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Abstract Climate change is escalating the threat of heat stress to global public health, with the majority of
humans today facing increasingly severe and prolonged heat waves. Accurate weather data reflecting the
complexity of measuring heat stress is crucial for reducing the impact of extreme heat on health worldwide.
Previous studies have employed Heat Index (HI) and Wet Bulb Globe Temperature (WBGT) metrics to
understand extreme heat exposure, forming the basis for heat stress guidelines. However, systematic
comparisons of meteorological and climate data sets used for these metrics and the related parameters, like air
temperature, humidity, wind speed, and solar radiation crucial for human thermoregulation, are lacking. We
compared three heat measures (HImax, WBGTBernard, and WBGTLiljegren) approximated from gridded weather
data sets (ERA5‐Land, PRISM, Daymet) with ground‐based data, revealing strong agreement from HI and
WBGTBernard (R2 0.76–0.95, RMSE 1.69–6.64°C). Discrepancies varied by Köppen‐Geiger climates (e.g.,
Adjusted R2 HImax 0.88–0.95, WBGTBernard 0.79–0.97, and WBGTLiljegren 0.80–0.96), and metrological input
variables (Adjusted R2 Tmax 0.86–0.94, Tmin 0.91–0.94, Wind 0.33, Solarmax 0.38, Solaravg 0.38, relative
humidity 0.51–0.74). Gridded data sets can offer reliable heat exposure assessment, but further research and
local networks are vital to reduce measurement errors to fully enhance our understanding of how heat stress
measures link to health outcomes.

Plain Language Summary Extreme heat threatens human health. Rising intensity and duration of
heat days expose more to hot environments. To understand how extreme heat affects human health, it is
important to use accurate weather information and measures that reflect people's actual experience of the heat.
Heat Index (HI) and Wet Bulb Globe Temperature (WBGT) are commonly used heat stress metrics that are
widely used to set exposure guidelines and policies. However, there have been limited comparisons between
daily heat measures and weather variables. In this study, we compared three heat measures (HI, WBGTBernard,
and WBGTLiljegren) derived from three widely used gridded weather data sets (ERA5‐Land, PRISM, and
Daymet) with ground‐based weather observations. The heat measures calculated from both the gridded weather
data and the station data showed a reasonably strong agreement. However, the differences varied depending on
the climate types. Gridded weather data sets can provide a reliable approach to assessing heat exposure and
impacts based on meteorological variables to produce heat measures. However, further research and the
establishment of local ground station networks are necessary to reduce measurement errors in exposure and
improve accuracy. This will help us better understand the relationship between heat measures and their impact
on health outcomes.

1. Introduction
Exposure to extreme heat events is a significant burden on human physiological and mental health and livelihoods
in many parts of the world (M. L. Bell et al., 2008; Burke et al., 2018; Heo & Bell, 2019; Parks et al., 2020).
According to the Centers for Disease Control and Prevention, an average of 685 people died each year between
May and September due to underlying and contributing causes of extreme heat from 1999 to 2009. This death toll
is the highest compared to fatalities caused by other extreme weather events, such as tornadoes, in the United
States (United States Environmental Protection Agency, 2020). Extreme heat also negatively impacts economic
output, from lost labor productivity (Zhang & Shindell, 2021) to damage to infrastructure (J. E. Bell et al., 2018;
National Centers for Environmental Information, 2017; Underwood et al., 2017). Understanding extreme heat
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dynamics will be increasingly important to policymakers as extreme heat events increase in frequency and in-
tensity due to climate change (U.S. Global Change Research Program, 2023).

Epidemiological studies typically have applied dry‐bulb temperature (Tdb, e.g., ambient air temperature measured
in the shade) as a daily measure of heat exposure (Baldwin et al., 2023; Parks et al., 2023). However, solar ra-
diation, wind speed, pressure, clothing, and metabolic rate also determine heat stress and health impacts (Adams
et al., 2022; Bernard & Iheanacho, 2015; Heo et al., 2019). More comprehensive metrics such as Wet Bulb Globe
Temperature (WBGT) (Yaglou & Minaed, 1957), which accounts for temperature humidity, solar radiation, and
wind speed (Sousa et al., 2022) and Heat Index (HI) (Steadman, 1979), which is a combination of relative hu-
midity (RH) and ambient air temperature, are increasingly used to study heat stress and exposure (Heo &
Bell, 2019; Tuholske et al., 2021). These measures better describe factors influencing human thermoregulation
and the physiologic impact of heat than air temperature alone.

Moreover, these measures are considered critical information since an increasing number of public health studies
and government regulatory bodies use them to measure heat stress. For example, The United States Occupational
Safety and Health Administration also developed guidelines for outdoor workers based on HI. National Institute
for Occupational Safety and Health guidelines for outdoor workers are based on WBGT and metabolic rate.
Moreover, Grundstein and Cooper (2018) also proposed regional WBGT thresholds and guidelines, considering
individuals' heat tolerance, which refers to their ability to withstand and adapt to heat stress. However, despite
efforts to establish policies and guidelines, heat tolerance varies among individuals and is influenced by various
factors such as age, fitness level, acclimatization, hydration status, and overall health (Gardner et al., 2016).

The US National Weather Service (NWS) provides HI information to implement these guidelines according to the
weather information. Additionally, in recent years, the NWS began to provide forecast WBGT information which
is developed based on the National Digital Forecast Database (National Weather Service Headquarters, 2022a,
2022b). However, only a few weather stations are equipped with a black‐globe thermometer, which is critical to
accurately gathering WBGT, and it is thus challenging to provide observed WBGT information for most humans
worldwide (Rennie et al., 2021; Uejio et al., 2018).

To overcome the limitations of available in situ station data, researchers have developed various gridded weather
data and reanalysis products, as well as several methods to calculate heat stress measures with these products
(Bernard & Iheanacho, 2015; Brimicombe et al., 2023; Dimiceli et al., 2011; Liljegren et al., 2008; Spangler &
Wellenius, 2021; Stull, 2011; Yaglou & Minaed, 1957). Among the various estimation methods for WBGT, the
method proposed by Liliegren (WBGTLiljegren) has been considered the most robust under outdoor conditions
(Bernard & Iheanacho, 2015; Kong & Huber, 2022; Lemke et al., 2019; Patel et al., 2013). HI, calculated with air
temperature and RH (Steadman, 1979), is relatively simple to estimate. Therefore, HI is widely applied in
epidemiological light winds (Rothfusz, 1990). In other words, HI is limited in utilization for heat exposure
guidelines developed based on metabolic rate. Bernard and Iheanacho (2015) suggested a simplified method to
estimate WBGT by establishing a quadratic transformation between HI and WBGTLiljegren that also assumes fixed
windspeeds (0.5 m/s) and shade.

Although scholars have introduced several approximation methods for heat measures from gridded weather data,
daily RH, wind speed, solar radiation, WBGTBernard, WBGTLiljegren, and HI approximations have not been
quantitatively compared (Spangler et al., 2019). Gridded weather data showed climate‐specific performance
differences of approximation due to spatial resolutions and algorithms (Kong & Huber, 2022). Further, numerous
studies examined and described thermal comfort with Köppen‐Geiger's climatic classification, which developed
based on seasonal precipitation and temperature patterns (Djamila & Yong, 2016; Mishra & Ramgopal, 2015).
While previous literature has provided evidence of the potential impact of different climates on certain biases
(Liljegren et al., 2008), there remains a significant knowledge gap regarding the accuracy of these approximations
in various climate change settings (Kong & Huber, 2022).

We build upon previous efforts to compare and validate heat metrics across gridded weather and climate data sets
with in situ observations (Ahn et al., 2022). Our aim is to use three commonly used gridded weather data sets in
epidemiological studies to conduct an intercomparison of multiple metrics HImax, WBGTBernard,WBGTLiljegren)
and weather variables according to the Köppen‐Geiger climate (Beck et al., 2018). To achieve our goal, we will
address the following questions: (a) To what extent do gridded climate data sets accurately estimate RH, wind
speed, solar radiation, WBGTBernard, WBGTLiljegren, and HI. (b) Which climatic zones have the strongest/weakest
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association with gridded weather data with in situ data in the contiguous
United States (CONUS) which has 26 climate categories.

2. Methodology
2.1. In Situ (Station) Weather Data for Observed Heat Measures

We collected hourly air temperature, RH, solar radiation, and wind speed data
from April to October 2018 and 2019 from 924 stations operated by 17 in-
stitutions (Colorado State University, 2020; Cooperative Agriculture Weather
Network, 2020; High Plains Regional Climate Center (HPRCC), 2020; Illi-
nois State, 2019; Kansas Mesonet, 2017; Michigan State University, 2020;
Missouri Mesonet, 2020; New Mexico State University, 2020; North Carolina
State University, 2020; North Dakota Agriculture Weather Network Cen-
ter, 2020; South Alabama, 2020; United States Department of Agricul-
ture, 2020; University of Arizona, 2020; University of Florida, 2020;
Washington State University, 2020) (Figure A1). Various studies found that
the precision of gridded historical weather data differs across various regional
climate zones (Ahn et al., 2022; Behnke et al., 2016). Therefore, we stratified
analyses of agreement between data sets by Köppen‐Geiger climate cate-
gories to understand agreement by climate zone. We regrouped Köppen‐
Geiger climate categories into six categories arid desert (BWh, BWk), arid
steppe (BSh, BSk), cold dry (Dsa, Dsb, Dwa, Dwb), cold no dry (Dfa, Dfb,
Dfc), temperate (Cfa, Cfb, Csa, Csb), and tropical (Af, Am, Aw). The arid
desert climate had 103 stations (11%), arid steppe had 197 (21%) stations,
cold dry had 34 stations (4%), cold no dry had 311 stations (34), the temperate
climate had 262 stations (28), and tropical climate had 17 stations (2%)
(Table A1).

We derived auxiliary climatic variables needed for the estimation of HI and
WBGT as described in Table A3. Table 1 describes user‐derived variables
from the meteorological data sets. Several stations only provided 10‐m wind
speed and RH. Therefore, we applied a logarithmic wind profile to approx-
imate 2‐m wind speed profiles (Fleagle & Businger, 1981). Considering most

stations were in agricultural fields, 0.1 m, which indicates low crops and occasional obstacles, was applied as the
roughness length (Z0). We converted dew point temperature (Td) from RH and air temperature with the R package
“weathermetrics” (Brooke Anderson et al., 2013). Finally, we applied statistical quality control (QC), identifying
implausible measurements for the station data (Grassmann et al., 2018; Napoly et al., 2018). This process
identified hourly WBGT or HI outliers with z‐scores within the upper or lower 0.5% of all hourly WBGT or HI
data across the study period. If a station missed more than 20% of study months, the stations were considered
erroneous and eliminated from the study (Napoly et al., 2018).

2.2. Gridded Weather Data for Estimated Heat Measures

2.2.1. European Centre for Medium‐Range Weather Forecasts (ERA5‐Land)

ERA5‐Land data provides hourly data sets from 1950 to the present with a 9 km spatial resolution (European
Centre for Medium‐Range Weather Forecasts, 2021). The ECMRWF developed ERA5‐Land based on satellite‐
observational data with advanced forecast modeling to produce a global reanalysis of weather data
(ECMWF, 2018). ERA5‐Land is an improved spatial version that has finer spatial resolution compared to ERA5
(30 km). This enhancement is achieved by applying the land surface hydrology (HTESSEL) model (version
Cy45r1 of the IFS) using high‐resolution atmospheric meteorological data from ERA5. We downloaded hourly
ERA5‐Land data for downward solar radiation, air temperature, dew point temperature, and 10‐m U and V wind
components via the “cdsapi” package in Python 3.7. We then calculated RH with dewpoint temperature (Td) and
air temperature with the R package “weathermetrics.” For wind speed, we first computed a 10‐m wind speed from
10‐m U and V components (Table A3). Then we converted the wind from 10‐m to 2‐m with a log wind profile
(Table A3), subsequently computing WBGTBernard, WBGTLiljegren, and HI hourly level and selected maximum

Table 1
Overview of the Meteorological Data Sets and User‐Derived Variables

Station data ERA5 PRISM Daymet

Meteorological variables used

Temporal unit Hourly Hourly Daily Daily

T O O

Tmax O O

Tmin O O

Tmean O

RH O

Solaravg O O

Solarmax O O

10 m U wind component O

10 m V wind component O

Wind speed O

Td O

VPDmin O

Daily level user‐derived variables

Temporal unit Daily Daily Daily Daily

Tmean O

Td O

RHmin O O O

2 m windmin O O

HImax O O O O

Maximum WBGTBernard O O O O

Maximum WBGTLiljegren O O O O
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daily value. Additionally, we calculated daily average Td, 2‐m wind speed, solar radiation (Solaravg), daily
maximum air temperature, solar radiation (Solarmax), daily minimum RH (RHmin), and air temperature (Tmin) for
individual variables comparison across data sets (Table 2).

2.2.2. Parameter‐Elevation Relationships on Independent Slopes Model (PRISM)

The Parameter‐elevation Relationships on Independent Slopes Model (PRISM) data set from Oregon State
University provides freely available high‐resolution (4 km) daily spatial gridded weather data from 1981—to the
near present (Daly et al., 2015; Oregon State University, 2022). Several sources (Daly et al., 1997, 2008a, 2015)
described the PRISM methodology. But in brief, PRISM is produced with a spatial‐weight regression model that
utilizes landscape features, such as elevation and aspect, to predict daily meteorological conditions across the
CONUS by interpolating data from a dense network of weather stations, thereby generating mean fields. We used
daily maximum temperature (Tmax), minimum temperature (Tmin), mean dew point temperature (Td), minimum
vapor pressure deficit (VPDmin), and maximum vapor pressure deficit (VPDmax). PRISM does not provide daily
solar radiation and wind speed data. We applied the ERA5‐Land data to calculate WBGTLiljegren. PRISM data
does not include RH. Therefore, we approximated the minimum RH (RHmin) to calculate HImax with the equation
in Table A3 with the assumption that RHmin occurs at Tmax (Daly et al., 2015).

2.2.3. Daily Surface Weather and Climatological Summaries (Daymet)

Daymet data provides daily weather and climatology variables calculated with ground‐based observations—the
Global Historical Climatology Network Daily (GHCN‐Daily) data set—and statistical modeling techniques to
produce 1‐km gridded surface data from 1980 over continental North America, Hawaii, and over Puerto Rico
from 1950 (Earth NASA, 2022). The data includes daily Tmax, Tmin, downward solar radiation, precipitation, snow
water, and day length. Daymet provides daily Solaravg, which is an average over the daylight period of the day. To
estimate maximum HI (HImax), we calculated the daily RHmin with an assumption of TD = Tmin all day (Spangler
et al., 2022) (Table A3). We downloaded Daymet data via the R package “daymetr” (Hufkens et al., 2018). We
calculated Tmean with the weighted average of minimum and maximum temperatures (Thornton et al., 2020).

Table 2
Linear Regression of Weather Station Observations on Gridded Climate Data Sets Overall and >21°C Average Temperatures

ERA5 PRISM Daymet

Variables (unit) R2 Slope Y‐int RMSE R2 Slope Y‐int RMSE R2 Slope Y‐int RMSE

All Tmax (°C) 0.93 0.97 0.81 2.17 0.86 0.89 2.75 3.2 0.94 0.95 1 1.99

Tmin (°C) 0.91 0.94 − 0.92 2.99 0.92 0.95 1.05 2.24 0.94 0.97 0.67 2.03

2 m windmin (m/s) 0.33 0.56 0.19 0.93

Solarmax (W m2) 0.38 0.09 178.64 5,607.49

Solaravg (W m2) 0.38 0.25 30 1,232.17 0.3 1.14 − 11.99 193.6

RHmin (%) 0.74 0.89 4.45 10.03 0.57 0.77 8.62 13.06 0.51 1.07 − 6.26 13.7

HImax (°C) 0.88 0.69 4.81 5.49 0.85 0.77 4.62 3.89 0.95 0.95 0.61 1.99

Maximum WBGTBernard (°C) 0.91 0.76 2.67 3.74 0.86 0.79 3.3 3.26 0.95 0.97 0.21 1.68

Maximum WBGTLiljegren (°C) 0.80 0.8 − 0.34 6.64 0.76 0.78 0.77 6.48 0.85 0.96 1.31 2.97

>21 Tmax (°C) 0.69 0.78 7 1.91 0.48 0.66 10.54 2.27 0.74 0.86 3.94 1.65

Tmin (°C) 0.63 0.84 1.82 2.79 0.76 0.8 4.26 1.95 0.75 0.83 3.61 1.95

2 m windmin (m/s) 0.31 0.45 0.19 0.87

Solarmax (W m2) 0.19 0.06 359.24 5,948.75

Solaravg (W m2) 0.33 0.32 − 133.01 1,395.57 0.26 1.32 − 91.52 197.65

RHmin (%) 0.78 0.84 6.53 9.79 0.64 0.86 5.32 11.25 0.54 1.28 − 16.76 13.87

HImax (°C) 0.28 0.34 17.7 7.35 0.36 0.4 17.23 4.12 0.7 0.83 4.74 1.79

Maximum WBGTBernard (°C) 0.26 0.39 12.87 4.27 0.37 0.43 12.72 2.52 0.71 0.84 3.29 1.16

Maximum WBGTLiljegren (°C) 0.07 0.24 19.26 7.41 0.13 0.41 13.77 6.75 0.22 0.71 8.22 3.48
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Since Daymet does not generate wind speed data, we applied ERA5‐Land wind speed data to calculate
WBGTLiljegren.

2.3. Calculating Heat Stress Measures (Heat Index, WBGTBernard, and WBGTLiljegren)

We calculated three commonly used heat stress measures: daily maximum HI (HImax), maximum WBGTBernard,
and maximum WBGTLiljegren from April to October 2018 and 2019 (Table 2). HI was calculated with Tmax and
RHmin according to the calculations used by the NWS (Rothfusz, 1990; Steadman, 1979). We calculated
WBGTBernard from HI, according to the quadratic relation established by Bernard and Iheanacho (2015). Because
WBGTBernard does not account for radiated heat and assumes a fixed wind speed (0.5 m/s), WBGTBernard is akin to
indoor or shaded WBGT (Bernard & Iheanacho, 2015). Thus, WBGTBernard and WBGTLiljegren cannot be directly
compared against each other. HImax and WBGTBernard were calculated with Tmax and RHmin from ERA5‐Land,
PRISM, and Daymet. Daily HImax was calculated with hourly air temperature and RH and selected from hourly in
situ data and ERA5‐Land. To estimate HImax with hourly ERA5 data, we first estimated HI at each hour for a
given day with hourly air temperature and RH and then selected HImax from the hourly HI data.

We also approximated WBGTLiljegren with the R package “HeatStress” (Casanueva et al., 2019). Liljegren's
method to calculate WBGT includes air temperature, dew point temperature, wind speed, solar radiation, and
surface pressure as input. This study calculated HI and WBGT and selected the maximum hourly value from the in
situ data for each day. We applied maximum solar radiation (Solarmax), Tmax, minimum dew point temperature,
and minimum wind speed to calculate maximum WBGTLiljegren from PRISM, and Daymet (Weatherly &
Rosenbaum, 2017).

2.4. Comparison Analysis

We conducted a linear regression of daily Tmax, Tmin, RHmin, Solarmax, mean wind speed, HImax, maximum
WBGTBernard, and maximum WBGTLiljegren. To analyze the direct and linear concordance between PRISM,
ERA5‐ Land, and Daymet estimates and ground‐based meteorological observations at the same point in space, the
meteorological observations from stations against the coincident, single‐pixel PRISM, ERA5‐Land, and Daymet
grid cell estimates. To evaluate the alignment between the variables and measures in hot conditions, we addi-
tionally performed a linear regression analysis for each variable and measure under conditions where the average
temperature exceeds 21°C considering the focus on exposure assessment within the framework of heat‐related
health impacts (Spangler et al., 2019).

For the comparison analysis, we calculated the goodness of fit (adjusted R2), slope, and intercept of the lines of
best fit, as well as mean square errors (RMSE). Higher R2 values, lower RMAEs, and slopes closer to one and y‐
intercepts closer to zero were considered more accurate estimations of the observed data. To suggest the best
gridded and HI product for each Köppen‐Geiger climate, this study conducted the comparison analysis nationally
and according to Köppen‐Geiger climate groups (Beck et al., 2018).

3. Results
After the statistical QC process, we included information 916 from the initial 924 stations in our analysis
(Figure A1 and Table A2).

3.1. Individual Variables Comparison

We found that in situ data and Tmax showed a strong relationship (adjusted R2 0.86 < m < 0.94) across the data
sets. Tmin from the estimated data sets also showed a strong relationship with in situ (adjusted R2 0.91–0.94).
Among the data sets, Daymet showed the smallest RMSE from both Tmax and Tmin (Tmax 1.99°C, Tmin 2.03°C) and
the highest R2 (Tmax 0.94, Tmin 0.94). ERA5‐Land's wind speed showed a relatively weak correlation (adjusted R2:
0.33, RMSE 0.93 7%. Solarmax from ERA5‐Land data showed a low correlation with in situ data adjusted R2 was
0.38 and RMSE was 5,607.49 W m2 Solaravg from ERA5‐Land also showed a weak relationship with in situ data
adjusted R2 was 0.38 and RMSE was 1,232.17 W m2. Solaravg from Daymet data showed even weaker, which
showed adjusted R2 0.30 and 193.6 W m2. ERA5‐Land's RHmin showed a significant relationship with station data
adjusted R2 was 0.74 and RMSE was 10.03%. PRISM's RHmin adjusted R2 was 0.57, and RMSE was 13.06.
Daymet's RHmin showed the weakest relationship with the station data, which adjusted R2 was 0.51 RMSE 13.
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Regression analysis between station data and estimated data sets showed a significant relationship for HImin,
WBGTBernard, and WBGTLiljegren. The adjusted R2 of ERA5‐Land's HImax was 0.80 and RMSE was 6.64°C.
PRISM's adjusted R2 was 0.85, and RMSE was 3.89°C. Daymet showed the strongest correlation with station data
(0.95 and RMSE 1.99°C). The relationship between ERA5‐Land, PRISM, and Daymet and station data's
WBGTBernard also showed a strong relationship (adjusted R2: 0.91, RMSE: 3.74°C, adjusted R2: 0.86, RMSE:
3.26°C, adjusted R2: 0.95, RMSE: 1.99°C), WBGTLiljegren (adjusted R2: 0.80, RMSE: 6.64°C, adjusted R2: 0.76,
RMSE: 6.48°C, adjusted R2: 0.85, RMSE: 2.97°C) respectively (Table 2).

In the category of temperatures exceeding 21°C, Tmax and Tmin exhibited varied degrees of correlation across the
data sets. For instance, Tmax showed a moderate to high correlation with ERA5‐Land (R2: 0.7, RMSE: 1.91°C) and
Daymet (R2: 0.74, RMSE: Tmin correlates strongly with PRISM (R2: 0.76, RMSE: 1.95°C) and Daymet (R2: 0.75,
RMSE: 1.95°C). Windmin, Solarmax, Solaravg, and RHmin revealed mixed results with some data sets not providing
sufficient data for comparison. For example, ERA5‐Land's Solaravg showed an R2 of 0.38 and a high RMSE of
1,232.17 W m2, indicating a less strong relationship.

Furthermore, the HImax and WBGT indices, such as Bernard and Liljegren, displayed significant correlations. For
instance, HImax with ERA5‐Land shows an R2 of 0.88 and an RMSE of 5.49°C, while PRISM shows an R2 of 0.85
and an RMSE of 3.89°C. The WBGT Bernard model also presents strong relationships across the data sets, with
Daymet showing an R2 of 0.95 and the lowest RMSE of 1.99°C.

3.2. Comparing Heat Measures According to the Köppen‐Geiger Climate Category

Figures 1a–1f illustrate the relationship between in situ data and derived values from the gridded data according to
the Köppen‐Geiger climate. Figures 1a, 1d, and 1g show the regression results of HI. Adjusted R2 ranged from
0.46 to 0.95. Similar results were shown with ERA5‐Land, PRISM, and Daymet data. From all data sets, tropical
climate showed the lowest adjusted R2. Meanwhile, cold and no dry climate in ERA5‐Land (0.90), Arid Desert
climate (0.91) in PRISM, and cold dry climate (0.95) in Daymet data showed the highest R2.

Figures 1b, 1e, and 1h exhibit the regression results of WBGTBernard. The results show that R2 was from 0.56
to 0.93 with ERA5‐Land data, 0.56–0.93 with PRISM data, 0.46–0.91 with Daymet data. From all estimated
data, the tropical climate showed the lowest RMSE. The cold and not dry climate in ERA5‐Land (0.92), arid
desert climate (0.91) in PRISM, cold dry climate (0.95 in both climates) in Daymet data showed the
highest R2.

Figures 1c, 1f, and 1i describe the regression results of WBGTLiljegren. ERA5‐Land data also showed was 0.34
(ERA 5) in the tropical climate. A week to strong relationship in most climates (0.37–0.87), and cold‐dry climates
showed the highest R2 (0.94). PRISM data showed a moderate relationship from all climates. R2 ranged from 0.37
to 0.87. Cold and dry, and arid desert climates (0.87) showed the strongest relationship. Daymet R2 showed strong
relationships from most of the Köppen‐Geiger climates, which ranged from 0.44 to 0.95. Cold‐dry climates
showed the highest R2 (0.96). On the other hand, R2.

RMSE of HI varied from 1.42 to 9.54°C. The arid desert climate exhibited the lowest RMSE in ERA5‐Land
(2.80°C), while the highest RMSE was observed in the tropical climate (9.54°C). PRISM data revealed that
the lowest RMSE (1.27°C) was discovered in the arid tropical climate, while the highest RMSE (2.8°C) was
observed in the arid steppe climate. Daymet data also indicated that the tropical climate had the lowest RMSE
(1.75°C), whereas the arid desert climate had the highest RMSE (2.41°C). Overall, Daymet showed the smallest
variance in RMSE compared to the other data sets (Figures 2a, 2d, and 2g).

The RMSE of WBGTBernard ranged from 1.19 to 5.35°C. The arid desert climates exhibited the lowest RMSE
(2.08°C) in ERA5‐Land, while the tropical climate had the highest RMSE (5.35°C) in ERA5‐Land data. Simi-
larly, PRISM data showed that arid desert climates had the lowest RMSE of 1.19°C, while tropical climates had
the highest RMSE of 3.04°C. However, Daymet data provided somewhat contradictory results compared to
ERA5‐Land. The lowest RMSE was found in the tropical climate (1.20°C), while the highest was observed in the
arid steppe climate (2.02°C) (Figures 2b, 2e, and 2h).

WBGTLiljegren exhibited a range of RMSE from 1.63 to 8.18°C across the data sets. In ERA5‐Land data, the
lowest RMSE (5.13°C) was observed in cold no dry climate, while the highest RMSE (8.18°C) was found in arid
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desert climates. From the PRISM data, the cold no dry climate had the lowest RMSE (4.62°C), and the arid steppe
climate had the highest RMSE (6.84°C). Daymet data showed the lowest RMSE (1.63°C) in the cold dry climate
and the highest RMSE (2.98°C) in the cold no dry (Figures 2c, 2f, and 2i). Overall, Daymet data demonstrated the
smallest variance in RMSE compared to the other data sets. Additionally, most heat indices showed the highest
RMSE in the Tropical climate based on ERA5‐Land and PRISM data. Daymet data exhibited similar results
across the Köppen‐Geiger climate (Figures A2 and A3).

4. Discussion
We compared three heat stress measures (HImax, WBGTBernard, and WBGTLiljegren) from PRISM, Daymet, and
ERA5‐Land data with in situ observations for the CONUS. All heat stress measures were highly correlated with
observation data (overall temperature R2 ranged from 0.85 to 0.95) across the three gridded weather data—
however, we found that the strength of correlation varied considerably by climate zone in the CONUS and the
correlation with ground observations diminish slightly in scenarios where temperatures exceed 21°C across the
three gridded weather data.

Figure 1. Correlation between heat matrices according to Köppen‐Geiger climate.
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The correlations (R2 values) for both Tmax and Tmin are generally higher for overall temperatures compared to
when temperatures exceed 21°C across all three data sets (ERA5‐Land, PRISM, Daymet). For all variables under
study, R2 and RMSE values are generally lower than temperatures of >21°C. Among the gridded data sets,
Daymet consistently shows the strongest correlation and the lowest RMSE in both overall and >21°C temper-
atures, indicating its higher accuracy and reliability in capturing temperature variations compared to ERA5‐Land
and PRISM. Our analysis indicates that the approach of using Tmax, RHmin, Solarmax, and Windmin to estimate
daily maximum WBGTLiljegren may be less effective at higher temperatures. In other words, relying on these
variables could oversimplify the capture of detailed and comprehensive heat stress metrics, potentially reducing
accuracy. However, it's noteworthy that the WBGTBernard and HI measures in the Daymet data set maintained
high accuracy for temperatures exceeding 21°C, outperforming other data sets in this regard.

The complex interaction between the input variables used to calculate HI and WBGT may offer an explanation for
the observed discrepancies. ERA5‐Land and PRISM data showed the lowest RMESs and higher R2 in tropical
climates among the estimated data from all heat measurements. Another possible source of the differences could
be the model's algorithms considering cloudiness, sea breeze dynamics, and coastal approximation (Y. Chen
et al., 2018; Colle, 2003; Daly et al., 2008b; Perry & Hollis, 2005).

We found estimations of solar radiation were overall poor. According to previous studies, ERA5 solar radiation
data showed a better estimation in desert areas due to a higher proportion of days with clear sky conditions in the
desert (Andrews et al., 2012; Yang & Bright, 2020). On the other hand, Daymet estimation showed better per-
formance in tropical climates than in other climates. Slater (2016) applied hourly solar radiation data gathered
from non‐profit organizations in North America and found that Daymet solar radiation tended to have bigger
differences in arid deserts, arid steppe, and temperate climates (e.g., California, Florida, Texas, Colorado, New
Mexico, and Wyoming State).

Among the gridded weather data, Daymet showed the smallest variance of R2 and RMSE in different Köppen‐
Geiger climates. ERA5‐Land showed higher correlations and smaller RMSE from RH than Daymet. However,

Figure 2. RMSE of heat matrices according to Köppen‐Geiger climate.
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Daymet showed a stronger correlation of temperature than PRISM and ERA5‐Land, which likely caused higher
R2 and RMSE of HI and WBGT. This finding contradicts previous studies, which have suggested that PRISM
performed better than Daymet (Daly et al., 2015; Spangler et al., 2019). A possible explanation might be that the
recent update of Daymet data reduced inconsistencies and bias and improved accuracy and precision (Thornton
et al., 2021). Additionally, different data processing techniques applied to this study compared to the previous
studies might have resulted in different outcomes. Moreover, it is challenging to explain heat measures' rela-
tionship with the specific variable analysis outcomes directly since the effect of RH on HI is nonlinear according
to Ta increase, and WBGT is the weighted sum of natural wet bulb temperature, black globe temperature, and air
temperature (Chakraborty et al., 2022).

Overall RMSE ranged from 1.42 to 9.54°C, 1.19 to 5.35°C, and 1.63 to 9.79°C respectively for HI, WBGTBernard,
and WBGTLiljegren across the data sets. The tropical climate, characterized by high air temperature and humidity,
which necessitates more complex heat stress measures, exhibited the smallest R2 and largest RMSE. For instance,
ERA5‐Land overall showed robust results except for the tropical climate. Since many occupational heat exposure
guidelines are formulated according to the HI or WBGT, heat measures are critical information for activity/work
and rest decisions (National Institute for Occupational Safety and Health [NIOSH], 2016; The National Oceanic
and Atmospheric Administration, 2023). A difference as small as 2–3°C in WBGT and HI can have a significant
impact on recommended activity modifications, potentially leading to drastically different health outcomes. This
is particularly crucial when strict thresholds are applied in work/rest schedule guidelines. Similarly, a 5–10°C
variation in HI can also mislead the application of these guidelines, with similar risks to health. Further work is
required to establish fine‐scale data that considers local variability caused by complex topography, land use, and
building heterogeneity to understand local microclimates further (S. Carter et al., 2018; H. Chen et al., 2010;
Klinges et al., 2022; Oke, 1982; Tripp et al., 2020). Some studies suggested a fine spatial scale (10–25 m) is
necessary to capture mountain terrain and ocean effects (Dadic et al., 2010; Du Vivier & Cassano, 2013; Gul-
tepe, 2015; Liston, 2004; Mott et al., 2008).

Of the individual weather variables (Tmax, Tmin, RHmin, wind speed, and solar radiation), Tmax and Tmin showed the
highest R2 and lowest RMSE. Wind speed, solar radiation, and RH showed relatively lower R2 and higher RMSE.
Lower correlations of solar radiation, wind speed, and RH between gridded weather data and station data are
consistent with other research which compared station data with gridded weather data (Bonshoms et al., 2022; A.
W. Carter et al., 2020; Jared Rennie et al., 2021; Rupp et al., 2022; Slater, 2016; Spangler et al., 2022).

Spangler et al. (2019) compared Daymet data with US Climate Reference Network (USCRN) data and showed
that RHmin showed a relatively low R2 (0.52). Another study that compared Automated Surface Observing
Systems and USCRAN data showed lower correlation coefficients in wind speed (coefficient 0.4) (Rennie
et al., 2021). The mean of the absolute error was eight percent different from the comparison analysis with hourly
solar radiation data from the National Renewable Energy Laboratory database and several gridded weather data
sets, including Daymet and PRISM (Rupp et al., 2022). Bonshoms et al. (2022) validated ERA5‐Land RH data
with Automatic Weather Stations data from eight stations in four study areas on a glacier and discovered that the
R2 ranged from 0.3 to 0.6.

The discrepancies between station data and gridded weather data have been discussed in the broader literature.
Comparison of the findings with those of other studies confirms that one of the major causes was geographical
features such as elevation, topography, proximation to coastlines, cloud cover, and land use (Barry, 2008; Daly
et al., 2008b; Du Vivier & Cassano, 2013; Gultepe, 2015; Gultepe et al., 2014; Karger et al., 2021; Kilpelainen
et al., 2011; Monson & Baldocchi, 2014; Reeve & Kolstad, 2011; Thornton et al., 1997). Previous studies found
complex terrain creates local climates that alter solar radiation reflection and wind flows (Hilliker et al., 2010;
Slater, 2016; Yang & Bright, 2020; Zardi & Whiteman, 2013). Tscholl et al. (2022) applied cloud cover
correction and included solar radiation to estimate 100m spatial resolution air temperature, and the cloud
correction model reduced the mean absolute error of estimated air temperature by 23% compared with the clear‐
sky model.

Moreover, land use and land cover were suggested as other factors causing the differences. Land use and land
cover create different interactions between the biosphere and atmosphere via heat, water, and energy fluxes. Due
to these phenomena, adjacent land can have different local climates, and it has been challenging to consider in the
model (Albergel et al., 2018; Page et al., 2018; Zardi & Whiteman, 2013). Chakraborty et al. (2022) examined
urban‐rural differences in HI and found that urban form alters RH and heat stress in Europe. Vegetation cover in
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urban areas is often recommended to reduce air temperature and heat exposure. However, vegetation cover does
not necessarily correspond to a decrease in air temperature, and vegetation evaporation would increase RH,
leading to an increase in HI (Chakraborty et al., 2022). Additionally, the differences might be caused by user‐
derived variables such as RH, Tmean, and Td. This study derived RH with air, dew point temperatures, and
vapor‐pressure deficits from the three gridded weather data sets this study applied in this study. For example, this
study assumed that Td is equal to Tmin throughout the day to calculate RHmin from PRISM, and RHmin occurs at
Tmax from Daymet to calculate RHmin (Thornton et al., 1997).

Our study does have limitations. First is the geographic distribution of weather stations. Only 17 stations (2%) are
in the tropical climate, and no stations were from cold, dry summer and cold summer climates. Moreover, higher
discrepancies in tropical climate might be caused by the methodology used to calculate daily maximum heat
measures. While observation and ERA5‐Land RHmin, Tmin, and Tmax from Daymet and PRISM. Consequently, we
advise readers to interpret these results with caution. Further investigation should be conducted to consider
various climates more accurately. This study also applied wind speed and solar radiation data from ERA5‐Land
for estimating heat measures from PRISM and Daymet. We acknowledge that employing data with varying
spatial resolutions could lead to certain implications in our results.

Additionally, we approximated several variables and heat measures with several assumptions. Installing addi-
tional stations that directly measure WBGT at diverse microclimates (rural, suburban, and urban regions) to
enhance field data collection in diverse microclimates will be essential to preventive measures against heat
exposure. This will also enable us to investigate further the relationship between estimating heat measures across
microclimates within different climate zones. More specifically, in our calculations of the HImax, we used the
RHmin and Tmax. This approach assumes that RH tends to decrease as temperature increases. It's important to note
that the validity of the HI calculation is applicable primarily in shaded conditions.

Finally, it is important to note that at any location, Ta, RH, radiation, and wind speed might not align in their
diurnal patterns, potentially impacting our estimates of HImax and WBGT. For instance, Justine et al. (2023)
observed that the peak wet bulb temperature often occurs several hours after the peak dry bulb temperature. In
tropical areas near coasts or rivers, where temperature (T ) variation throughout the day is minimal, the afternoon
influence of the water body can result in higher daily HI or WBGTmax compared to when the Tmax happens. The
complexity of these factors underscores the need for more research to accurately assess how the diurnal cycle
influences the peak hour of heat stress (Justine et al., 2023; Rusticucci & Vargas, 1995). Given the complexity of
the inputs, assessing the impacts of the diurnal cycle on estimating the hour of maximum heat stress will require
further research.

5. Conclusion
We examined three heat measures with Daymet, PRISM, and ERA5‐Land. The heat measures, which were
calculated from Daymet, PRISM, and ERA5‐Land and station data, showed strong relationships (R2 0.82–0.96,
RMSE 1.69–5.37°C). However, the discrepancies varied according to Köppen‐Geiger climates and warmer
conditions (average temperature >21°C). We need to conduct further work to gather more accurate and higher‐
resolution weather information over space and time, which will help reduce bias and uncertainties. We suggested
installing more stations to gather WBGT information and develop gridded weather data, including solar radiation
and wind speed. Ultimately, this will lead to a more robust understanding between the links between humid heat
and health outcomes.

Appendix A
Figure A1 describes the location of stations and grouped Köppen‐Geiger climate categories used for this study.
Each color on the map corresponds to a different Köppen‐Geiger climate classification, while the gray dots
indicate the locations of stations where we collected observational data.

Figure A2 illustrates the correlation between the observed data and the data products (ERA5, Daymet, and
PRISM) for the variables utilized in this study, categorized according to the Köppen‐Geiger climate classification.
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Figure A1. Köppen‐Geiger and station locations.

Figure A2. Linear regression of weather station observations on gridded climate data sets according to Köppen‐Geiger climates categories.
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Table A1 represents the number of stations according to Köppen‐Geiger climate categories.

Table A2 shows the number of stations included during the study period (April to October 2018–2019) after
the quality control process.

Table A1
Number of Stations According to Köppen‐Geiger Climate Categories

Köppen‐Geiger
climate groups

Köppen‐Geiger
climate categories Number of stations (%)

Köppen‐Geiger
climate groups summary

Arid desert BWh 20 (2) 103 (11)

Arid desert BWk 83 (9)

Arid steppe BSh 3 (0) 197 (21)

Arid steppe BSk 194 (21)

Cold dry Dsa 1 (0) 34 (4)

Cold dry Dsb 14 (2)

Cold dry Dwa 4 (0)

Cold dry Dwb 15 (2)

Cold no dry Dfa 157 (17) 311 (34)

Cold no dry Dfb 145 (16)

Cold no dry Dfc 9 (1)

Temperate Cfa 233 (25) 262 (28)

Temperate Cfb 6 (1)

Temperate Csa 1 (0)

Temperate Csb 22 (2)

Tropical Af 4 (0) 17 (2)

Tropical Am 8 (1)

Tropical Aw 5 (1)

Table A2
Number of Stations Included for the Analysis After Quality

Year Month Number of stations

2018 4 696

2018 5 712

2018 6 559

2018 7 559

2018 8 558

2018 9 562

2018 10 479

2019 4 761

2019 5 554

2019 6 558

2019 7 561

2019 8 547

2019 9 524

2019 10 459
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Table A3 details the formulas employed for estimating heat stress metrics. The WBGTLiljegren calculation was
performed using the “HeatStress” package in R which was developed based on Liljegren et al. (2008) study. The
package includes the “esat” function which computes vapor pressure using air temperature and relative humidity,
applying the coefficient recommended by (Sonntag, 1990). Additionally, the package includes an algorithm for
estimating solar irradiation, taking into account solar radiation, the Earth‐Sun distance, and the zenith angle. This
algorithm was developed by analyzing a full year of direct and diffuse solar irradiance data, gathered by the
Atmospheric Radiation Measurement Program at their facility in north‐central Oklahoma (Ackerman &

Table A3
Equations for User‐Derived Meteorological Variables

Variable Data set Expression Unit Note

Td In situ Td = T − ( 100− RH
5 ) T, Td in °C

RH in %• Td = Dew point temperature

• T = air temperature

• RH = relative humidity

2 m wind speed ERA5,
in situ

V ≈ Vref *ln Z∗ Z0
Zref ∗Z0

m/s

• V = velocity to be calculated at height z

• Z = height above ground level for velocity v

• Vref = known velocity at height zref

• Zref = reference height where vref is known

• Z0 = roughness length in the current wind direction

Hourly solar
radiation
(W m2)

ERA5 Hourly solar radiation
3600 [s]

Hourly solar.
Radiation in J m2,

s represents
second

RHmin (%) ERA
100 · e

(17.625 · TD
243.04̊C+TD

)

e
(17.625 · T

243.04̊C+T)

T, Td in °C Minimum based on
hourly values

• Td = Dew point temperature

• T = air temperature

PRISM

100 ·

⎡

⎢
⎣610.94 Pa · e

(17.625 · Tmax
243.04̊C+Tmax

)
⎤

⎥
⎦− VPDmax

610.94 Pa · e
(17.625 · Tmax

243.04̊C+Tmax
)

Tmax in °C
VPDmax in Pa

Assumes RHmin
occurs at Tmax

• VPDmax = maximum vapor‐pressure deficits (VPD)

Daymet
100 · e

(17.269 · Tmin
237.3̊C+Tmin

)

e
(17.269 · Tmax

237.3̊C+Tmax
)

Tmin, Tmax in °C Assumes TD = Tmin
all day

Tmean PRISM 0.606 ⋅ Tmax+0.394 ⋅ Tmin Tmax in °C

HImax ERA5, PRISM,
Daymet, in situ

0.5 * {Ta + 61.0 + [(Ta − 68.0)*1.2] + (RH *0.094)} Ta in
°FRH in %,
Tmax

and RHmin were
applied instead

for Ta and
RH for ERA5, PRISM,

and Daymet

If this heat index value is 80°F or higher, the full equation with
adjustments should be applied.

− 42.379 + 2.04901523* Ta + 10.14333127*
RH − 0.22475541*Ta* RH − 0.00683783*
Ta2 − 0.05481717*RH2 + 0.00122874*Ta2*

RH + 0.00085282* Ta *RH2 − 0.00000199*Ta2 *RH2 − ADJ

*Condition 1: RH < 13% and Ta is between 80 and 112°F

• ADJ1 = − [(13 − RH)/4]∗
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
((17 − Ta− 95)/17)

√
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Stokes, 2003). For accurate WBGTLiljegren calculations using the HeatStress package, users must input variables
such as time, latitude, and longitude to determine the zenith angle.

Figure A4 illustrates the daily maximum temperature from Daymet, PRISM, and air temperature at 2 p.m. ERA5‐
Land on 1 August 2018, alongside the locations of the stations from which we collected observational data.

Table A3
Continued

Variable Data set Expression Unit Note

* Condition 2: RH > 85% and Ta is between 80 and 87°F

ADJ2 = ((RH − 85)/10)*((87 − Ta)/5)

Ta = Ambient Dry Bulb Temperature

• RH = relative humidity

WBGTBernard ERA5, PRISM,
Daymet, in situ

− 0.0034*HI*2 + 0.96*HI − 34 HI in °F

• HI = Heat Index

WBGTLiljegren ERA5, PRISM,
Daymet, in situ

0.7∗Tw + 0.2∗Tg + 0.1*Ta

• Tw: Wet‐Bulb Temperature

• Tg: Globe Temperature

• Ta: Dry Bulb Temperature

WS =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(uwd2 + vwd2)

√

• WS: wind speed

• uwd: 10 m U wind component

• vwd: 10 m V wind component

Vapor pressure = a*exp (
(b∗Tair
c+Tair
)

100 )

a = 611.2, b = 17.62, and c = 243.12

Fdir =

⎧⎪⎨

⎪⎩

exp(3 − 1.34S∗ −
1.65
S∗ )

0,θ> 89.5°
θ≤ 89.5°

Fdir = solar irradiation

S∗ = S
Smax

Smax =
S0 cos θ
d2 (θ≤ 89.5°)

S0 = solar constant (=1,367 W/m2)

θ = Zenithangle and d = earth‐sun direction

Figure A3. Linear regression of weather station observations on gridded climate data sets according to Köppen‐Geiger climates categories (relative humidity without
zeros).
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