through the combination of case-control 
and control free analyses that provided a more comprehensive view of the tissue states. While the case-control 
analysis for breast cancer talked about the presence of cancer in the tissue, the control-free analysis was able to 
identify the presence of metastatic signals in the sample. This is particularly interesting considering the observa-
tion that in a high proportion of patients diagnosed with early stage breast cancer, the tumour has already metas-
tasized68. The superior ability of OncoTrack to identify these states shows promise for providing a better metric 
for identifying the actual state of tumours. On the other hand, the case-control analysis for the ESCC tumour 
showed primary differences in cell adhesion and tumour development and metastasis related signals. Therefore 
using these analyses we were able to more accurately characterize the genetic state of the tumour. In addition, 
we were able to extract some interesting insights into the ESCC tumour states using the SPKMG values for the 
germline dataset.

OncoTrack was able to discover similarities and dissimilarities between tumour and the matching tissues 
based on their SPKMG values. The germline tissues from the ESCC patients were located 5 cm away from the 
surgical boundary, but presented many features similar to the tumour tissue. These included common significant 
cancer causing genes with the presence of similar cell adhesion alterations in the case-control comparison with 
healthy. This fits well with the theory of field cancerization where the cells surrounding the tumour also have 
similar characteristics due to experiencing the same conditions as the tumour tissue, but are non-cancerous69–71. 
Field cancerization is commonly seen in many epithelial cancers72. Additionally, the histologically normal tissue 
surrounding some tumours have been shown earlier to carry some signals of metastasis using FTIR spectros-
copy73. Combining these theories, SPKMG helped us in concluding that the germline tissue surrounding the 
ESCC tumours in these samples is pre-malignant and is similar to the tissue which preceded the tumour. Then, 
by analysing the differences between the tumour and germline tissues, OncoTrack helped us identify the pro-
cesses involved in the development of the tumour. Using tumour-germline comparisons, we were able to iden-
tify a chromosomal region whose amplification seems critical in the differentiation of the malignant state from 
the pre-malignant tissue. The identification of the same region in previous independent studies, using QPCR54 
provides validation to the hypothesis and power of SPKMG. These results indicate that CNV information using 
SPKMG can be used to identify thresholds and prerequisites for malignant transformation, which were not 
observable using the traditional CNV calling algorithms. Since SPKMG can identify patterns in histologically 
normal pre-malignant tissue, it presents an opportunity for the prediction of cancer in tissues displaying tumour 
properties before the cancer develops, and for predicting cases with high likelihood of relapse. OncoTrack there-
fore displays immense potential for gathering wide-ranging information regarding the physical state of the DNA 
and the dynamics of tumour development and progression.

The greatest merit of SPKMG is that it will now enable DNA to be used for both mutation analysis and quanti-
tative CNV/LOH analysis, therefore providing multiple levels of information from a single molecule. OncoTrack 
provides a powerful quantitative tool for tracking cancer states in the form of SPKMG, and may be combined 
with the various existing methods for mutation discovery from the exome. This makes DNA a very attractive 
molecule for precision medicine. The recent development of cancer immunotherapies addressing checkpoint 
inhibition74 calls for a novel way for defining tumour complexity and propensity to generate neoantigens at the 
genome level; whereas most current efforts are focused on candidate gene mutation analysis. In this context, it 
is interesting to note that many immune system related processes were identified as key functional alterations 
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in the tumours, using OncoTrack, and can be further investigated to study how these processes may contribute 
to the patient’s response to different immunotherapies. A continuous variable monitoring method like SPKMG 
will provide valuable input for a more systemic tumour classification and pharmacology23. Additionally, this 
property of SPKMG will provide a tracking measure which can be used to predict future course of the disease and 
aid the development of appropriate treatment strategies. Moreover, SPKMG is not tissue specific unlike mRNA, 
but maintains the calibration property of mRNA expression, for the identification of response specific genetic 
patterns. Therefore, OncoTrack will help to understand diseases better from epidemiological and demographical 
point of view. The SPKMG marker therefore can be refined to offer a better, cheaper, faster, and more accurate 
tool for precision medicine and cancer screening for individual patients (n =​ 1) and for a population (n =​ N). We 
believe that SPKMG displays immense potential to serve as a single algorithm which can provide comprehensive 
information regarding the cancer genomic landscape and potential therapeutic targets, and will lay the founda-
tion for further research that will help us in further modeling the dynamics of cancer development and metastasis 
toward a better cancer patients’ care.

We have tested the SPKMG algorithm only with cancer data; however, the phenomenon of LOH/CNV is 
universal. We therefore believe that SPKMG is not restricted to only cancer; and it will work equally well for 
neurological75 and other diseases where LOH/CNV associations are present. However, this demands further 
investigation.

Methods
Architecture of OncoTrack.  The OncoTrack analysis pipeline architecture is shown in Fig. 1. We iden-
tified suitable publicly available exome datasets from SRA. We included datasets which were sequenced using 
Illumina HiSeq with the random Agilent sure-select library preparation protocol. This type of library preparation 
is required for being able to measure the SPKMG statistic. The SRA files were downloaded and converted to 
FASTQ format before further processing. The data were pre-processed, quality checked and cleaned with FastQC 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc), followed by alignment to hg19 reference genome 
(http://hgdownload.cse.ucsc.edu/downloads.html) using BowTie76 to create SAM/BAM files. This was followed 
by duplicate marking and indel-realignment, using Picard (http://picard.sourceforge.net) and GATK25 respec-
tively. A collapsed geneset with exon coordinates was created from UCSC gene table for hg19 using technique 
described in XomAnnotate34 to obtain a single entry for a gene at a specific locus with all splice variations for that 
gene. This procedure collapsed the 44292 RefSeq rows of hg19 into 19358 genes. The BAM files were read using 
exonic location of individual genes in the genome as obtained by the collapsed gene step using BamTools API77. 
The BAM files were cleaned, i.e., PCR duplicates and low quality (Phred <​ 20) sequence reads were removed, and 
SPKMG measures were computed for the coding regions of each gene. Comparative analysis of the cancer popu-
lation with respect to healthy was performed using edgeR30,31. We used statistical significance (adjusted p-values) 
to select the differential genes. These genes are used for bibliomic analysis, followed by functional enrichment 
analysis. We used Parmigene40 and ARACNe41 Mutual Information (MI) to create the MI network and shortlist 
core network genes. This was followed by systems biology and network analysis to examine the MI networks. 
Correlation networks were created using Pearson correlation with threshold of 0.95 absolute correlation, followed 
by network analysis and link analysis. Functional analysis on all shortlisted genes from various analyses above 
were performed using DAVID and 168 KEGG cancer and metabolic pathways using XomPathways. In addition 
to the SPKMG based analysis, we also carried out an analysis of CNVs and SNVs using the traditional SNV and 
CNV calling methods implemented in GATK25 and XHMM26.

Data for this study.  To test our model, we used exome data from studies on two types of cancers viz., breast 
cancer27 and esophageal squamous cell carcinoma (ESCC)28.

The first cancer dataset consists of exome data from 11 breast cancer patients with familial Non-BRCA1/
BRCA2 breast cancer from France, Italy, the Netherlands, Australia, and Spain. The dataset comprises of patients 
from seven families having at least 6 breast cancer cases (between 6 and 10). None of the patients had familial 
BRCA1/BRCA2 pathogenic mutations and were diagnosed with breast cancer before the age of 60. No woman 
was affected with ovarian cancer in these families27.

The second cancer dataset is from Esophageal Squamous Cell Carcinoma (ESCC) patients with >​70% malig-
nant cells and matched germline tissues (adjacent esophageal epithelial tissue five centimetres away from the 
border of surgical area) collected from Cancer Institute/Hospital, Chinese Academy of Medical Sciences (CAMS) 
and Linxian Cancer Hospital28. We included 19 tumour tissues and 19 germline tissues from this whole exome 
dataset.

For healthy control data, we created a healthy population from the combination of healthy reference data from 
two independent studies. These were 13 independent normal healthy HapMap exome data from Comino-Méndez 
I. et al.29 and 7 normal HapMap data from another independent study27.

The datasets and their details are:

1.	 Exome data from 11 familial non-BRCA1/BRCA2 breast cancer patients, having NCBI accession numbers 
ERR166303, ERR166304, ERR166307, ERR166308, ERR166310, ERR166312, ERR166315, ERR166330, 
ERR166333, ERR166335, ERR166336. In this paper they are referred to as BC1, BC2, BC3, BC4, BC5, BC6, 
BC7, BC8, BC9, BC10, and BC11 respectively.

2.	 Dataset containing exome data from 19 tumour tissues. These data have accession numbers SRR1044337 
(ESCC-D1T), SRR1044333 (ESCC-D2T), SRR1044331 (ESCC-D3T), SRR1044329 (ESCC-D4T), 
SRR1044327 (ESCC-D5T), SRR1044325 (ESCC-D7T), SRR1044323 (ESCC-D8T), SRR1044321 (ESCC-
D9T), SRR1044357 (ESCC-D10T), SRR1044355 (ESCC-D11T), SRR1044353 (ESCC-D12T), SRR1044351 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://hgdownload.cse.ucsc.edu/downloads.html
http://picard.sourceforge.net
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(ESCC-D13T), SRR1044349 (ESCC-D14T), SRR1044347 (ESCC-D15T), SRR1044345 (ESCC-D16T), 
SRR1044343 (ESCC-D17T), SRR1044341 (ESCC-D18T), SRR1044339 (ESCC-D19T), SRR1044335 
(ESCC-D20T). In this paper, these samples are labelled as T1, T2, T3, T4, T5, T7, T8, T9, T10, T11, T12, 
T13, T14, T15, T16, T17, T18, T19 and T20 respectively.

3.	 Dataset containing exome data from 19 matching distal germline tissues. Accession numbers for 
these samples are SRR1044338 (ESCC-D1N), SRR1044334 (ESCC-D2N), SRR1044332 (ESCC-D3N), 
SRR1044330 (ESCC-D4N), SRR1044328 (ESCC-D5N), SRR1044326 (ESCC-D7N), SRR1044324 (ESCC-
D8N), SRR1044322 (ESCC-D9N), SRR1044358 (ESCC-D10N), SRR1044356 (ESCC-D11N), SRR1044354 
(ESCC-D12N), SRR1044352 (ESCC-D13N), SRR1044350 (ESCC-D14N), SRR1044348 (ESCC-D15N), 
SRR1044346 (ESCC-D16N), SRR1044344 (ESCC-D17N), SRR1044342 (ESCC-D18N), SRR1044340 
(ESCC-D19N), SRR1044336 (ESCC-D20N). In this paper, these samples are labelled as N1, N2, N3, N4, 
N5, N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, N17, N18, N19 and N20 respectively.

4.	 Exome data from 13 HapMap healthy samples with accession numbers ERR031613, ERR031614, 
ERR031615, ERR031616, ERR031617, ERR031618, ERR031619, ERR031620, ERR031621, ERR031622, 
ERR031624, ERR031625, and ERR03162629. In this paper these samples are referred to as H1, H2, H3, H4, 
H5, H6, H7, H8, H9, H10, H11, H12, and H13 respectively.

5.	 Exome data of 7 HapMap normal samples27. These are labelled with ids ERR166316, ERR166318, 
ERR166320, ERR166323, ERR166325, ERR166326, and ERR166328. In this paper these samples are re-
ferred to as NA1, NA2, NA3, NA4, NA5, NA6, and NA7 respectively.

SPKMG Computation.  OncoTrack computed the SPKMG values as the Sequence Per Kilobase of exon, per 
Megabase of the mappable Genome. Intuitively, SPKMG is similar to RPKM78 or FPKM79, adapted for exome data 
with normalizations at the gene and genome level.

The formula for SPKMG is as follows:

= ∗ ∗SPKMG R/(E G/(1000 1000000)) (1)

where,
R =​ Sequence reads aligned in exonic regions of a gene (after removal of PCR duplicates and low quality reads)
E =​ Length of genic region that includes only the exonic regions of this gene
G =​ Total number of reads that aligned to the reference genome
The SPKMG measures of breast cancer patients are presented as an example in Supplementary Table 1.
We plotted scatterplot matrices for the SPKMG values to examine the characteristics of the algorithm. The 

11 breast cancer SPKMG values exhibited a linear correlation between any two samples. For the ESCC samples, 
the gene TTN had very high SPKMG measures (outlier) in both tumour and germline datasets and had to be 
removed for the analysis. The gene TTN has been previously mathematically associated with cancer80. Following 
removal of TTN, samples were seen to cluster into 2 distinct groups, with correlation within each group being 
more linear than between groups. The same patterns were observed for both germline and tumour samples. 
While the results for the germline samples became linear with near 1 correlations after removal of TTN, there 
was some deviation from this for tumour samples T5 and T13, due to additional outlier genes. The observed 
linear correlation indicates that the algorithm normalized the SPKMG values, and there are no differences (bias) 
between the samples or experiments81.

Enrichment and Statistics of SPKMG.  Algorithms such as the ChIP-Seq algorithm MACS assume DNA 
sequence alignment at genomic regions to follow a Poisson distribution82. Poisson distribution has also been used 
to model the number of reads obtained for each gene in RNA-Seq when only one technical replicate was present 
in the experiment83,84. However, negative binomial distribution is appropriate for modelling the additional varia-
tion observed between samples from biological replicates85. The Cuffdiff86 algorithm for differential expression for 
RNA-Seq assumes a negative binomial distribution. In case of SPKMG therefore, for a single sample (no replicate; 
N =​ 1), we assumed the distribution of sequence reads aligning to a genic region by chance will follow a Poisson 
distribution. However for the across sample comparative analysis, we used edgeR30,31,85, which assumes the under-
lying distribution to be negative binomial.

Comparative Case/Control Analysis.  In case/control analysis, we computed the comparative SPKMG 
for pairs of populations using edgeR. For this analysis, we used cancer data (11 breast cancer and 19+​19 ESCC 
samples) as case and 20 healthy samples (13 H samples +​ 7 NA samples) as control. We then took these samples 
and examined how they clustered in MDS (Multi-dimensional scaling) plots using edgeR, along with hierarchical 
clustering for the samples.

We identified genes that were highly significant, and analysed them to identify their roles in cancer. We took 
168 KEGG cancer related pathways from Broad Institute33 and used the XomPathways R script34, followed by 
network analysis, for the functional analysis of these genes. We also used DAVID, for further annotation.

Control-free Analysis of Genes using Mutual Information.  In control-free mutual information (MI) 
analysis, we used MI to discover the inherent relationship between genes, to elucidate the functional properties 
of SPKMG. MI is derived from information theory, which deals with the measure of uncertainty introduced by 
Shannon87. MI is defined as the relative entropy, of two random variables X and Y, given their joint and individual 
probabilities. If two components of a network interact closely, their MI will be high; if they do not interact, their 
MI will theoretically be zero.

MI for a pair of outcomes x and y of discrete random variables, X and Y, is defined as88,
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= + −I(x, y) S(x) S(y) S(x, y), (2)

where S(t) is the entropy of an arbitrary variable t. Entropy for a discrete variable is defined as the average of the 
log probability of its states:

= = Σp p pS(t) log( (t )) (t )log( (t )) (3)i i i

where p(ti) =​ Pr(t =​ ti) is the probability associated with each discrete state or value of the variable.
ARACNe41 uses MI to predict potential functional associations between genes by identifying statistical 

dependencies between gene expressions. We used parmigene40, an R statistical package with ARACNe to meas-
ure the MI between each pair of genes, to reconstruct the gene-gene interaction network with core genes. The 
BC (19358 ×​ 11) SPKMG matrix of 11 breast cancer patients and the N and T (19358 ×​ 19) ESCC SPKMG data 
were used to obtain 19358 ×​ 19358 respective matrices of MI. We used appropriate thresholds for removing the 
weakest edge of each triple of nodes in parmigene and all gene-pairs with low MI coefficients to obtain the final 
adjacency matrices. The interaction networks constructed from these adjacency matrices were called the MI net-
works. The MI networks were then analysed for network properties. The results were validated by functional anal-
ysis of the shortlisted genes for biological processes and functional pathways using XomPathways and DAVID.

Control-free Analysis using Pearson Correlation.  We used Pearson correlation between tissues and 
genes in two cases. First, we computed the PC between the SPKMG values for germline and the matching 
tumour tissues for each patient across all genes. We then calculated and compared the gene-gene correlations 
for the germline and tumour population. For this, we created two 19358 ×​ 19358 PC matrices for ESCC normal 
(germline) and matching ESCC tumour populations, by calculating the correlations between pairs of genes for all 
the samples in the population using the following equations.

ρ = = − µ − µ σ σEcorr(X, Y) [(X )(Y )]/ (4)x,y x y x y

ρ = ρ = ρ > − . ρ < .0; 0 if 0 95 and 0 95 (5)i,i i,j i,j i,j

ρ = ρ ≥ .1 if 0 95 (6)i,i i,j

ρ = − ρ ≤ − .1 if 0 95 (7)i,i i,j

We quantized the PC matrices such that all PC above 0.95 were considered positive (PC =​ 1) and PC below 
−​0.95 were considered negative (PC =​ −​1), to construct adjacency matrices. We then constructed 3 interaction 
networks for each population, viz., positive correlation network, where all edges represent positive correlation, 
negative correlation network, where all edges represent negative correlation, and a complete correlation network, 
where edges represent non-zero correlations, after applying the thresholds. We studied the topological proper-
ties of these networks along with the functional properties of important genes and altered genes in these net-
works. Finally, we studied the link correlations between interaction networks created from germline and tumour 
populations.

Comparison of SPKMG with CNV and SNP.  We used GATK25 and XHMM26 protocols for calling SNVs 
and CNVs respectively. For the point mutation analysis, we used GATK haplotype caller on the recalibrated 
BAM files, followed by joint genotyping, variant quality score recalibration (VQSR) and variant annotation. We 
annotated the variants with the ClinVar database and 1000Genome allele frequencies and the SNPEff89,90 impact. 
Finally, the variants considered for analysis passed the VQSR filter, had minor allele frequency less than 0.01 in at 
least one 1000Genome population, and had a moderate/high impact as annotated by SNPEff.

For the CNV calls we followed the steps as suggested in the XHMM tutorial (https://atgu.mgh.harvard.edu/
xhmm/tutorial.shtml). We calculated the read depths across the reference genome for all samples and removed 
the regions with outlier GC content. We then used a principal component analysis to remove the top 5 dimen-
sions of variability which represent potential sources of noise in the data. Finally the CNVs were identified across 
all samples using the XHMM discover option. For this step, mean number of targets in CNV was set to 6, mean 
distance between targets within CNV was 70 KB, read depth distribution of deletion was specified as normal with 
mean −​3 and variance 1. Duplication read depth distribution was specified as normal with mean 3 and variance 
1. The Exome-wide CNV rate was given as 1e-08. The mean and standard deviation of the diploid z-score were 
set to 0 and 1 respectively.
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