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Abstract Introduction: Subtle cognitive alterations that precede clinical evidence of cognitive impairment
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may help predict the progression to Alzheimer’s disease (AD). Neuropsychological (NP) testing is
an attractive modality for screening early evidence of AD.
Methods: LongitudinalNPand demographic data from the FraminghamHeart Study (FHS;N5 1696)
and the National Alzheimer’s Coordinating Center (NACC; N5 689) were analyzed using an unsuper-
vised machine learning framework. Features, including age, logical memory-immediate and delayed
recall, visual reproduction-immediate and delayed recall, the Boston naming tests, and Trails B, were
identified using feature selection, and processed further to predict the risk of development of AD.
Results: Our model yielded 83.076 3.52% accuracy in FHS and 87.576 1.19% accuracy in NACC,
80.52 6 3.93%, 86.74 6 1.63% sensitivity in FHS and NACC respectively, and 85.63 6 4.71%,
88.41 6 1.38% specificity in FHS and NACC, respectively.
Discussion: Our results suggest that a subset of NP tests, when analyzed using unsupervised machine
learning, may help distinguish between high- and low-risk individuals in the context of subsequent
development of AD within 5 years. This approach could be a viable option for early AD screening
in clinical practice and clinical trials.
� 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
Keywords: Alzheimer’s disease; Neuropsychological testing; Machine learning; Framingham Heart Study; National Alz-
heimer’s Coordinating Center
1. Introduction

The underlying pathophysiological processes of Alz-
heimer’s disease (AD) begin many years before the clinical
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diagnosis of AD dementia [1–3]. This early phase of AD
provides a critical opportunity where prognostic and
therapeutic interventions may be most effective to delay or
possibly prevent disease onset [3,4]. The use of cognitive
tests has had an arguably profound impact on screening
dementia cases in clinical settings [5]. The Folstein
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Mini-Mental State Examination (MMSE), a 30-item ques-
tionnaire, is among themost widely applied test for dementia
screening [6]. However, a body of evidence suggests poor
sensitivity of the MMSE scale for screening for early signs
of dementia [7,8]. Another commonly employed method in-
volves the use of a battery of neuropsychological (NP) tests
in tandem with the diagnostic criteria for AD [5,9]. This
method associates the performance on each test to affected
cognitive domains and quantifies the test scores to the degree
of cognitive impairment based on population averages
[9,10]. Interpretation of test scores using this method can
be challenging due to the involved subjectivity. Additionally,
the administration of the entire NP battery can be tedious and
time-consuming. Thus, a methodology involving fewer pre-
selected NP tests that can accurately detect subtle changes in
cognitive function could potentially help predict AD at an
early time point.

Using data-driven machine learning approaches, we
leveraged the longitudinal cognitive data from the Framing-
ham Heart Study’s (FHS) Offspring cohort (Gen2), to iden-
tify NP tests that are associated with early signatures of AD
and help provide an early and robust prediction of subse-
quent clinical disease. The results were validated using a
harmonized clinical dataset created by the National Alz-
heimer’s Coordinating Center (NACC).
2. Study subjects and methods

2.1. Data collection and study sample

Three thousand and twenty-one participants from the
FHS Gen-2 participants underwent the health Exams 7 and
8, the exam cycles used in this investigation (Fig. 1A). Be-
tween the years 1999 and 2000, the Gen-2 participants
were administered a battery of NP tests as part of the FHS-
ancillary study; this was the first NP exam (time point 1
[TP1]). Subsequently, the participants of this cohort under-
went the second NP exam (time point 2 [TP2]) between
2005 and 2011 [11,12]. For the purpose of this study, we
included 2282 participants who had undergone NP testing
at TP1 and TP2, up to five years apart, and had valid scores
on the 30- point MMSE scale, taken at Gen-2 FHS health
exams 7 and 8 respectively.

Next, six NP tests (included Logical Memory-Immediate
and delayed recall (LMi and LMd), Visual Reproduction-
Immediate and Delayed recall (VRi and VRd), the Boston
Naming Tests (BNT30) and Trails B) that were highly asso-
ciated with AD, were selected using a method known as
Kullback–Leibler (KL) divergence. Gen-2 participants
with no missing values on the above-mentioned tests at the
first two NP exams were included in the final study sample.
Lastly, participants with prevalent Non-AD dementias and
clinical stroke were excluded. The final study sample con-
sists of 1696 FHS Gen-2 participants (Fig. 1A).

Written informed consent was obtained from all FHS par-
ticipants. The FHS sample of this study was approved by the
Institutional Review Board of Boston University Medical
Campus and was monitored by a National Heart, Lung,
and Blood Institute Observational Study Monitoring Board
and followed their guidelines.

An independent validation analysis was conducted using
the Uniform Data Set (UDS) created by NACC. The UDS is
a standardized dataset comprising of harmonized clinical
data collected from 29 Alzheimer’s Disease Centers across
the United States of America. Out of the 1955 individuals
from UDS version 2 dataset (Fig. 1B) provided by the
NACC data center, 689 had NP tests comparable to FHS
and met all the above-mentioned study criteria (Fig. 1B);
these individuals constituted the NACC study sample.

2.2. Study sub-sample to balance AD cases and normal
controls

In the general population, the ratio of cognitively normal
to AD individuals may be skewed. For the algorithm to
effectively distinguish between the two groups, it is impor-
tant to balance the ratio of AD to cognitively normal individ-
uals. We thus kept the AD cases constant and performed
cluster sampling within the healthy controls to avoid
excluding the AD cases by complete random sampling of
the entire study sample. Sixty-four unique control partici-
pants were randomly selected at each iteration, with replace-
ment, and the new sample of 128 participants was used for
further analysis. This control selection procedure was inde-
pendently repeated 25 times for both FHS and NACC, thus,
maximally contrasting the data from the controls with cases
across the multiple iterations.

2.3. Data analysis

A single clinical parameter in machine learning terminol-
ogy is called a “feature.” Some features are highly associated
with the disease. In order to distinguish these features and
eliminate those that were superfluous, we first performed a
data pre-processing step (the Kullback–Leibler (KL) diver-
gence). This simplified the model, shortened training time,
and enhanced the generalization of the pipeline.

2.4. Kullback-Leibler divergence

KL-divergence is a measurement of the difference be-
tween two probability distributions. This technique was
used to measure the importance of each feature (NP tests,
age, gender, education), with respect to the AD status
(Fig. 2). For each feature, we plotted the distribution of the
feature data corresponding to AD and non-AD (FHS:
N5 1696; NACC: N5 689) participants at TP1. The greater
the difference between these two distributions, the more in-
formation that feature will bring into the model. We calcu-
lated KL-divergence for all features in this dataset and
selected those with values greater than 0.5 (top 30%). The
features selected by this technique from FHS include Age,
LMi, LMd, VRi, VRd, PASd, BNT30, and Trails B tests,



Fig. 1. Criteria for sample selection and overview of the workflow. Flowcharts in (A) and (B) describe the criteria for selecting cases from FHS and NACC

studies, respectively. (C) Longitudinal cognitive data from the FHS and NACC were obtained. Kullback-Leibler (KL) divergence was computed on age, edu-

cation, gender, and each neuropsychological test independently. Individuals with complete data on eight parameters (Logical Memory [immediate and delayed],

Visual Reproductions [immediate and delayed], Paired Associate Learning, Boston Naming Test 30 items, Trails B tests and age) with KL.0.5 were selected.

Principal component (PC) analysis was performed on selected NP tests and age at time point 1 (TP1) and the first two PCs were plotted. The nearest neighbors

approach was used on the first two PCs followed by majority voting and prediction of AD at time point 1 (TP2). This procedure was repeated 25 times, and an

average confusion matrix was created. Abbreviations: AD, Alzheimer’s disease; FHS, Framingham Heart Study; NACC, National Alzheimer’s Coordinating

Center.
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Fig. 2. Kullback-Leibler (KL) divergence distribution plots on (A) FHS and (B) NACC data sets. The KL divergence was calculated between the probability

distributions (Y-axis) of Alzheimer’s and no-Alzheimer’s status at time point 1 (TP1) for various parameters including neuropsychological (NP) tests, age,

gender, education (X-axis). Seven NP tests (Logical Memory Immediate and Delayed Recall, Visual Reproduction Immediate and Delayed recall, Paired Asso-

ciate Learning, Boston Naming Tests 30 items, Trails B) and age had KL values greater than 0.5 and were selected for further analysis. Abbreviations: FHS,

Framingham Heart Study; NACC, National Alzheimer’s Coordinating Center.
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Fig. 3. PCA and K-NN plots. (A) The first two principal components (PCA1, PCA2) were plotted in (a1) FHS and (a2) NACC studies. They represent the

maximum variance of the cumulative neuropsychological (NP) test scores and age. AD (red) and no-AD (blue ring) labels were added to represent the observed

clustering. (B) Using the k-nearest neighbors approach, AD or no-AD predictions at time point 2 (TP2) (triangles) were superimposed on status at time point 1

(TP1) in (b1) FHS and (b2) NACC studies. Abbreviations: AD, Alzheimer’s disease; FHS, Framingham Heart Study; NACC, National Alzheimer’s Coordi-

nating Center; PCA, principal component analysis.
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and these features were used for further analysis (Fig. 2A).
The above-selected features derived from the NACC study
were used for model validation (Fig. 2B).
2.5. Principal component analysis

Each unique feature forms a coordinate axis in a multi-
dimensional space. In this case, the eight features selected
by using KL divergence would require eight-dimensional
space (8D-feature space) to be represented. For analyzing
this multidimensional data, the ML algorithms would
require high computational cost. Additionally, it is likely
that some features are highly correlated or add redun-
dancies to the algorithm. We thus used a dimensionality
reduction technique called principal component analysis
(PCA) (Fig. 3A). This method enabled us to combine NP
tests across multiple cognitive domains without intro-
ducing the investigator’s subjectivity or simply averaging
the NP test scores. Using PCA, we created a new feature
space with two dimensions (called PC1 and PC2), whose
coordinate values were computed as a linear combination
of the existing 8D feature data.
2.6. Analysis using k-nearest neighbor (kNN) algorithm
and majority voting

The PCA coordinates at the TP1 exam were plotted on a
2-D graph; each study participant represented a unique point
on the coordinate axis (Fig. 3A). Examining one participant
at a time from the study subsample of 128 participants, each
individual (corresponding to a single point on the plot in
Fig. 3A) was considered a “test subject,” while the points
in its spatial proximity on the plot were termed as its “neigh-
bors.” We considered odd numbers of neighbors (k5 1, 3, 5,
7, 9.) to prevent ties during majority voting used in subse-
quent parts of the algorithm. These “k” nearest neighbors in
the 2-D feature space were determined based on the
Euclidean distance.

Next, all points on the plot, excluding the test subject,
were assigned their outcome status label (AD/normal) at
the TP2 exam (Fig. 3B). Then, the test subjects’ outcome



Fig. 4. Model performance on (A) FHS and (B) NACC data sets. Mean accuracy, mean sensitivity, and mean specificity are plotted as a function of the number

of nearest neighbors. Performance metrics were generated by running the model 25 times and averaging them. Mean values are also summarized in the tables.

Abbreviations: FHS, Framingham Heart Study; NACC, National Alzheimer’s Coordinating Center.
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Table 1

Descriptive statistics on demographics and cognitive measures of the FHS

and NACC study participants at baseline/time-point1 (TP1)

Baseline characteristics of the FHS population–Mean (SD)

AD (N 5 64) No-AD (N 5 1632) P value

Demographic

Characteristics

Age (years) 74.46 6 4.24 61.20 6 9.26 .0054*

Sex (Female), N (%)y 35 (54.68) 877 (53.74) .4034

Education

(High school or

more), N (%)y

19 (29.68) 81 (04.96) .0003*

Neuropsychological

Measures

Verbal memory

LMi 7.54 6 3.71 10.83 6 3.26 .4280

LMd 4.31 6 5.02 10.90 6 3.42 .0229*

VRi 3.46 6 3.53 9.39 6 3.07 .0001*

VRd 2.54 6 2.51 8.58 6 3.29 .0001*

Boston Naming Test

BNT30 21.38 6 3.69 27.71 6 2.26 .0031*

Visual scanning and

motor speed

TrailsB 4.22 6 3.46 1.29 6 0.75 .0100*

Mini-Mental
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status at the TP2 exam was predicted based on majority
voting of the outcome label of its “k” neighbors. For
example, if a test subject has 5 neighbors (i.e., k 5 5) and
three out of the five neighbors have “AD” as their outcome
label at the TP2 exam, then the test subject’s outcome at
the TP2 exam will be predicted as “AD.” This procedure
of predicting the outcome label at TP2 was repeated for all
the 128 study participants, considering each unique partici-
pant as a test subject. Based on the model’s ability to predict
AD/normal outcome at TP2, the accuracy, sensitivity, spec-
ificity, positive predictive values, and negative predictive
values were calculated for the “k” neighbors (k 5 1,3,5,7,
and 9).

For comparison, the kNN algorithm was applied on the
30-point MMSE scores at the nearest NACC and FHS
health exams, was used to predict AD/normal outcomes,
and the accuracy, sensitivity, and specificity of this model
were computed. The PCA and kNN algorithms for the
MMSE and NP tests were repeated 25 times, and the accu-
racy, sensitivity, and specificity for the “k” neighbors, ob-
tained at each iteration, were averaged (Supplementary
Figs. 1 and 2).
State Exam

MMSE score 27.62 6 1.85 29.02 6 1.25 .0507*

Baseline characteristics of the NAAC population–Mean (SD)

AD (N 5 271) No-AD (N 5 418) P value

Demographic

Characteristics

Age (years) 73.01 6 9.37 71.63 6 9.31 .056

Sex (Female), N (%)y 142 (52.40) 282 (67.46) ,.0001*

Education (Years of

education)

14.54 6 6.53 15.04 6 5.65 .285

Neuropsychological

Measures

Verbal memory

LMi 8.17 6 1.93 19.23 6 2.41 ,.0001*

LMd 6.22 6 2.05 17.45 6 2.17 ,.0001*

VRi 3.67 6 2.41 3.95 6 1.03 .073

VRd 3.90 6 0.80 3.96 6 0.78 .293

Boston Naming Test

BNT30 24.24 6 18.89 29.70 6 14.74 ,.0001*

Visual scanning and

motor speed

TrailsB 393.13 6 340.7 135.04 6 184.96 ,.0001*
3. Results

The current study sample consists of 1696 FHS Gen-2
participants and 689 NACC participants, out of which 64
FHS participants had AD, and 1632 were cognitively normal
at the baseline NP exam (TP1); 271 NACC participants had
AD, and 418 were cognitively normal at TP1.

In FHS, individuals with ADwere significantly older, and
few had reached a level of education beyond high school,
compared to participants without AD (Table 1). Conversely,
in NACC, the age and number of years of education were not
significantly different between AD and NC participants. On
average, AD participants had lower scores on all the selected
cognitive tests; while this finding was more evident in the
NACC study except the VRi, VRd tests, this difference
reached 0.05 level significance only on LMd, VRi, VRd,
BNT-30, Trails B and MMSE tests in the FHS study
(Tables 1).
Mini-Mental

State Exam

MMSE score 21.76 6 5.95 28.57 6 2.28 ,.0001*

*,.05 significance levels for differences between AD and NC.
yCounts and percentages were calculated for categorical variables.
3.1. PCA and classification results

The study subsample of 128 FHS participants was used
for each model run using PCA followed by k-NN classifica-
tion (Appendix S1). On average, across the 25 iterations, the
NP test models with 3 (k 5 3) and 7 (k 5 7) neighbors re-
sulted in the highest accuracies of 83.94 6 3.69 and
83.07 6 3.52, respectively. While the k 5 7 model had a
higher specificity (85.63), the k 5 3 model had a higher
sensitivity (83.68). Out of the subsample, the iteration with
the best prediction with three neighbors yielded 92.11% ac-
curacy, 88.16% sensitivity, and 96.05% specificity (Fig. 4A).
The MMSE model using the FHS data, had an accuracy of
56.736 0.60%, sensitivity of 14.476 0.00% and specificity
of 98.05 6 1.20%.

This method of using PCA followed by k-NN classifica-
tion was validated using the NACC data (Appendix S2).
Across the 25 iterations of the NACC data, the NP test
models with three and five neighbors had the highest accu-
racies of 87.57 6 1.19% and 87.10 6 1.37%, respectively.



P.S. Joshi et al. / Alzheimer’s & Dementia: Translational Research & Clinical Interventions 5 (2019) 964-973 971
Both the k 5 3 and k 5 5 models had similar sensitivities
86.74 6 1.63% and 86.39 6 1.763% and the k 5 3 had a
slightly better specificity (88.41 6 1.38%) compared to
the k 5 5 model (87.81 6 1.52%) (Fig .4B). The MMSE
model based on the NACC data yielded an average accuracy
of 51.346 0.13%, a sensitivity of 2.736 4.44!10–16, and
a specificity of 99.94 6 0.26%.
3.2. Secondary analysis

A secondary stratified analysis was performed on the FHS
sample. We computed the mean change in scores across each
of the 7 selected NP tests, as well as theMMSE test scores, in
two groups (1) those who were cognitively intact at TP1 and
converted to AD at TP2 (Converters), and (2) those who re-
mained cognitively normal across the two time intervals
(Nonconvertors) (Supplementary Table 3). In general, there
was a decline in the MMSE, as well as NP test scores, in the
convertors as well as the nonconvertors. The average change
in scores was 0.966 2.75 on the 8 NP tests and 0.886 1.82
on the MMSE test, for the convertors, and for the nonconver-
tors, the change in scores was 0.306 2.13 on the 8 NP tests
and 0.24 6 1.59 on the MMSE test. On comparing the
change in individual NP test scores from TP1 to TP2, be-
tween the convertors and nonconvertors, only LM-DR,
VM-DR, BNT30, and Trails B tests were significantly
different between the two populations. We further assessed
the subpopulation that was predicted correctly versus incor-
rectly from the iteration that resulted in the highest accuracy
of 87.50% (Supplementary Table 3); only the change in
scores on LM-DR, VM-DR, and Trails B tests were signifi-
cantly different.
4. Discussion

We assessed the cumulative potential of a subset of NP
tests to identify an early cognitive decline in a population-
based cohort and predicted the future outcome (AD/NC)
at an individual level. We demonstrate the value of using
an unsupervised learning framework to identify a group of
individuals who exhibit an early indication of global
cognitive deterioration. The results from our analysis
across the two datasets also highlight the capacity of un-
supervised machine learning in detecting subtle changes
on cognitive tests, which may not be identified as accu-
rately using the MMSE test or regular statistical modeling
of NP test results. The MMSE test is among the most
commonly used tests for dementia screening [6]. Howev-
er, as demonstrated by this study and findings from the
literature, the MMSE test has poor sensitivity for early
detection of cognitive impairment; this is likely due to
the ease with which the individuals perform on the test
prior to the onset of substantial impairment [7,8]. Thus,
the use of a battery of NP tests may be a better alternative
for dementia screening.

Traditionally, an individual’s score on each NP test is
compared to the mean score of age and education compara-
ble to a normal reference group [13]. Together with evi-
dence of functional impairment, a drop in the performance
at or below the 5th percentile in two domains compared to
the reference group is used to diagnose AD dementia
[10,13]. The drop in NP scores likely indicates an incident
cognitive decline, which may be too late to allow effective
interventions [14]. Additionally, the clinical interpretation
of test scores using the above cut-off based method may
not be uniform due to the involved subjectivity of clinically
interpreting the test scores [15]. For example, an individual
may have large variability in scores across different NP
tests, with very high scores on certain tests and very low
scores on others. In addition, the number of high or low
scores depends on the number of tests administered and
the correlations between these tests. In such cases, aver-
aging scores across all the tests within the domain, as seen
in our secondary analysis (Supplementary Table 3), fails
to present a clear picture of the underlying disease state.
Also, evidence suggests that cognitive domains may not
be independent of each other, and deficits across multiple
domains may be explained by a global deterioration in
cognitive abilities seen in AD [16]. Accurate AD diagnosis
mandates the understanding of the interplay between multi-
ple cognitive domains, and none of the NP tests can singu-
larly capture these multidomain changes. As a result, it is
important to combine the essence of multiple NP tests to
ascertain these subtle cognitive changes in AD [17,18].
This is precisely when techniques, such as PCA, can be use-
ful as they can provide a lower dimensional projection of the
combined NP tests (representing global cognition) to depict
the largest variance, that is, most informative viewpoint of
these data.

In agreement with our study, other investigators have
also examined the diagnostic criteria for AD dementia
through a series of NP tests to determine the number of fac-
tors that best represent AD. Some have used traditional
multivariate approaches and explored these associations
only in AD cases [10,19,20]. Lowenstein et al. [19] found
that a six-factor model provided the best fit to the data,
while a study by Davis et al. [20] found that a three-
factor model to be the best fit. However, using traditional
models to analyze highly related NP test features could
lead to the problem of collinearity [21]. This issue would
not arise in a PCA model since each principal component
is linearly uncorrelated [17].

Previously, investigators used techniques, such as PCA
and discriminant analysis, on cross-sectional data, to diag-
nose AD using NP tests. For example, Chapman et al. [10]
created 13 component scores for each subject using
weighted combined scores from multiple tests and obtained
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an accuracy of ~90% in determining the prevalent AD cases;
however, this study lacked a longitudinal predictive element,
which the present study has provided. By leveraging the lon-
gitudinal component of the FHS and NACC data, we compli-
mented the PCA-based clustering with the kNN algorithm to
predict cognitive decline due to AD. This methodology
yielded 83.07% accuracy in detecting AD cases tested
within 1–5 years of baseline testing, which is an encouraging
result considering that the model used only age and a subset
of NP testing scores. However, this study has some limita-
tions since the number of confirmed AD cases is fairly
limited. Furthermore, it is important to acknowledge that
different batteries of NP tests may be used in various clinics
and research centers. Nevertheless, it is plausible that the
changes in global cognitive function represented by the NP
tests are more important than the specific tests themselves.
It may be possible to use different NP tests that encompass
the same cognitive domains as ours and replicate our find-
ings. Additionally, although this study used an extensive de-
mentia review procedure to diagnose AD cases, there may,
however, be some non-differential misclassification of con-
trols.

In conclusion, our study highlights the capacity of unsu-
pervised machine learning approaches to capture the hetero-
geneity of cognitive profiles at an individual level and
identify groups of individuals who exhibited similar patterns
of global cognitive deterioration. Such tools could serve as
efficient frameworks to concomitantly process multiple NP
tests and generate an overall signature, even when there is
some variability in the individual’s performance on various
NP tests. Further validation of this framework is needed to
enable it as a screening tool for AD cases or for recruiting
participants for AD clinical trials.
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RESEARCH IN CONTEXT

1. Systematic review: Research has shown that subtle
cognitive trends preceding clinical evidence of
cognitive impairment may help predict conversion
to Alzheimer’s disease [10, 19, 20].

2. Interpretation: In this study, an unsupervised ma-
chine learning approach was used to combine scores
across select neuropsychological (NP) tests to iden-
tify groups of individuals exhibiting similar signa-
tures of global cognitive deterioration. This
signature was computed on the Framingham Heart
Study Offspring cohort and validated on the National
Alzheimer’s Coordinating Center data. This frame-
work also predicted an individual level progression
to AD in five years.

3. Future directions: An NP test-based signature for
early identification of individual AD risk is feasible
and could be useful for early cognitive screening.
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