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Quantitative digital histopathology 
and machine learning to predict 
pathological complete response 
to chemotherapy in breast cancer 
patients using pre‑treatment 
tumor biopsies
Khadijeh Saednia1,2, Andrew Lagree2, Marie A. Alera2, Lauren Fleshner2, Audrey Shiner2, 
Ethan Law2, Brianna Law2, David W. Dodington3, Fang‑I Lu3, William T. Tran2,4,5 & 
Ali Sadeghi‑Naini1,2,5,6*

Complete pathological response (pCR) to neoadjuvant chemotherapy (NAC) is a prognostic factor 
for breast cancer (BC) patients and is correlated with improved survival. However, pCR rates are 
variable to standard NAC, depending on BC subtype. This study investigates quantitative digital 
histopathology coupled with machine learning (ML) to predict NAC response a priori. Clinicopathologic 
data and digitized slides of BC core needle biopsies were collected from 149 patients treated with 
NAC. The nuclei within the tumor regions were segmented on the histology images of biopsy samples 
using a weighted U-Net model. Five pathomic feature subsets were extracted from segmented 
digitized samples, including the morphological, intensity-based, texture, graph-based and wavelet 
features. Seven ML experiments were conducted with different feature sets to develop a prediction 
model of therapy response using a gradient boosting machine with decision trees. The models were 
trained and optimized using a five-fold cross validation on the training data and evaluated using 
an unseen independent test set. The prediction model developed with the best clinical features 
(tumor size, tumor grade, age, and ER, PR, HER2 status) demonstrated an area under the ROC curve 
(AUC) of 0.73. Various pathomic feature subsets resulted in models with AUCs in the range of 0.67 
and 0.87, with the best results associated with the graph-based and wavelet features. The selected 
features among all subsets of the pathomic and clinicopathologic features included four wavelet 
and three graph-based features and no clinical features. The predictive model developed with these 
features outperformed the other models, with an AUC of 0.90, a sensitivity of 85% and a specificity 
of 82% on the independent test set. The results demonstrated the potential of quantitative digital 
histopathology features integrated with ML methods in predicting BC response to NAC. This study is a 
step forward towards precision oncology for BC patients to potentially guide future therapies.

Breast cancer (BC) is the most prevalent cancer diagnosed among women, and the second cause of cancer-
related death worldwide1. The annual rate of BC occurrence has increased by 0.3% in the United States2, and 
associated with a risk of one in eight women who will develop BC1. Approximately 5–20% of diagnoses include 
locally advanced breast cancer (LABC)3, defined as stage III and a subgroup of stage II B BC4. It typically com-
prises tumors larger than 5 cm, may involve skin or chest wall invasion, or with extensive axillary lymph node 
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metastases4,5. Due to the high risk of cancer progression, metastatic spread, and loco-regional recurrence, LABC 
is associated with a poorer prognosis compared to early-stage BC3–5. The 10-year survival is approximately 
44%, which is dependent on BC subtype and response to therapies6. Definitive treatment for LABC includes 
neoadjuvant chemotherapy (NAC) followed by surgery7. However, only 10–30% of LABC patients demonstrate 
pathological complete response (pCR) to NAC, defined as a complete clearance of invasive carcinoma in the 
breast and regional lymph nodes8–11. Previous studies have shown a correlation between pCR and improved 
5-year survival of up to 70%12–15. However, pathologic assessment is carried out after surgery, which limits the 
opportunity to adapt NAC treatments according to tumor response. Accordingly, early prediction of treatment 
response is needed to guide cancer therapy decisions based on individualized patient factors.

Several studies have investigated imaging biomarkers for early diagnosis, prognosis and the prediction of 
treatment responses in BC3–5. However, histological examination remains the standard for cancer diagnosis, while 
genetic and immunohistochemical assessments may be used for prognosis and treatment outcome prediction16,17. 
Machine learning (ML) algorithms, along with the development of whole slide imaging, has opened new research 
directions for early assessment of therapy response using quantitative digital histopathology. Digital pathology 
has the potential to yield large datasets from microscopic imaging and for automated analysis. Availability of 
such data permits development of computational tools and data-driven ML algorithms to process and interpret 
different types of tissue in high-resolution histopathology images and derive quantitative features for various 
diagnostic and prognostic applications18. Recent studies have demonstrated promising results for predicting 
cancer treatment outcome and recurrence using a combination of quantitative imaging (radiomic) and digital 
histopathology (pathomic) features19,20.

The objective of this study is to investigate ML methods coupled with quantitative digital histopathology to 
predict pCR to neoadjuvant chemotherapy in BC patients using pre-treatment biopsy specimens.

Materials and methods
Study protocol and data acquisition.  This investigation was a single institution, retrospective study. 
Ethical approval was obtained from the institutional ethics review board (IRB) at Sunnybrook Health Sciences 
Centre, Toronto, Canada, prior to data collection and analysis; research was conducted in accordance with the 
Declaration of Helsinki. As this was a retrospective non-interventional study, a consent waiver was obtained 
from the IRB under the provision of the Canadian Tri-Council Policy Statement 2 (TCPS; 2018) Articles 3.1–3.5 
and 3.7A (i.e., Ethical Conduct for Research Involving Humans). All study data were anonymized; specifically, 
patient identifiers were removed from each sample prior to analysis. Patients were included in the study based 
on the following inclusion criteria: confirmed diagnosis of invasive breast cancer, age (18 +), and undergoing 
Anthracycline and/or Taxane based neoadjuvant chemotherapy followed by surgery. There were 149 patients 
included in the study. All patients had a breast core needle biopsy before NAC with a pathological review as 
part of their standard of care. Clinicopathological and imaging information were collected for all patients. Clini-
cal data included patient age, menopausal status (pre/post), clinical tumor size (largest radiologically reported 
dimension from either mammogram ultrasound or magnetic resonance imaging; mm), histological type (ductal 
versus lobular), Nottingham grade (G1/G2/G3), and the presence or absence of inflammatory cancer (defined 
as breast carcinoma with dermal lymphatic invasion). Estrogen receptor (ER) status (+/−), progesterone recep-
tor (PR) status (+/−), human epidermal growth factor receptor-2 (HER2) status (+/−) were also obtained for all 
patients.

Treatment response endpoints were evaluated after surgery and classified into pathological complete response 
(pCR) versus pathological non-complete response (non-pCR), as ground truth labels for subsequent modelling. 
A standard assessment method using the residual cancer burden index (RCBI)21 was employed for ground truth 
labeling of response. An RCBI score of 0 (i.e. pCR) was defined as the absence of residual invasive and nodal 
disease21. Patients who demonstrated residual disease were classified as non-pCR (i.e., RCBI > 0). All pathology 
reviews (pre-treatment and post-surgery histopathology) were evaluated by board-certified breast pathologists 
and as part of the patient’s standard of care. Similarly, radiological reporting was carried out at the time of diag-
nosis by board-certified breast radiologists. The patients were randomly partitioned into a training (75%; n = 111 
patients) and an unseen test set (25%; n = 38 patients). The training set was used for feature reduction/selection 
and development of predictive models (described below). The test set was used to evaluate the performance of 
the predictive models independently.

Core biopsy sample preparation.  Formalin-fixed paraffin embedded (FFPE) blocks containing core 
biopsy specimens obtained from each patient at pre-treatment were microtomed into 4 µm sections. Specimens 
were prepared onto glass slides and stained with hematoxylin and eosin (H&E). The slides were digitized into 
whole slide images (WSI) using a TissueScope LE digital pathology image scanner (Huron Digital Pathology Inc, 
St. Jacobs, Canada) at 40 × magnification. All WSI were reviewed to ensure image integrity before image process-
ing and analysis. If any image was distorted, blurry, or contained occlusions, the associated slide was re-imaged.

Preprocessing of histology images and pathomic feature extraction.  The tumor regions were 
annotated on the WSIs by an expert pathologist using the Sedeen software package22. The pre-processing steps 
were performed on three-channel RGB images. The tumor region annotations were preprocessed to extract non-
overlapping tiles with a size of 768 × 768 pixels by including tumor margins, when required. From the extracted 
tiles only the ones with more than 50% tumor tissue and less than 10% white background were retained for 
analysis (Fig. 1a,b). A pre-trained weighted U-Net based model was utilized to segment the nuclei in each tile 
accurately23. Histology images from the Cancer Imaging Archive (TCIA) and the Multi-Organ Nucleus Segmen-
tation (MoNuSeg) datasets were used to train the model24,25. Each tile was patched to 256 × 256 pixel patches 
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with 128 pixels overlap between the adjacent patches. After segmenting the nuclei, the patches were merged by 
averaging over the output probability map of the segmentation model within the overlapped regions. The binary 
nuclei mask for each tile was generated by thresholding the associated averaged probability map with a threshold 
level of 0.5. The detected nuclei with less than 50 pixels were eliminated in the generated masks based on the 
empirical observation that the actual nuclei cannot include less than 50 pixels on the histology images acquired 
at 40 × magnification. Figure 1c,d shows a tile extracted from the tumor region of a representative WSI and the 
binary nuclei mask generated for it.

Using the HistomicsTK26 and PyRadiomics27 open-source packages, 549 pathomic features were extracted 
from each image tile for analysis. The features were representative of five categories: nuclear morphology and 
Fourier shape descriptors (16 features)28, nuclear intensity and gradient features (20 features)29, first- and second-
order texture features (93 features)30, graph-based features (49 features)31 and wavelet features consisting of 
intensity, gradient and texture features extracted from wavelet filtered images (371 features)32. The morphological 
features and Fourier shape descriptors as well as the graph-based features were derived using the binary nuclei 
masks. The binary masks and the grey-scale image tiles were used to calculate the nuclear intensity, gradient, 
texture and wavelet features. The extracted features were averaged over all image tiles associated with each WSI 
to obtain the overall features for each patient. The number of nuclei in each image tile was applied to derive a 
weighting factor for the tile in calculating the averaged features.

Feature reduction/selection and tumor response prediction.  The clinical and pathomic features 
were analyzed through a feature reduction and selection process on the training set to develop optimal biomark-
ers for NAC response prediction. Seven different experiments were conducted to analyze different feature sub-
sets including the clinical, morphological, intensity-based, texture, graph-based and the wavelet feature subsets, 
in addition to a union of all feature subsets as the initial feature set. All the features were normalized to scale 
between zero and one before the analysis. A gradient boosting machine (GBM) with decision trees was trained 
as the classifier for response prediction in each experiment to calculate the contribution of each feature in the 
associated feature subset to the prediction model based on the importance gain score33. The first few features 
with highest contribution to the model that demonstrated a meaningful difference in the importance gain score 
compared to rest of the features were selected in each experiment and included in the biomarker.

The GBM model was adapted to develop a predictive model of NAC response using the optimum biomarker in 
each experiment. A five-fold cross validation on the training set was used with area under the receiver operating 
characteristic (ROC) curve (AUC) as the criteria to optimize the model hyperparameters. To address the imbal-
ance issue of the dataset, the training samples of the minority class (pCR) in each round were oversampled to a 
double number using the SMOTE method34. The final predictive model was developed using the entire training 
set with oversampled minority class, a learning rate of 0.1, a maximum depth of 10, and 2000 estimators. The 
performance of the predictive model with the optimal biomarker was subsequently evaluated on the independ-
ent test set using accuracy, sensitivity, specificity, and AUC. A threshold value of 0.5 was used as the cut-off to 
calculate the sensitivity and specificity.

Figure 1.   (a) An example of tumor bed annotation on a representative segment of the core on WSI (2188 × 4124 
pixels), (b) the non-overlapping 768 × 768 pixel tiles extracted from the tumor region with the excluded tiles 
shaded (less than 50% tumor or more than 10% white background), (c) an extracted tile with 100% tumor tissue, 
and (d) the generated binary mask of the nuclei in the tile.
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Results
Table 1 shows clinical and pathological characteristics of the patients in the training and test sets. Among the 
149 patients, 57.7%, 55.7%, and 44.3% had tumors with an ER+, PR+, and HER2+ receptor status, respectively. 
A majority of the patients (n = 123) were diagnosed with invasive ductal carcinoma, and a smaller proportion 
(n = 26) with invasive lobular carcinoma. The patients had an average initial tumor sizes of 46.4 ± 27.1 mm. 
Pathologic assessment after surgery demonstrated 34% (n = 50) of patients achieved a pCR; whereas 66% (n = 99) 
were non-pCR. The patients in the training and test set had similar statistics in terms of clinical and pathological 
characteristics, and similar proportions of patients with pCR and non-pCR were randomly included in both sets.

Figure 2 shows the importance gain score of the first 15 features with the highest contribution to each predic-
tive model. The best features were selected in each experiment based on the importance gain score as shown in 
the figure. In the first experiment, six clinical features including the tumor size, Nottingham grade, age, as well 
as the ER, HER2, and PR status demonstrated a non-zero importance gain score and were selected for model 
development. In the second to sixth experiments, nine morphological features, ten intensity-based features, 
five texture features, five graph-based features, and nine wavelet features demonstrated a notable difference in 
their importance gain score compared to the rest of the features and were selected as the best features. Similarly, 
in the last (seventh) experiment that incorporated all the feature subsets (clinical and pathomic features), the 
first seven features were selected and included in the biomarker as their importance gain score demonstrated a 
considerable difference compared to rest of the features. The selected features in this biomarker only include the 
pathomic features, with four texture features derived from the wavelet-filtered images, and three graph-based 
features extracted from the tumor nuclei masks. Figure 3 demonstrate the box plot of the selected features in 
different experiments for the pCR and non-pCR populations of the training set. The plots in Fig. 3a–f shows a 
relatively good separation in statistical distribution of the selected features between the two groups, particularly 
for those in the graph-based and wavelet feature subsets. The features selected among all feature subsets in the 
last experiment (Fig. 3g) demonstrate a very good separation between the quartiles and median of feature values 
obtained for the two cohorts.

The evaluation results of the predictive models developed in different experiments have been presented in 
Table 2. The training and five-fold cross-validation accuracies of the developed models were very close together in 
each experiment and in the range of 72–85% and 71–84%, respectively. The perdition performance of the models 
on the independent test set has also been reported in the table. The test accuracy, sensitivity, and specificity of 
the models in different experiments were in the range of 71–84%, 70–85%, and 64–82%, respectively. The best 
results were obtained in the seventh experiment with the response biomarker consisting of the wavelet and graph-
based features with a test accuracy of 84%, a sensitivity of 85%, and a specify of 82%. The ROC curves obtained 
on the independent test set is shown in Fig. 4 for different models. The AUC of the models ranged between 0.67 
and 0.90 with the best result associated with the model developed using the wavelet and graph-based features.

Table 1.   Demographic and clinical information of the patients involved in the study. The distribution of each 
variable was compared between the training and test sets using the Pearson’s Chi-squared homogeneity test for 
categorical variables and the and t test for continuous variables; the p-values are reported in the last column.

Patient demographics and 
clinicopathologic characteristics

Count (%)

p-valueTraining (n = 111) Test (n = 38)

pCR (n = 39) Non-pCR (n = 72) pCR (n = 11) Non-pCR (n = 27) p = 0.49

Median age (years) 48.4 52.2 50.6 52.1 p = 0.33

Menopausal status

Pre/peri-menopausal 22 (56%) 36 (50%) 6 (55%) 15 (56%)
p = 0.75

Post-menopausal 17 (44%) 36 (50%) 5 (45%) 12 (44%)

Receptor status

ER positive 14 (36%) 53 (74%) 2 (18%) 18 (67%) p = 0.27

PR positive 13 (33%) 43 (60%) 1 (9%) 16 (59%) p = 0.11

HER2 positive 27 (69%) 22 (31%) 7 (64%) 10 (37%) p = 0.32

Histology

Invasive ductal carcinoma 39 (100%) 63 (88%) 11 (100%) 10 (37%)
p = 0.49

 Invasive lobular carcinoma 0(0%) 9 (9%) 0 (0%) 17 (63%)

Nottingham grade

1 1 (2%) 3 (4%) 0 (0%) 0 (0%)

p = 0.502 9 (23%) 36 (50%) 2 (18%) 18 (67%)

3 29 (75%) 33 (46%) 9 (82%) 9 (33%)

Tumor size

Mean tumor size (mm; ± SD) 37.2 ± 21.2 50.9 ± 28.9 44.1 ± 25.8 48.9 ± 27.9 p = 0.78

Other clinical information

Inflammatory breast cancer 4 (10%) 10 (14%) 0 (0%) 1 (4%) p = 0.53
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Discussion
In this study, a GBM multi-feature ML model was investigated with various sets of clinicopathological and quan-
titative pathomic features derived from pre-treatment core biopsy specimens to predict the therapy response 
of BC patients undergoing NAC. Seven experiments were conducted to explore the efficacy of various feature 
subsets in predicting the therapy outcome. The results demonstrated a superior performance of the wavelet and 
graph-based feature in predictive modeling of NAC response at pre-treatment. The best results were obtained 
in the final experiment where all the clinical and pathomic features were included in the initial feature set. The 
response signature developed in this experiment consisted of seven features including four wavelet and three 
graph-based features. Results of descriptive analysis demonstrated a promising separation among the quartiles 
and median of these features between the two response cohorts. The ML model developed using this biomarker 
predicted the NAC response of the patients in the independent set with a sensitivity, specificity and AUC of 85%, 
82% and 0.90, respectively. The multivariate GBM demonstrated that the non-linear combination of the selected 
pathomic features has a very good predictive ability for NAC response at pre-treatment.

The results of experiments conducted in this study demonstrated that the pathomic features could outperform 
the clinical variables in NAC response prediction. Whereas a few pathomic feature subsets including the morpho-
logical, intensity-based and texture features could differentiate the response cohorts with slightly better prediction 
accuracy compared to the clinical features, the wavelet and graph-based features demonstrated a considerably 
better efficacy. This observation was further confirmed in the last experiment where among all features, only 

Figure 2.   The importance gain score of the first 15 features with highest contribution to the predictive model 
for different feature subsets: (a) clinical, (b) morphological, (c) intensity-based, (d) texture, (e) graph-based, 
(f) wavelet, and (g) all features. The green bars are associated with the features included in the NAC response 
biomarker in each experiment.
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the pathomic features from these two subsets were selected in the optimal biomarker with no feature from the 
clinicopathologic subset. Among the seven features included in this biomarker, the three graph-based features 
characterize the variations in spatial distribution of the intra-tumor nuclei with different measures. Specifi-
cally, the Voronoi_Max_Distance_Disorder feature measures the variations in maximum distance within poly-
gons in Voronoi diagram of the nuclei, while Delaunay_Sides_Stddev and Delaunay_Area_Stddev measure the 
variations in side length and area of triangles in Delaunay triangulation graph generated using the Voronoi 
partitions35. The wavelet features selected in the biomarker, on the other hand, characterize the spatial hetero-
geneity within the tumor nuclei by quantifying the gray-level dependencies in the associated wavelet-filtered 
images. Specifically, the Wavelet_HL_GLDM_DE, Wavelet_HL_GLDM_SDE, Wavelet_HL_GLDM_LDHGLE, 

Figure 3.   Box plots of the selected features for the pCR and non-pCR cohorts of the training set obtained in the 
seven experiments conducted using different feature subsets: (a) clinical, (b) morphological, (c) intensity-based, 
(d) texture, (e) graph-based, (f) wavelet, and (g) all features. The feature values are normalized in the range of 0 
and 1. The order of features in each plot is the same as that of the associated plot in Fig. 2.
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Wavelet_HH_GLDM_DNU features measure the entropy in gray-level intensity dependence, texture homogene-
ity, distribution of close similarities with higher intensity values, and the uniformity of intensity values within 
the nuclei36.

Imaging features confer information about cell–cell interactions and activity within the tumor 
microenvironment37. Determining actionable biomarker signatures, derived by mapping tumor subcomponents 
and characterizing the biological heterogeneity has the potential to improve diagnosis and response-guided 
treatment strategies. Previous studies have investigated the efficacy of the pathomic features in conjunction with 
the genomic features for other applications of cancer diagnosis and prognosis38,39. The findings of those studies 
are in agreement with the observations in this study. The genomic data, however, are not routinely acquired for 
LABC. Therefore, incorporating these parameters in predictive modeling of therapy outcome requires extra 
data acquisition and processing that may not be always feasible. A number of other studies have explored the 
performance of quantitative imaging data (radiomic features) acquired at early stage of diagnosis for NAC 
response prediction40–42. The observations of those studies confirm that the BC characteristics such as intra-
tumor heterogeneity quantified using pretreatment imaging can reasonably be correlated to the NAC outcome. 
One limitation associated with predictive modeling using the imaging-based features is that the performance 
of such systems could possibly be affected by imaging acquisition protocols including variations in resolution, 

Table 2.   Results of NAC response prediction at pre-treatment using the clinicopathological and/or pathomic 
features, on the training, validation and test sets. The features included in each optimal biomarker have been 
listed in Fig. 2. For the validation set, the 95% confidence intervals are reported over the five folds of cross 
validation. The best value in each column is in bold. Acc accuracy, AUC​ area under the curve, Sen sensitivity, 
Spec specificity, Tr training, Val validation, Te test.

Features Number of features in optimal biomarker Tr Acc Val Acc Val AUC​ Val Sen Val Spec Te Acc Te AUC​ Te Sen Te Spec

Clinical features 6 0.72 0.71 ± 0.02 0.74 ± 0.04 0.70 ± 0.04 0.73 ± 0.03 0.71 0.73 0.70 0.73

Morphological features 9 0.76 0.76 ± 0.03 0.78 ± 0.05 0.78 ± 0.03 0.67 ± 0.02 0.74 0.78 0.78 0.64

Intensity-based features 10 0.78 0.75 ± 0.02 0.77 ± 0.03 0.77 ± 0.02 0.69 ± 0.02 0.74 0.78 0.78 0.64

Texture features 5 0.76 0.75 ± 0.01 0.70 ± 0.03 0.78 ± 0.02 0.68 ± 0.03 0.74 0.67 0.78 0.64

Graph-based features 5 0.75 0.76 ± 0.01 0.79 ± 0.02 0.79 ± 0.03 0.72 ± 0.03 0.76 0.80 0.78 0.73

Wavelet features 9 0.82 0.83 ± 0.02 0.84 ± 0.03 0.80 ± 0.04 0.83 ± 0.02 0.82 0.87 0.81 0.82

All features 7 0.85 0.84 ± 0.03 0.89 ± 0.04 0.84 ± 0.04 0.82 ± 0.02 0.84 0.90 0.85 0.82

Figure 4.   Receiver operating characteristic (ROC) curves on the independent test set for the predictive models 
developed with the selected features obtained in different experiments. In the last experiment and from all 
feature subsets, 7 wavelet and graph-based features were selected.
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magnification, and gain parameters43. A number of previous studies have focused on post-treatment nonsurgical 
techniques including biopsy and imaging to detect residual cancer in the breast or axilla after NAC44,45. Specifi-
cally, pre-surgical vacuum-assisted biopsy (VAB) coupled with machine learning methods have been investi-
gated to identify patients with pCR to NAC who may not need to undergo surgery. The results demonstrate that 
combining the clinical, imaging and VAB variables integrated with machine learning models can improve the 
performance in pre-surgical NAC response identification. Whereas applying such methods at post-treatment 
may spare the patients with pCR from an unnecessary mastectomy or lumpectomy, they cannot facilitate treat-
ment adjustments or switching to alternative treatments for non-responders.

The results of this study were obtained using a relatively small dataset (n = 149) acquired from a single 
institution. A test set was randomly selected and kept completely unseen during the model development and 
tuning to assess the performance of the models independently. Whereas similar performance of the models on 
the validation and independent test sets can imply a good generalizability of the models on unseen samples, 
no external test set was available in this study to minimize the chance of bias in model evaluations. As such, to 
evaluate the robustness of the methods and assess the performance and applicability of the developed models in 
clinic rigorously, further investigations are required on larger cohorts of patients with multi-institutional data.

In conclusion, this study demonstrated a very good potential of hand-crafted pathomic features integrated 
with ML techniques in predicting the pathological response of BC patient to NAC. The promising results obtained 
in this study is a step forward towards a priori chemotherapy response prediction in high-risk BC patients using 
smart quantitative histopathology methodologies at pre-treatment. Early prediction of NAC response permits 
timely therapy adjustment by oncologists or switching to more effective treatment for individual patients. A per-
sonalized oncology paradigm for BC patients is expected to improve their overall therapy outcome and quality 
of life. The promising results obtained in this study pave the way for further investigations and encourage future 
studies to integrate more advanced ML methodologies including the end-to-end deep learning architectures 
with digital histopathology for NAC response prediction.

Data availability
Data were collected and available at the Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, 
ON, Canada.
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