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Abstract

In many biological populations, such as human groups, individuals face a complex strategic

setting, where they need to make strategic decisions over a diverse set of issues and their

behavior in one strategic context can affect their decisions in another. This raises the ques-

tion of how the interaction between different strategic contexts affects individuals’ strategic

choices and social norms? To address this question, I introduce a framework where individ-

uals play two games with different structures and decide upon their strategy in a second

game based on their knowledge of their opponent’s strategy in the first game. I consider

both multistage games, where the same opponents play the two games consecutively, and

reputation-based model, where individuals play their two games with different opponents

but receive information about their opponent’s strategy. By considering a case where the

first game is a social dilemma, I show that when the second game is a coordination or anti-

coordination game, the Nash equilibrium of the coupled game can be decomposed into two

classes, a defective equilibrium which is composed of two simple equilibrium of the two

games, and a cooperative equilibrium, in which coupling between the two games emerge

and sustain cooperation in the social dilemma. For the existence of the cooperative equilib-

rium, the cost of cooperation should be smaller than a value determined by the structure of

the second game. Investigation of the evolutionary dynamics shows that a cooperative fixed

point exists when the second game belongs to coordination or anti-coordination class in a

mixed population. However, the basin of attraction of the cooperative fixed point is much

smaller for the coordination class, and this fixed point disappears in a structured population.

When the second game belongs to the anti-coordination class, the system possesses a

spontaneous symmetry-breaking phase transition above which the symmetry between

cooperation and defection breaks. A set of cooperation supporting moral norms emerges

according to which cooperation stands out as a valuable trait. Notably, the moral system

also brings a more efficient allocation of resources in the second game. This observation

suggests a moral system has two different roles: Promotion of cooperation, which is against

individuals’ self-interest but beneficial for the population, and promotion of organization and

order, which is at both the population’s and the individual’s self-interest. Interestingly, the lat-

ter acts like a Trojan horse: Once established out of individuals’ self-interest, it brings the for-

mer with itself. Importantly, the fact that the evolution of moral norms depends only on the
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cost of cooperation and is independent of the benefit of cooperation implies that moral

norms can be harmful and incur a pure collective cost, yet they are just as effective in pro-

moting order and organization. Finally, the model predicts that recognition noise can have a

surprisingly positive effect on the evolution of moral norms and facilitates cooperation in the

Snow Drift game in structured populations.

Author summary

How do moral norms spontaneously evolve in the presence of selfish incentives? An

answer to this question is provided by the observation that moral systems have two dis-

tinct functions: Besides encouraging self-sacrificing cooperation, they also bring organiza-

tion and order into the societies. In contrast to the former, which is costly for the

individuals but beneficial for the group, the latter is beneficial for both the group and the

individuals. A simple evolutionary model suggests this latter aspect is what makes a moral

system evolve based on the individuals’ self-interest. However, a moral system behaves

like a Trojan horse: Once established out of the individuals’ self-interest to promote order

and organization, it also brings self-sacrificing cooperation.

Introduction

Although beneficial for the group, cooperation is costly for the individuals, and thus, consti-

tutes a social dilemma: Following their self-interest, individuals should refrain from coopera-

tion. This leaves everybody worse off than if otherwise, all had cooperated [1–4]. Indirect

reciprocity is suggested as a way out of this dilemma [3, 5–8], which can also bring insights

into the evolution of morality [6, 7]. Most models of indirect reciprocity consider a simple stra-

tegic setting where individuals face a social dilemma, commonly modeled as a Prisoner’s

Dilemma. Individuals decide upon their strategy in the social dilemma based on their oppo-

nent’s reputation. In turn, reputation is built based on the strategy of the individuals in the

same social dilemma. This self-referential structure can give rise to some problems. The core

of these problems relies on how to define good and bad. In the simplest indirect reciprocity

model, only first-order moral assessment rules are allowed: For instance, an individual’s repu-

tation is increased by cooperation, and it is decreased by defection [9, 10]. This leads to a situa-

tion where defection with someone with a bad reputation leads to a bad reputation. From a

moral perspective, this does not make sense. Besides, this can lead to the instability of the

dynamic [6]. To solve these problems, it is possible to consider second-order moral assessment

rules [11–15]. In prescribing an individual’s reputation, besides its action, second-order rules

also take the reputation of its opponent into account. However, this way opens the door to

third-order and higher-order moral assessment rules [16–19], which require having informa-

tion about the actions of the individuals further and further into the past [6, 19, 20]. This leads

to a rapid increase in the number and complexity of moral assessment rules by going to

higher-order rules, even when, as it is commonly assumed, moral assessment is reduced to a

binary world of good and bad [6, 17–21].

In contrast to the premise of most models of indirect reciprocity, strategic interactions in

many biological contexts are not simple. Individuals in populations often need to solve differ-

ent strategic problems simultaneously. For instance, they may need to decide whether incur a

cost for others to benefit, resolve conflicts to avoid mutual losses [22], coordinate their actions
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with others [22–25], for instance by deciding at what time or place engage in an activity, or

they may need to choose partners and mates [26]. Importantly, the strategic structures of these

diverse activities are generally distinct. While some entail a pure cost for the individual for the

sake of others and thus constitute a social dilemma, such as donation of food or other

resources, others can be mutually beneficial, such as conflict resolution or coordination in a

group, for example for hunting [24, 25].

Arguably, some kinds of strategic complexity have been considered in evolutionary games.

Examples include strategy dependent stochastic transitions between social dilemmas [27, 28],

deterministic transitions between games [29, 30], the dynamics of two or more evolutionary

games played in parallel, in one shot [31–35] (also coined multigames [33]), or repeated inter-

actions [36], heterogeneity in the payoff structure of the games played by the individuals

[37–40], the interaction of social dilemmas with signaling games [41–43], or the interaction

between different social dilemmas in interacting heterogenous public goods games [44, 45].

However, despite their overwhelming prevalence in human and possibly other animal popula-

tions, the strategic complexity resulting from the interaction of games with different structures

has remained poorly studied in evolutionary games. Here, I consider such a strategically com-

plex situation where individuals face different strategic settings, each with a different set of

actions and outcomes. In the language of game theory, this is to say individuals play different

games with different strategies and payoffs. In such a context, the individuals’ strategic deci-

sions in one game can depend on what happens in the other games. This provides a way to

solve the self-referential problem in the models of indirect reciprocity, as it allows the reputa-

tion-building mechanism and the decision-making mechanism to occur at different levels, i.e.,

based on different strategic settings. As I show here, this observation can give rise to the evolu-

tion of a set of cooperation supporting moral norms.

In our model, individuals play a Prisoner’s Dilemma, together with a second game, which I

call game B, and is not necessarily a social dilemma. Individuals build a reputation based on

their behavior in the Prisoner’s Dilemma and act based on this reputation in the game B. I con-

sider a situation where both games are played with the same opponent or when the two games

are played with different opponents. When game B is a pure dominance game with only one

Nash equilibrium, such as a Prisoner’s Dilemma, the same problem incurred by indirect reci-

procity models prevents the evolution of cooperation: Individuals are better off playing the

Nash equilibrium irrespective of their opponents’ reputation. Consequently, the Nash equilib-

rium of the two-stage game can be decomposed into two simple Nash equilibria of the two

composing games. The situation changes when game B has more than one equilibrium such

that individuals can coordinate on a superior equilibrium, or avoid coordination failure, by

taking the information about the strategy of their opponent into account in their game B stra-

tegic choices. In this case, in addition to the trivial defective Nash equilibria, a cooperative

equilibrium exists in which coupling between games emerges and individuals decide upon

their strategy in the second game based on their opponent’s strategy in the first game and

cooperation in the social dilemma is sustained, although full cooperation often does not evolve.

A static analysis of the games provides simple rules for the existence of a cooperative Nash

equilibrium in the two-stage game. When game B is a coordination game, a cooperative pure

strategy Nash equilibrium exists when the cost of cooperation is smaller than the excess payoff

gained by coordinating on the superior equilibrium. This condition also ensures the existence

of a cooperative fixed point in the evolutionary dynamics. When game B is a Snow Drift game,

belonging to the anti-coordination class, a cooperative pure strategy Nash equilibrium exists

when the cost of cooperation is smaller than the coordination asymmetry.

By examining the evolutionary dynamics when the game B is a Stag Hunt game, I show that

when game B belongs to the coordination class, such that it has two symmetric equilibrium,
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both a cooperative state where cooperators and defectors coexist, and a defective state, where

defectors dominate are possible in a mixed population. However, the cooperative state has a

small basin of attraction, and thus, convergence to such a state requires cooperation-favoring

coordination norms to be encoded in the initial conditions. Furthermore, this cooperative

state disappears in a structured population. The situation is different when game B belongs to

the anti-coordination class, such that it possesses an asymmetric equilibrium. In this case, a

symmetry-breaking phase transition exists above which the symmetry between cooperation

and defection breaks. A set of behavioral rules emerges according to which cooperation stands

out as a valuable trait, and individuals play softly with cooperators (i.e., they play strategies

that gives a higher payoff to the opponent with cooperators). This leads to the evolution of

cooperation. While the evolution of moral norms often lead to the coexistence of cooperative

and defective strategies, in which cooperation maintained due to receiving a higher payoff

from game B, depending on the strength of social dilemma and the structure of game B, moral

norms can also fully suppress defection and give rise to full cooperation in the social dilemma

in the stationary state of the dynamics. Importantly, this set of norms also promotes a more

efficient allocation of resources in game B. This is particularly the reason why it evolves based

on individuals’ self-interest. This observation appears to conform to the view that many

aspects of moral systems do not necessarily require self-sacrifice but simply help to foster

mutualistic cooperation and bring order and organization into societies [46–50]. In this

regard, our analysis suggests that moral systems behave like a Trojan horse: Once established

out of the individual’s self-interest, they also promote cooperation and self-sacrifice. Impor-

tantly, the conditions for the evolution of cooperation depend only on the cost of cooperation

and are independent of other parameters of the Prisoner’s Dilemma. The fact that the evolu-

tion of moral norms only depends on the cost of cooperation and is independent of its benefit

implies that even bad norms, which incur a pure collective cost, can evolve and promote orga-

nization and order.

Analysis of the model in a structured population shows that population structure can

remove the bistability of the system and ensures the evolution of cooperation favoring moral

norms starting from all the initial population configurations when game B is an anti-coordina-

tion game. In contrast, in those simulations in which game B is a coordination game, we did

not observe the evolution of cooperation. Furthermore, noise in inferring reputation can have

a surprisingly positive effect on the evolution of a moral system in structured populations.

However, this may not compensate for the loss cooperators experience due to a high recogni-

tion noise level. More ever, I show a very high level of recognition noise facilitates the evolu-

tion of cooperative behavior in the snow-drift game. This contrasts previous findings

regarding the detrimental effect of population structure on the evolution of cooperation in the

snow-drift game in simple strategic settings [51], and parallels some arguments regarding the

beneficial effect of noise for biological functions [52–55].

The structure of the paper is as follows. First The model for both direct interactions and

indirect interactions is introduced. Results Section begins by a Static analysis of the games and

by deriving the Nash equilibria of the two-stage game shows that two classes of equilibria, the

simple defective equilibria which are decomposable to two simple Nash equilibria of the com-

posing games, and the cooperative equilibria where coupling between the games emerges,

exists in the two-stage game, and derives simple Conditions for the existence of cooperative

Nash equilibrium in terms of the cost of cooperation. Evolutionary dynamics: Mixed popula-

tion studies the evolutionary dynamics in a mixed population and shows both defective fixed

point where cooperation does not evolve and cooperative fixed points in which cooperation

evolves exist. Fixed points of the evolutionary dynamics corresponding to the defective and

cooperative equilibria are studied and by deriving the mixed strategy Nash equilibria
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corresponding to the fixed points, it is shown that similarly to the conditions for the existence

of the cooperative Nash equilibria, The evolution of moral norms depends only on the cost of

cooperation. By studying the Basin of attraction of the fixed points it is shown that the basin of

attraction of the fixed points are dramatically smaller when game B is a coordination game

compared to when it is an anti-coordination game, which points towards fundamentally dif-

ferent mechanisms underlying the evolution of cooperation in these two cases. Then by study-

ing the Time evolution of the system when game B belongs to the anti-coordination class, it is

shown that a set of cooperation favoring moral norms evolve in the course of evolution

through a rapid dynamical transition due to the density-dependent selection of a costly coop-

erative trait. Evolution of moral norms in the direct interaction model and Evolution of moral

norms in the reputation-based model further study the evolution of moral norms in the direct

interaction and reputation-based model by simulations in finite populations and replicator

dynamics for different archetypal games belonging to the anti-coordination class and shows

that moral norms can lead to both cooperation in the Prisoner’s dilemma and a better alloca-

tion of resources and anti-coordination in game B. In Continuous variations of the structure

of game B and the evolution of moral norms through a symmetry breaking phase transition by

studying the continuous variation of the structure of game B the physics of the evolution of

moral norms is studied and it is shown that moral norms evolve by a symmetry-breaking

phase transition above which the symmetry between cooperation and defection breaks and a

set of cooperation-favoring moral norms evolve. Finally, the model in a Structured population

is studied and it is shown that while cooperation in a structured population does not evolve

when game B is coordination game, it does evolve when game B is an anti-coordination game.

Furthermore, it is shown that population structure removes the bistability of the system and

ensures the evolution of moral norms starting from all the initial conditions. Finally, it is

shown that recognition noise can facilitates the evolution of moral norms in a structured pop-

ulation. In the Discussion it is argued how the findings can shed light on the evolution of indi-

rect reciprocity and the evolution of harmful norms, and how the mechanism underlying the

evolution of moral norms relates to the evolution costly traits.

The model

I begin by introducing two slightly different models. In the first model, the direct interaction

model, information about the strategies of the individuals is acquired through direct observa-

tion. In this model, I consider a population of N individuals. At each time step, individuals are

randomly paired to interact. Each pair of individuals play a Prisoner’s Dilemma (PD), followed

by a second game. The second game is a two-person, two-strategy symmetric game, which I

call game B. I call the two possible strategies of game B, down (d), and up (u) strategies. The

strategy of an individual in game B is a function of its opponent’s strategy in the first game.

Thus, the strategy of an individual can be denoted by a sequence of three letters abc. Here, the

first letter is the individual’s strategy in the PD and can be either C (cooperation) or D (defec-

tion). The second letter is the individual’s strategy in the game B if its opponent cooperates in

the PD, and the last letter is the individual’s strategy in the game B if its opponent defects in

the PD. Clearly, we have b, c 2 {u, d}. For example, a possible strategy is to cooperate in the

PD, play d if the opponent cooperates, and play u if the opponent defects. I denote such a strat-

egy by Cdu.

While in the direct interaction model, individuals play both their games with the same

opponent, I also consider a second model, the reputation-based model, where individuals play

their two games with different opponents. In this model, individuals are randomly paired to

play a PD at each time step. After this, the interaction ends, and individuals meet another
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randomly chosen individual to play their second game. Under this scenario, individuals do not

observe their opponent’s strategy in the PD. Instead, I assume individuals have a reputation of

being cooperator or defector, on which their opponent’s decision in the second game is based.

For example, an individual with the strategy Cdu, cooperates in the PD, plays d if it perceives

its opponent to be a cooperator, and plays u if it perceives its opponent to be a defector. To

model reputation, I assume with a probability 1 − η individuals are informed about the PD-

strategy of their opponent, and with probability η they make an error in inferring the PD-strat-

egy of their opponent. η can be considered as a measure of noise in inferring the reputations. I

note that, for η = 0, the dynamics of the two models are mathematically similar.

For the evolutionary dynamics, I assume individuals gather payoff according to the payoff

structure of the games and reproduce with a probability proportional to their payoff. Offspring

inherit the strategy of their parent. However, with probability ν a mutation occurs, in which

case the strategy of the offspring is set to another randomly chosen strategy.

I will also consider a structured population. While in a mixed population, individuals

randomly meet to interact, in a structured population, individuals reside on a network and

interact with their neighbors. That is, each individual derives payoffs by playing its two

games with all its neighbors. For the evolutionary dynamics, I consider an imitation rule, in

which individuals update their strategy in each evolutionary step by imitating an individual’s

strategy in their extended neighborhood (composed of the individual and its neighbors) with a

probability proportional to its payoff, subject to mutations. For the population network, I con-

sider a first nearest neighbor square lattice with von Neumann connectivity and periodic

boundaries.

The payoff values of the games are as follow. In the PD, individuals can either cooperate or

defect. If both cooperate, both get a payoff R (reward), and if both defect, both get a payoff P
(punishment). If an individual cooperates while its opponent defects, the cooperator gets a

payoff S (sucker’s payoff), while its opponent gets a payoff T (temptation). For a Prisoner’s

Dilemma, we have S< P< R< T with T + S< 2R. For game B, I show the payoff of mutual

down by RB, and the payoff of mutual up by PB. If an individual plays up while their opponent

plays down, the up-player gets TB, and the down-player gets SB.

I will analyze the model for different structures for game B. Here I consider only symmetric

games. Symmetric two-player two-strategy games can be divided into three classes: pure domi-

nance (such as Prisoner’s dilemma), coordination games (such as Stag Hunt game), and anti-

coordination games (such as Snow Drift game) [56]. As mentioned in the introduction, when

game B is a pure dominance game, such as a social dilemma, cooperation in the two-stage

game does not evolve, while cooperation can evolve when game B is a coordination game or

an anti-coordination game. As for the anti-coordination class, I consider cases where game B
is a Snow Drift (SD) game (also known as the Hawk-Dove or Chicken game) [2], the Battle of

the Sexes (BS), and the Leader game. Together with the Prisoner’s Dilemma, these games are

coined as four archetypal two-person, two-strategy games [57]. I will also consider a case

where game B is a Stag Hunt (SH) game, which belongs to the coordination class [56]. Further-

more, I examine the dependence of the results on the continuous variation of the structure of

the game B. All the anti-coordination games mentioned above have an asymmetric Nash equi-

librium. In the Nash equilibrium, one of the strategies is superior in the sense that it leads to a

higher payoff, leaving the opponent with a lower payoff. I call such a superior strategy the hard

strategy, and the inferior strategy, which leads to a lower payoff in equilibrium, is called the

soft strategy. When using the three archetypal games, I take the soft strategy to be the same as

down and the hard strategy to be the same as up. The base payoff values used in this study

(unless otherwise indicated) are presented in Table 1.
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Results

In the Results Section, I begin by a static analysis of the two-stage game followed by studying

the evolutionary dynamics of both direct interaction model and reputation-based model in a

well-mixed population, and end by studying the evolutionary dynamics in a structured

population.

Static analysis of the games

Nash equilibria of the two-stage game. I begin by deriving the Nash equilibria of the

two-stage game in the direct interaction model. The two-stage game is composed of 8 possible

strategies, namely, Cuu, Cud, Cdu, Cdd, Duu, Dud, Ddu, Ddd. The payoff matrix of the two-

stage game can be read off based on the payoffs of the two composing games and is presented

in Fig 1. Table 2 shows the numerical values of the payoffs when the game B is a Snow Drift

(top) and a Stag Hunt (bottom) game. To see how to construct the payoff matrix of the two-

stage game, as an example, consider the payoffs of strategies Cud and Cdu against each other.

They both cooperate in the PD and receive a payoff of R. Cud plays up if its opponent cooper-

ates, and Cdu plays down. Thus, Cud receives TB and Cdu receives SB. The whole payoff matrix

can be constructed in a similar way. The Nash equilibria of the two-stage game are strategy

profiles, (s, s0) (s refers to the strategy of the row player and s0 to that of the column player),

where none of the players has a unilateral incentive to change its strategy, i.e., nobody can

increase its payoff by unilaterally switching to another strategy. The pure strategy Nash equi-

libria of the game are marked with colored cells in Table 2. When game B is an anti-

Table 1. Base payoff values.

R S T P
Prisoner’s Dilemma 3 0 5 1

RB SB TB PB
Snow Drift (SD) 3 1 5 0

Battle of the Sexes (BS) 0 3 5 0

Leader 2 3 5 1

Stag Hunt 5 0 1 1

https://doi.org/10.1371/journal.pcbi.1010429.t001

Fig 1. The payoff matrix of the two-stage game. The payoff matrix of the two-stage game can be constructed based on the payoffs of the first stage

(prisoner’s dilemma) and second stage games (game B). The payoffs of the row player are shown.

https://doi.org/10.1371/journal.pcbi.1010429.g001
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coordination game (SD), the two-stage game has two classes of Nash equilibria. In one set of

equilibria, which I call the defective equilibria, the two games remain decoupled, and in the

Nash equilibrium of the two-stage game, the Nash equilibrium of the composing games is

played in each stage. Thus, in the PD, mutual defection is played, and in the SD, the strategy

pair down-up is played. Consequently, cooperation is not supported in this equilibrium.

In another equilibrium, denoted by green cells, the two games become coupled: The strat-

egy in game B depends on the opponent’s strategy in the first stage. Consequently, the Nash

equilibrium of the two-stage game can not be decomposed into two simple Nash equilibrium.

In this equilibrium, players use information about the strategy of their opponent in the first

stage to coordinate on a heterogeneous strategy pair and avoid a coordination failure. Conse-

quently, cooperation in the PD is supported based on the fact that it provides a mechanism for

the agents to avoid a coordination failure. By studying other classes of anti-coordination

games (see the Supporting Information Text, section 3), I show that the same picture holds for

other cases of anti-coordination game.

I note that an interesting feature of the cooperative Nash equilibrium is that defectors play

soft strategy with cooperators in equilibrium, and cooperators play hard strategy with defec-

tors. This ensures cooperators receive a higher payoff from game B in the cooperative equilib-

rium, compensating for the cost of cooperation they pay. As I show shortly, this feature

underlies the survival of cooperators in the evolutionary games.

The case in which game B is a coordination game is considered in the bottom table in

Table 2. Here, game B is a Stag Hunt game, which has two equilibria. In the superior equilib-

rium, players coordinate on d, and in the inferior equilibrium, they coordinate on u. The

defective Nash equilibria of the two-stage game are composed of four equilibria in which play-

ers defect in the PD and coordinate on the superior strategy, d, in the coordination game, and

Table 2. Payoff values of the two-stage game when game B is a Snow Drift game (top) and a Stag Hunt game (bottom). The first number shows the payoff of the row

player, and the second number shows the payoff of the column player. Cooperative Nash equilibria are indicated by green and defective equilibria by red cells.

Game B: Snow Drift

Cuu Cud Cdu Cdd Duu Dud Ddu Ddd
Cuu 3,3 3,3 8,4 8,4 0,5 0,5 5,6 5,6

Cud 3,3 3,3 8,4 8,4 1,10 1,10 3,8 3,8

Cdu 4,8 4,8 6,6 6,6 0,5 0,5 5,6 5,6

Cdd 4,8 4,8 6,6 6,6 1,10 1,10 3,8 3,8

Duu 5,0 10,1 5,0 10,1 1,1 6,2 1,1 6,2

Dud 5,0 10, 1 5,0 10,1 2,6 4,4 2,6 4,4

Ddu 6,5 8,3 6,5 8,3 1,1 6,2 1,1 6,2

Ddd 6,5 8,3 6,5 8,3 2,6 4,4 2,6 4,4

Game B: Stag Hunt

Cuu Cud Cdu Cdd Duu Dud Ddu Ddd
Cuu 4,4 4,4 4,3 4,3 1,6 1,6 1,5 1,5

Cud 4,4 4,4 4,3 4,3 0,6 0,6 5,10 5,10

Cdu 3,4 3,4 8,8 8,8 1,6 1,6 1,5 1,5

Cdd 3,4 3,4 8,8 8,8 0,6 0,6 5,10 5,10

Duu 6,1 6,0 6,1 6,0 2,2 2,1 2,2 2,1

Dud 6,1 6,0 6,1 6,0 1,2 6,6 1,2 6,6

Ddu 5,1 10,5 5,1 10,5 2,2 2,1 2,2 2,1

Ddd 5,1 10,5 5,1 10,5 1,2 6,6 1,2 6,6

https://doi.org/10.1371/journal.pcbi.1010429.t002
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one equilibrium in which players defect in PD and coordinate on the inferior strategy in the

coordination game.

Cooperative equilibria are composed of two classes as well. In one class, mutual cooperation

in the PD occurs. In this equilibrium, both players play Cdu: They cooperate in the PD, play d
with cooperators and play u with defectors. In four Nash equilibria, players coordinate on het-

erogeneous cooperation and defection pairs. In these equilibria, the defector plays d only if its

opponent cooperates. Thus as long as a cooperator plays d with a defector, this strategy profile

remains a Nash equilibrium. In both classes of cooperative equilibrium, when game B is a

coordination game, cooperation survives due to the existence of cooperation favoring coordi-

nation rules.

Conditions for the existence of cooperative Nash equilibrium. It is possible to derive

simple rules for the existence of cooperative Nash equilibrium. I begin by the cooperative

Nash equilibrium of the snow drift game, (Cuu, Ddu). Using the general parametrization of

the Snow Drift game (TB> RB> SB> PB), from the condition BR(Cuu) = Ddu we arrive at

T + SB> R + SB, T + SB> T + PB, and T + SB> R + PB which always hold for SH (BR(x) stands

for best response to x). Using the condition BR(Ddu) = Cuu, we arrive at, S + TB> S + RB, S +

TB> P + PB, and S + TB> P + SB. The first inequality is automatically satisfied, and the second

one is satisfied when the last one is satisfied. The last inequality gives P − S< TB − SB. If this

condition is violated, no other pure strategy Nash equilibrium involving cooperative strategies

exists. To see this, I note that Ddd dominates all the cooperative strategies against defective

strategies. So none of the cooperative strategies can be the best response to any of the defective

strategies. Thus, the only remaining possibility for the existence of a cooperative pure strategy

Nash equilibrium is that a fully cooperative Nash equilibrium exists, which can not happen

since the best response to any of the cooperative strategies is one of the defective strategies.

Using a similar argument for the Stag Hunt game, it is easy to see that the condition for the

existence of a cooperative Nash equilibrium, in this case, is P − S< RB − PB (see Fig 2). These

two conditions can be stated as simple rules for the existence of a cooperative Nash equilib-

rium. To see this, I note that P − S can be considered as the cost of cooperation. To see this

consider the helping game version of the Prisoner’s dilemma, in which the cooperator incurs

a cost c for its opponent to receive a benefit b. In this version we have R = b − c, T = b, P = 0,

S = −c. Thus, P − S = c. In the Snow Drift game, TB − SB can be considered as coordination

asymmetry, as this is the excess payoff of the superior strategy in the Nash equilibrium. Thus,

when game B is a Snow Drift game, a cooperative Nash equilibrium exists when the cost of

cooperation is smaller than the coordination asymmetry. In the Stag Hunt game, RB − PB is the

payoff difference of players in the superior and inferior Nash equilibria, and can be considered

as the cost of coordinating on an inferior equilibrium. Thus, the condition for the existence of

a cooperative Nash equilibrium when game B in a Stag Hunt game is that the cost of coopera-

tion should be smaller than the cost of coordinating on an inferior equilibrium. As shown in

the next section, this condition also ensures the existence of a cooperative fixed point in the

evolutionary dynamics.

Evolutionary dynamics: Mixed population

Fixed points of the evolutionary dynamics. An static analysis of the game suggests cou-

pling between the two games can give rise to non-trivial cooperative equilibria where deviation

from the Nash equilibrium of the simple games is observed. This raises the question of whether

the evolutionary dynamics of interacting games can also give rise to cooperative fixed points?

In this section we show this is the case and the evolutionary dynamics possesses both coopera-

tive and defective fixed points. As shown in the Methods section, the dynamics of the model
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can be described in terms of the replicator-mutator dynamics. Analysis of the replicator-muta-

tor dynamics shows that the dynamics can settle in different fixed points. When game B is an

anti-coordination game, two fixed points are observed. A cooperative fixed point in which

cooperators survive and a defective fixed point where defectors dominate. In Fig 3A to 3C the

frequency of different strategies in the fixed points of the dynamics in the cases that the game

B is respectively, SD, BS, and the Leader game are plotted. In the defective equilibrium, all the

defective strategies are found in a high proportion in the population (this is not the case in the

BS). In this fixed point, as all the agents play the same strategy in the PD, they can not use the

information from the PD to coordinate in game B. On the other hand, in the cooperative fixed

point, cooperators and defectors can use information about their opponent strategy in the PD

to coordinate on heterogeneous strategy pairs. Interestingly, in this fixed point, defectors

always play the soft strategy with cooperators, and cooperators play the hard strategy with

defectors. This ensures cooperators reach a higher payoff in game B, which compensates for

the cost of cooperation they pay in the PD and sustain cooperation in the population. On the

other hand, cooperators and defectors among themselves play a combination of soft and hard

strategies.

The situation is different when game B is the Stag Hunt game. In this case, the replicator-

mutator dynamics have three stable fixed points. The frequency of strategies in the fixed points

is plotted in Fig 3D. In one of the fixed points, only those defective strategies which play down

with defectors survive. This corresponds to the superior defective Nash equilibrium with the

payoff of P + RB. On the other hand, the inferior Nash equilibrium where agents play up in the

Fig 2. Simple rules for the existence of a cooperative Nash equilibrium. A: A cooperative Nash equilibrium in which defectors play softly with

cooperators and cooperators play hard with defectors when the game B is a Snow Drift game exists when the cost of cooperation is smaller than the

coordination asymmetry defined as the payoff difference of hard and soft strategies in the Snow Drift game. B: A cooperative Nash equilibrium, when

the game B is a Stag Hunt game, exists when the cost of cooperation is smaller than the cost of coordinating on an inferior equilibrium, defined as the

payoff difference of the superior and inferior equilibria in the Stag Hunt game. These conditions can be derived by requiring the payoff of Nash

strategies (shown in white) to be larger than all the other payoffs in the same column.

https://doi.org/10.1371/journal.pcbi.1010429.g002
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Stag Hunt game, Duu, is not evolutionarily stable as mutant Dud receives the same payoff as

Duus in their presence and can grow in a population of homogeneous Duu players. This gives

an edge to cooperators as cooperators can receive a higher payoff and invade by coordinating

on the higher payoff d − d pair with mutant Duds.

The two cooperative fixed points when game B is SH correspond to cases where the popula-

tion is composed of Cdd − Dud or Cud − Dud. I call these fixed points, respectively, SH1 and

SH2. Both these compositions correspond to the Nash equilibrium of the two-stage game. The

Nash equilibrium Cdu − Cdu, on the other hand, is not evolutionarily stable, as Cdd players

can grow in such a homogeneous population. Once they grow, defective strategies can invade

the population due to receiving a high payoff in the presence of Cdd strategies.

In passing, I note that, while cooperative fixed points are possible in both the cases that

game B is an anti-coordination game and when it is a coordination game, as we will shortly

see, the mechanisms underlying these stationary states are rather different, and the likelihood

that these fixed points occur in a dynamical process are dramatically different.

The evolution of moral norms depends only on the cost of cooperation. An interesting

question is that whether, similarly to the simple conditions for the xistence of cooperative

Nash equilibria, does conditions for the existence of cooperative fixed points in the evolution-

ary dynamics exist? The fixed points of the evolutionary dynamics correspond to mixed strat-

egy Nash equilibria of the static game (see Methods). Using the general parametrizations of the

payoffs, the fixed point SH1 corresponds to a mixed strategy Nash equilibrium in which the

strategies Cdd and Dud are played with probabilities, respectively, xCdd ¼
P� RB � SþSB

PþR� RB � SþSB � T
and

xDud ¼ R� T
PþR� RB � SþSB � T

, and all the other strategies are played with probability zero. The fixed

point SH2 corresponds to a mixed strategy Nash equilibrium in which Cud and Dud are played

with probabilities, respectively, xCud ¼
PþPB � RB � S

Pþ2PBþR� 2RB � S� T
and xDdu ¼

PBþR� RB � T
Pþ2PBþR� 2RB � S� T

. These expres-

sions describe the fixed point of the dynamics for coordination class in the limit of zero muta-

tion rate. It is possible to derive simple conditions for the evolution of cooperation using these

Fig 3. Frequency of different strategies in the fixed points of the replicator-mutator dynamics. Form A to D the game B is respectively, Snow Drift, Battle of the Sexes,

Leader, and Stag hunt game. For anti-coordination games (A to C) the replicator-mutator dynamic has two stable fixed points, a cooperative fixed point where

cooperation evolves (top) and a defective fixed point where cooperation does not evolve. For the Stag Hunt game, D, the replicator-mutator dynamic has two cooperative

fixed points (top) and a defective fixed point (bottom).

https://doi.org/10.1371/journal.pcbi.1010429.g003
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expressions. To do this, I note that an interesting feature of the fixed points is that they only

depend on two combinations, P − S and T − R. Using a helping game version of the Prisoner’s

dilemma (R = b − c, T = b, P = 0, S = −c) both these expressions are equal to the cost of cooper-

ation: P − S = T − R = c. That is, the condition for the existence of a cooperative fixed point can

be stated in terms of an inequality for the cost of cooperation. Using this parametrization, the

equilibrium frequencies for the fixed point SH1 can be written as xCdd = 1 − c/(RB − SB) and

xDud = c/(RB − SB). Thus, this fixed point exists as long as c< RB − SB. For SH2 we have, xCud =

[1 + c/(RB − PB)]/2 and xDud = [1 − c/(RB − PB)]/2. This fixed point exists as long as c< RB −
PB. For the Stag Hunt game, we have RB> TB� PB> SB. Thus, both inequalities are satisfied

when the cost of cooperation is smaller than the cost of coordinating on an inferior equilib-

rium, RB − PB.

The mixed strategy Nash equilibrium composed of the strategies Cuu, Cdu, Ddu, and Ddd,

corresponding to the fixed point of the evolutionary dynamics when game B is an anti-coordi-

nation game is derived in the Methods section. In this case, too, the fixed points of the evolu-

tionary dynamics depend on the payoff values of the PD only through the cost of cooperation.

This implies that cooperation evolves when the cost of cooperation is smaller than a value

determined by the structure of game B. In Fig 4, I plot the mixed strategy Nash equilibrium,

together with the cooperative fixed point of the evolutionary dynamics for two different muta-

tion rates and benefit of cooperation as a function of the cost of cooperation c. Here, a helping

game version of the Prisoner’s Dilemma is used. The game B is a Snow Drift game with the

base payoff values. As can be seen, the mixed strategy Nash equilibrium involving Cuu, Cdu,

Ddu, and Ddd exist for small enough costs and coincides with the fixed point. For larger cost,

the cooperative mixed strategy Nash equilibrium does not exist. The dynamics becomes

Fig 4. The evolution of cooperation depends only on the cost of cooperation. The cooperative fixed point of the evolutionary dynamics when the game B is a Snow

Drift game is plotted for two different mutation rates and two different benefits of cooperation (as indicated in the legend). The mixed strategy equilibrium (MNE)

composed of Cuu, Cdu, Ddu, and Ddd, which coincides with the cooperative fixed point for zero mutation rate, is also plotted (orange circles). A cooperative fixed point

exists for small costs and becomes unstable for high costs. The dynamics settle in a fully cooperative fixed point for too small costs where only cooperative strategies

survive. Here a helping game version of the Prisoner’s Dilemma with payoff values R = b − c, T = b, P = 0, and S = −c is used. A base payoff of π0 = 5 is added to all the

individuals. For the Snow Drift game, the base payoff values, presented in Table 1, is used.

https://doi.org/10.1371/journal.pcbi.1010429.g004
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mono-stable and only a defective fixed point exist. This defective fixed point in turn corre-

sponds to a defective mixed strategy Nash equilibrium of the two-stage game, which is decom-

posable to the Nash equilibrium of the PD and the mixed strategy Nash equilibrium of the SD.

In other words, the frequency of up and down strategies in this case obey their frequency in

the mixed strategy Nash equilibrium of a simple Snow Drift game.

There is another transition for smaller cost of cooperation below which the cooperative

mixed strategy Nash equilibrium does not exist. In this region, the dynamics settle in a fully

cooperative fixed point, in which only cooperative strategies survive. This fully cooperative

fixed point corresponds to a fully cooperative mixed strategy Nash equilibrium, in which only

cooperative strategies, Cuu, Cud, Cdu, and Cdd are played with non-zero probability. This

mixed strategy Nash equilibrium is derived in the Methods section. It is also possible to derive

a condition for the existence of the fully cooperative fixed point. For the payoff values of the

Snow Drift game used here, a fully cooperative fixed point exists when the cost of cooperation

is smaller than 2/3. As we will shortly see, this fixed point does not exist for other anti-coordi-

nation games considered here. The existence of such a fully cooperative fixed point might seem

like a puzzle, as one might wonder that the advantage of cooperators in achieving a higher sta-

tus in the anti-coordination task in the second round perishes in the absence of defectors. As

we will shortly see, this puzzle can be solved by looking into the dynamics of the system.

Basin of attraction of the fixed points. So far, we have seen the dynamics can settle in dif-

ferent fixed points. An interesting question is, what is the likelihood that these fixed points

occur starting from different initial population configurations? In this section, I show that the

basin of attraction of the cooperative fixed points when game B is an anticoordination game is

significantly larger than when it is a coordination game, which points towards different evolu-

tionary processes underlying the evolution of cooperative norms in these two cases. To see

this, in Fig 5A, I plot the probability that the dynamics settle in the cooperative fixed points for

different structures of game B. To calculate these probabilities, I solve the replicator-mutator

dynamics using 107 randomly generated initial conditions. The results show that while for the

anti-coordination class, the cooperative fixed point has a large basin of attraction and can

occur for a broad range of initial conditions, both cooperative fixed points when game B is the

Stag Hunt game, SH1 and SH2, occur for a narrow range of initial conditions. For instance,

Fig 5. The probability of settling in the cooperative fixed point. A: The probability of settling in cooperative fixed point starting from random initial conditions for

different structures of game B. While for anti-coordination games, the cooperative fixed point has a large basin of attraction, for the Stag Hunt game, cooperative fixed

points can occur only for special initial conditions. B to C: The probability of settling in the cooperative fixed point as a function of the initial frequency of cooperators

rinitial
C , A, and initial frequency of soft players, rinitial

d , B, for different structures of game B is plotted. The replicator-mutator dynamic is solved for 107 different randomly

generated initial conditions to derive the probabilities.

https://doi.org/10.1371/journal.pcbi.1010429.g005
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these fixed points do not occur for an unbiased initial condition in which the density of all the

strategies is equal.

The difference between the basin of attraction of the two classes of the games points to the

difference in the mechanism underlying the evolutionary processes leading to these stationary

states. In the case of the anti-coordination game, individuals are unable to avoid an anti-

coordination failure in the defective fixed point, while they can more effectively avoid such

failure in the cooperative fixed point and coordinate on heterogeneous strategy pairs in game

B by taking the PD-strategy of their opponent into account. As this anti-coordination is benefi-

cial for cooperators and defectors alike, these fixed points can occur due to the individuals’

attempt to maximize their payoff by coordination on heterogeneous strategy pairs. Conse-

quently, they have a relatively large basin of attraction and can occur starting from rather

diverse initial conditions.

On the other hand, when game B is a Stag Hunt game, individuals can do equally good in a

heterogeneous population of cooperators and defectors (i.e., in a cooperative fixed point) or a

homogeneous population of defectors (i.e., in the defective fixed point) in avoiding a coordina-

tion failure, provided a proper norm of coordination exists (in the former case, such a norm

amounts to cooperators playing d with defectors and defectors playing d with cooperators and

in the latter case it amounts to defectors playing d with fellow defectors). Consequently, con-

verging to a cooperation-favoring norm of coordination does not bring any direct advantage

for the individuals. Rather, it can only occur if the initial population configuration is prepared

in such a way to favor these norms.

To see what characteristics of the initial population configurations affect the likelihood of

settling in a cooperative fixed point, I consider the projections of the eight-dimensional sim-

plex defining the phase space of the system into a one-dimensional space defined by ρC and ρd,
respectively, in Fig 5B and 5C. In these figures, I plot the probability of settling into the cooper-

ative fixed points, starting from randomly chosen initial conditions for different structures of

game B as a function of, respectively, the initial frequency of cooperators, rinitial
C , and the initial

frequency of soft players, rinitial
d . To calculate these plots, I numerically solve the replicator-

mutator dynamics using 107 randomly generated initial conditions and derive the probability

of settling into the cooperative fixed point, given the initial frequency of cooperators (Fig 5B)

or soft players (Fig 5C) based on this sample.

When game B is an anti-coordination game, converging to the cooperative state is favored

when the initial frequency of cooperators is low. This originates from the fact that when the

initial frequency of cooperators is low, strategies which play softly with cooperators bear a

lower fitness cost on their bearer and grow faster. Consequently, cooperation-favoring moral

norms are easier to evolve for such initial configurations. The situation is different when game

B is a coordination game. In this case, the dynamics have two cooperative fixed points, both

with a significantly smaller basin of attraction. As can be seen in Fig 5B, the fixed point with

lower cooperation, SH2, composed of Cud and Ddu, although stable, has a very small basin of

attraction and the one with higher cooperation, SH1, composed mainly of Cdd and Dud strate-

gies, can occur for larger values of ρC. This is the case because when the initial frequency of

cooperators is higher, a Cdd strategy meets cooperators with higher probability and has more

chances to reach a higher payoff due to coordination in game B.

The dependence of the probability of the occurrence of fixed points on the initial frequency

of soft players, rinitial
d , shows for all the structures of game B, the cooperative fixed point is more

likely to occur when the initial frequency of down strategy is higher, which shows that the evo-

lution of cooperation-supporting norms is easier in populations composed of a higher fre-

quency of soft players.
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Time evolution of the system. As we have seen, when game B is an anti-coordination

game, starting from a rather broad range of initial conditions, a set of cooperation-supporting

moral norms emerge through the dynamics and help the maintenance of cooperators in the

population. To see the nature of the dynamical phenomena through which this happens, in

Fig 6A and 6B, I plot the density of different strategies, in the direct interaction model, as a

function of time. Here, game B is a Snow Drift game. The dynamic is similar for other anti-

coordination games, and in the reputation-based model. As can be seen in Fig 6C (replicator-

mutator dynamics) and Fig 6D (simulations in a population of size 10000), where the density

of cooperators in the PD and soft strategy in the SD are plotted, starting from the center initial

condition in which all the strategies are found in the same density, the population rapidly goes

to a state where the density of strategies in both games is close to its Nash equilibrium value.

This is the case because, initially, no coupling between the two games exists, and strategies of

the individuals evolve in such a way that the frequency of strategies in each game follows its

Nash equilibrium value. Consequently, the densities of all the strategies are close to their value

in the defective fixed point, such that it might appear that the system has settled in the defective

phase. However, this only sets the stage for the second phase of the evolution, during which a

set of cooperation-supporting moral norms evolve and give rise to an outburst of cooperation.

As cooperators are found in a very small frequency during this transient phase, strategies that

play softly with cooperators do not impose a high cost on their bearer and grow in number. A

cooperation favoring moral system is established when such strategies accumulate enough. At

this point, the system shows a rapid dynamical transition to the cooperative fixed point where

cooperators emerge in large numbers. In this regime, cooperators always play a hard strategy

with defectors, and defectors always play the soft strategy with cooperators. This compensates

for the cost of cooperation that they pay. On the other hand, both cooperators and defectors

play a combination of soft and hard strategies among themselves. This phenomenology shows,

when a game has an asymmetric equilibrium, as is the case in anti-coordination games, indi-

viduals can use information about the strategy of their opponent in a social dilemma to effi-

ciently coordinate in an asymmetric equilibrium and avoid paying the cost of coordination

Fig 6. Time evolution in the model with direct interactions. A and B: The time evolution of different strategies resulted from the replicator-mutator dynamics A and a

simulation in a finite population B. (c) and (d): The time evolution of the density of the cooperators ρC (up), and the density of the soft strategies ρd (bottom), resulted

from the replicator-mutator dynamics C, and a simulation D. Cooperation favoring moral norms evolves through a rapid dynamical transition. The simulation is

performed on a population of size N = 20000, and the mutation rate is ν = 0.005. The initial condition is a random assignment of strategies (for the replicator-mutator

dynamics, this implies ρx = 1/8, for all strategies x). The base payoff values, presented in Table 1, are used.

https://doi.org/10.1371/journal.pcbi.1010429.g006
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failure. Consequently, a set of behavioral or moral norms emerges, according to which cooper-

ators are allowed to play hard and deserve to be played soft with. This supports cooperation by

compensating for the cost of cooperation. Importantly, by facilitating anti-coordination, this

mechanism also increases the cooperative behavior in the second game.

I note that when game B is a Stag Hunt game, the time evolution of the system shows differ-

ent behavior. In this case, a cooperative fixed point can occur only for special initial conditions

chosen close enough to the cooperative fixed points. Consequently, the two dynamical phases

and the rapid dynamical transition observed in the time evolution of the system when game B
is an anti-coordination game is not at work in this case. Since when game B is a coordination

game, a cooperative fixed point can occur only for special initial conditions, in the remainder

of this section, we focus on anti-coordination games.

Evolution of moral norms in the direct interaction model. To more closely see how

cooperators survive in the dynamics, I set S = 0, P = 1, and R = 3, and plot the frequency of

cooperators in Fig 7A, and the density of the soft strategies in Fig 7B, as a function of T. Here,

from top to bottom, the second game is the SD, the BS, and the Leader game. In each panel, I

present the result of simulations (marker), together with the numerical solutions of the replica-

tor-mutator dynamics (lines). The replicator-mutator dynamics show the model is bistable:

Depending on the initial conditions, two fixed points, each with a high or a low level of cooper-

ation are possible. The two fixed points of the dynamics are plotted by solid and dashed lines.

Fig 7. The direct interaction model with the three archetypal games. The density of cooperators, ρC, A, the density of soft strategies in game B, ρd, B,

the normalized payoff difference of cooperators and defectors in game B, Δπ, (c), and the correlation between the strategy of the individuals in the two

games, hsAsBic, D, as a function of the temptation, T. Here, from top to bottom, the game B is the Snow Drift, the Battle of the Sexes, and the Leader

game. The payoff values used for the games are presented in Table 1. The lines show the result of the replicator-mutator dynamics, and the markers

show the results of simulations. The solid blue line shows the equilibrium fixed point, which occurs starting from an unbiased initial condition in which

the density of all the strategies are equal, and the dashed red line shows the non-equilibrium fixed point, which can occur starting from certain initial

conditions. The system is bistable and both a cooperative fixed point with a high level of cooperation A and soft strategies B, and a defective fixed point

with a low level of cooperation and soft strategies are possible. In the cooperative phase, cooperators receive a higher payoff from game B C. Moreover,

the strategies of individuals show an anti-correlation in the cooperative fixed point D, resulting from the fact that defectors play softly with cooperators

and cooperators play hard with defectors in this fixed point. For the simulations, a sample of 80 simulations, in a population of size N = 10000 is used.

The simulations start from random initial conditions. In each simulation, the dynamics settle in one of the two fixed points. The markers show the

averages, and the error bars show the standard deviation in the sample of simulations that settle in the given fixed point, and the size of markers is

proportional to the number of times that the given fixed point occurs. Here, the mutation rate, ν = 0.005. The simulations are run for 20000 time steps,

and an average over the last 1000 time steps is taken.

https://doi.org/10.1371/journal.pcbi.1010429.g007
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The solid line represents the stationary state of the dynamics, starting from a center (unbiased)

initial condition in which the density of all the strategies is equal. This can be considered as the

unbiased fixed point [58]. The dashed line represents the biased fixed point, which can occur

for certain initial conditions.

As can be seen, the replicator-mutator dynamics predict starting from a center initial condi-

tion, the system settles in the cooperative fixed point for all the values of T. While this is often

the case for a simulation in a finite population, depending on the structure of game B, with a

low probability, the biased fixed point, where a low level of cooperation is observed, can occur.

This is the case for the BS game. The density of soft strategies, plotted in Fig 7B, is higher in

the cooperative fixed point as well. On the other hand, in the non-cooperative fixed point, the

density of soft strategies is smaller and close to the Nash equilibrium of the corresponding

games. As mentioned before, this shows that coupling between games not only promotes

cooperation in the PD, but also increases cooperative behavior in game B. I note that soft strat-

egies, such as the strategy down in the Snow Drift game, can be considered as cooperative

strategies as they allow their opponent to receive a higher payoff and thus benefit the oppo-

nent. However, in contrast to cooperation in Prisoner’s Dilemma, soft strategies can occur in

the Nash equilibrium and can be thought of as a more rational and self-interested form of

cooperation [2]. In this sense, by increasing the frequency of soft strategies in the game B,

moral norms also promote the less self-sacrificing and more self-centered form of cooperation.

The examination of the SD game in the top panel of Fig 7A shows that for small temptation,

T, cooperators reach a frequency close to one. This might seem counter-intuitive as, in this

case, since the population is homogeneous, the PD-strategy can not be used as a coordination

device to anti-coordinate on heterogeneous strategy pairs in the game B. The key to the answer

to the puzzle is the observation that the essential factor for the evolution of cooperation-favor-

ing moral norms is that cooperative strategies reach a low frequency during the initial transient

dynamic of the system before a set of moral norms emerge (see Fig 7). This transient dynamic

guarantees the evolution of moral norms. Once the cooperative norms are fixated, cooperators

can indeed increase and dominate the population.

As cooperators receive a lower benefit from the social dilemma, they can survive only if

their payoff from game B compensates for the cost of cooperation they pay in the social

dilemma. To see this is indeed the case, in Fig 7C, I plot the normalized payoff difference of

cooperators and defectors in the game B, Dp ¼ ðpB
C � p

B
DÞ=ðp

B
C þ p

B
DÞ. In all the three games,

in the cooperative fixed point, cooperators receive a higher payoff in game B. In the SD and

the BS games, cooperators receive a higher payoff in game B, even in the non-cooperative fixed

point. As mentioned before, the higher payoff of cooperators from game B results from the

fact that in the course of evolution, individuals develop strategies that tend to play soft with

cooperators and hard with defectors. This can be considered as the emergence of a set of moral

rules that allows cooperators to reach a benefit by being treated softly. Consequently, coopera-

tors can reach a higher payoff by playing a hard strategy. Besides, by increasing the strength of

the social dilemma (that is, by increasing the temptation T), the payoff difference in the game

B increases in favor of the cooperators. This is due to an increase in the likelihood that cooper-

ators receive a soft encounter in the game B, by increasing the strength of the social dilemma

(see Fig A in S1 Text). This shows the stronger a dilemma, a stronger set of cooperation sup-

porting moral norms emerge.

The emergence of a set of cooperation supporting moral norms can also lead to an anti-cor-

relation between the strategies of the individuals in the two rounds: Cooperators are more

likely to play a hard strategy in the second game, and defectors are more likely to play a soft

strategy in the second game. This can be seen in Fig 7C, where the connected correlation of

the strategies of the individuals in the two games, hsAsBic = hsAsBi − hsAihsBi, is plotted.
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Here, h.i denotes an average over the population. To calculate the correlation function, I have

assigned a value + 1 to cooperation and the soft strategy, and −1 to the defection and hard

strategies.

Evolution of moral norms in the reputation-based model. A similar phenomenon is at

work in the reputation-based model where individuals play their two games with different

opponents. In Fig 8, I turn to the reputation-based model. In Fig 8A, I plot the density of coop-

erators in the Prisoner’s Dilemma, and in Fig 8B, I plot the density of the soft strategy in the

game B, as a function of the probability of error in inferring the PD-strategy of the opponent,

η. Here, as before, from top to bottom, game B is, respectively, SD, BS, and the Leader game.

Lines represent the results of the replicator-mutator dynamics, and markers show the results

of simulations in a finite population. For a small probability of error, η, the model is bistable.

The unbiased fixed point is plotted by a solid blue line, and the biased fixed point resulting

from a biased initial condition is plotted by a dashed red line. However, for a large probability

of error, the model becomes mono-stable, and the dynamics settle in a defective fixed point in

which the density of strategies in both games is close to their Nash equilibrium value. I note

that, for η = 0.5, individuals have no information about the strategy of their opponent. As η
increases beyond 0.5, individuals are more likely to infer the PD strategy of their opponent

erroneously than by chance. This gives net information that can be used by the population to

Fig 8. The reputation-based model with the three archetypal games. The density of cooperators, ρC, A, the density of soft strategies in game B, ρd, B, the normalized

payoff difference of cooperators and defectors in game B, Δπ, B, and the correlation between the strategy of the individuals in the two games, hsAsBic, D, as a function of

the probability of error in inferring the PD strategy of the opponent, η. Here, from top to bottom, the game B is the Snow Drift, the Battle of the Sexes, and the Leader

game. The payoff values used for the games are presented in Table 1. The lines show the result of the replicator-mutator dynamics, and the markers show the results of

simulations. The solid blue line shows the equilibrium fixed point, which occurs starting from an unbiased initial condition in which the density of all the strategies are

equal, and the dashed red line shows the non-equilibrium fixed point, which can occur for certain initial conditions. The system is bistable for small recognition noise, η
and both a cooperative fixed point with a high level of cooperation A and soft strategies B, and a defective fixed point with a low level of cooperation and soft strategies

are possible. In the cooperative phase, cooperators receive a higher payoff from game B C. Moreover, the strategies of individuals show an anti-correlation in the

cooperative fixed point D, resulting from the fact that defectors play softly with cooperators and cooperators play hard with defectors in this fixed point. For the

simulations, a sample of 80 simulations, in a population of size N = 10000 is used. The simulations start from random initial conditions. In each simulation, the dynamics

settle in one of the two fixed points. The markers show the averages, and the error bars show the standard deviation in the sample of simulations that settle in the given

fixed point. The size of the markers is proportional to the number of times that the given fixed point occurs. Here, the mutation rate, ν = 0.005. The simulations are run

for 20000 time steps, and an average over the last 1000 time steps is taken.

https://doi.org/10.1371/journal.pcbi.1010429.g008
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self-organize in a cooperative fixed point. For this reason, the dynamic is symmetric around

η = 0.5 and result in the same cooperation level for η and 1 − η. Based on these considerations,

in the following, I refer to the case of η = 0.5 as the maximal noise level.

For the simulations, a sample of 80 simulations, run for 20000 time steps, is used. Starting

from a random initial condition, the dynamics settle in one of the stationary states. The size of

the markers is proportional to the number of times that a given equilibrium occurs. As it is

clear in the figure, finite-size effects such as population noise resulting in the deviation of the

frequency of the strategies from the center initial condition used in solving the replicator

dynamics, favor cooperation. This can be seen by noting that, in simulations in a finite popula-

tion, the dynamics settle into the cooperative fixed point with a high probability, even when

this is the biased fixed point in the infinite size system.

The normalized payoff difference of cooperators and defectors in the game B,

Dp ¼ ðpB
C � p

B
DÞ=ðp

B
C þ p

B
DÞ, is plotted in Fig 8C. As can be seen, in the cooperative fixed

point, cooperators receive a higher payoff in the game B. As in the direct interaction model,

this is due to the emergence of a set of cooperation supporting moral norms, according to

which individuals are more likely to play the soft strategy with cooperators compared to defec-

tors. This, in turn, allows cooperators, to be more likely to play a hard strategy in the game B.

This leads to an anti-correlation between the strategy of the individuals in the two games, as

can be seen in Fig 8D. On the other hand, in the defective fixed point, the payoff difference of

cooperators and defectors is near zero, and almost no correlation between the strategy of the

individuals in the PD and game B is observed.

Continuous variations of the structure of game B and the evolution of moral norms

through a symmetry breaking phase transition. So far, using three archetypal games, we

have seen cooperation and a set of cooperation supporting moral rules evolve in both models.

To see how the models behave with respective to continuous variations of the structure of

game B, I set S = 0, P = 1, R = 3, and T = 5 for the PD, and RB = 3, and PB = 1 for game B, and

color plot the density of cooperators as a function of SB and TB, in Fig 9A, for the direct inter-

action model, and in Fig 9B for the reputation-based model. In the top panels, the results of

the replicator-mutator dynamics are shown, and in the bottom panel, the results of simulations

in a population of N = 1000 individuals are shown. Here a sample of 128 simulations, run for

10000 time steps is used. Averages are taken over the last 1000 time steps.

For SB< 1, and TB> RB = 3, game B is a PD. In this case, cooperation does not evolve. On

the other hand, for TB> 3, and SB> 1, game B belongs to the anti-coordination class. In prin-

ciple, cooperation can evolve in this case. The boundaries of bistability, plotted by markers,

show the boundary above which the system becomes bistable. Below this boundary, only one

fixed point, with a low level of cooperation is possible, and above this line, a cooperative fixed

point emerges as well. In the bistable region, depending on the initial conditions, the dynamics

settle in one of the two fixed points. The color plots show the cooperation level starting from

unbiased initial conditions. A comparison of the results of the replicator-mutator dynamics

and simulations in finite population shows finite size effects strongly favor cooperation, such

that the transition between the two phases occurs for smaller values of TB or SB in a finite size

population.

I note that the boundary of bistability is composed of two branches. Above each branch, a

different fixed point occurs. Above the branch plotted by green squares, the soft strategy is d
(for large TB), and above the branch plotted by red circles, the soft strategy is u (for large SB).

The two branches meet at a single critical point, where the transition becomes a symmetry

breaking continuous transition. Below the critical point, cooperation and defection in the PD

are symmetric and are treated in the same way in game B. This leads to a symmetric state

where the evolution of cooperation is prevented due to the cost of cooperation. Above the
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critical point, however, the symmetry between cooperative and defective strategies breaks, and

a set of cooperation favoring norms emerges.

Structured population

An interesting question is whether cooperation favoring moral norms evolves in a structured

population as well? As we will see in this section, this is the case when game B is an anti-coordi-

nation game, but the evolution of cooperation was not observed when game B is a coordina-

tion game. To see why when a social dilemma is coupled with a coordination game,

cooperation favoring coordination norms does not evolve in a structured population, in Fig

10A to 10C, I present snapshots of the population configuration when the game B is a Stag

Hunt game, and in the direct interaction model. The reputation-based model shows a similar

behavior. The densities of different strategies are presented in Fig 10D and 10E. The initial

population is a uniformly distributed mixture of Cdd and Ddu. This initial condition favors

the evolution of cooperation favoring coordination norms in a mixed population (fixed point

II of the replicator-mutator dynamics when game B is a Stag Hunt game in Figs 3 and 5).

Fig 9. The behavior of the models under continuous variation of the structure of game B. The color plot of the density of cooperators, ρC, in the direct interaction

model A, and the reputation-based model B, in the SB − TB plane. The top panels show the result of the replicator-mutator dynamics and the bottom panels show the

results of simulations in a population of 1000 individuals. In both cases, an unbiased initial condition (random assignment of strategies) is used. I have set R = 3, S = 0,

P = 1, T = 5, RB = 3, and PB = 1. The boundaries of bistability are plotted as well. Below this boundary the dynamic is monostable, settling into a fixed point with a low

level of cooperation. Above the boundary, a cooperative fixed point becomes stable and the dynamics become bistable. The two branches of the boundary meet at a

critical point, where the transition becomes continuous. A comparison shows finite size effects strongly favor cooperation. Here, η = 0.1, and ν = 0.005.

https://doi.org/10.1371/journal.pcbi.1010429.g009
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However, cooperation favoring coordination norms becomes unstable in a structured popula-

tion. The reason is that in a structured population, starting from any initial condition, small

homogeneous blocks of similar strategies are formed. Within such homogeneous blocks, any

of the consistent coordination norms (cooperators who play d with cooperators and defectors

who play d with defectors) receive a high payoff and can grow. In the boundaries, defectors

receive a higher payoff from the PD compared to cooperators and can replace the domain of

cooperators. Consequently, the system evolves into a state where Ddd and Dud types, which

defect and play d with defectors, dominate the population. In contrast, as we will see below,

cooperation favoring moral norms evolves when game B is an anti-coordination game. Fur-

thermore, importantly, population structure removes the bistability of the system and ensures

the evolution of moral norms starting from all the initial conditions.

In Fig 11A I plot the density of cooperators in the reputation-based model as a function of

η, when game B is one of the three archetypal games, all belonging to the anti-coordination

class. This figure shows the results of simulations on a population of N = 40000 individuals

residing on a 200 × 200 two-dimensional square lattice with the first nearest neighbor von

Neumann connectivity and periodic boundaries. Cooperation in the Prisoner’s Dilemma

evolves as long as noise in recognition is small enough. As in the case of the mixed population,

this is due to the evolution of cooperation supporting moral norms, which guarantee a higher

payoff for cooperators in the game B. This can be seen to be the case in Fig 11B, where the nor-

malized payoff difference of cooperators and defectors in the game B is plotted. Furthermore,

Fig 10. Time evolution of the system in a structured population when game B is the Stag Hunt game. A to C: snapshots of the population during the evolution for

different times, t, are presented. (d) and (e): The densities of different strategies as a function of time. Here, ν = 10−3, and game B is the Stag Hunt game. The payoff values

of the games are presented in Table 1. The initial population is a uniformly distributed mixture of Cdd and Ddu. This initial condition favors the evolution of

cooperation-favoring coordination norms in a mixed population. However, due to the formation of homogeneous blocks in a structured population, cooperation

favoring coordination norms are unstable, and the system evolves to a defective state composed of Ddd and Dud types. The population resides on a 200 × 200 first nearest

neighbor square lattice with von Neumann connectivity and periodic boundaries. The direct interaction model is used.

https://doi.org/10.1371/journal.pcbi.1010429.g010
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due to the evolution of cooperation supporting norms, cooperators are more likely to play a

hard strategy in the game B, than the defectors are. This leads to the negativity of the connected

correlation function of the individuals’ strategies in the two games, as shown in Fig 11C.

The moral system also supports a high level of soft strategies in the game B. This can be

seen in Fig 11D, where the density of soft strategies in the population is plotted. The density of

soft strategies is always larger than the Nash equilibrium value. This is particularly surprising,

given that, although beneficial for the evolution of cooperation in the Prisoner’s Dilemma, net-

work structure can hinder the evolution of cooperation in the Snow Drift game [51]. Our

results show that in contrast to what is the case in a simple strategic setting, strategic complex-

ity can provide an avenue for network structure to play a constructive role in the evolution of

cooperative behavior in the Snow Drift game.

To take a more in-depth look into the dynamics of the system, in Fig 12, I plot the density

of different strategies in the population for the cases that the game B is one of the three arche-

typal games. As the probability of error approaches 0.5, soft strategies decrease in density.

However, the density of defectors who in practice are more likely to defer to cooperators than

not, that is Ddu for η< 0.5, and Dud for η> 0.5, increases when the noise level approaches the

maximal value of 0.5. This observation shows that a higher noise level can strengthen the

moral system, such that cooperation supporting norms become stronger for higher noise lev-

els. This can be more clearly seen to be the case in Fig 13, where the densities of the strategies

which play up with cooperators, u(C), down with cooperators d(C), up with defectors u(D),

and down with defectors, d(D), as a function of the probability of error are plotted. As can be

seen, by increasing the error probability, well close to the maximum noise level (η = 0.5), the

densities of strategies that play softly with cooperators and those which play hard with defec-

tors increase. While the density of those who play hard with cooperators and soft with defec-

tors decreases. However, this increase in cooperation favoring strategies is not strong enough

to compensate for the loss of cooperators’ payoff in the game B due to increasing noise in rec-

ognition. Consequently, the density of cooperators decreases when noise approaches the maxi-

mal value.

For the maximum noise level, cooperation supporting strategies experience a rapid decline

(Fig 13), and cooperation in the Prisoner’s Dilemma reaches its lowest level (Fig 11A). At this

point, Dud and Ddu become indiscriminate, and both dominate in the population. Interest-

ingly, the density of soft strategies in the game B reaches its maximum at this point. In the case

Fig 11. The reputation-based model with three archetypal games in a structured population. The density of cooperators, ρC, A, the normalized payoff difference of

cooperators and defectors in game B, δπ, B, the correlation between the individuals’ strategies in the two games, hsAsBic, C, and the density of soft strategies in game B, ρd,
D, as a function of the probability of error in inferring the PD strategy of the opponent, η, are plotted. The payoff values used for the games are presented in Table 1.

Simulations are performed in a population of 40000 individuals residing on a 200 × 200 square lattice with first nearest neighbor von Neumann connectivity and periodic

boundaries. The simulations are performed for 6000 time steps, and averages and standard deviations are calculated based on the last 4000 time steps. The simulations

start from random initial conditions. Here, ν = 0.005.

https://doi.org/10.1371/journal.pcbi.1010429.g011
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of the Snow Drift game, this value is well above the Nash equilibrium, which occurs in a mixed

population. Due to the detrimental effect of network structure for the evolution of cooperation

in the Snow Drift game, the density of soft strategies is even less than the Nash equilibrium

value in a simple strategic setting in structured populations [51]. This observation shows that

recognition noise can facilitate cooperation in the Snow Drift game in structured populations.

I note that the mechanism behind this phenomenon seems to be rather independent of the

Fig 12. The density of different strategies in the reputation-based model with three archetypal games in a structured population. The time average density of

different strategies, as a function of the probability of error in inferring the PD strategy of the opponent, η, are plotted. The payoff values used for the games are presented

in Table 1. Simulations are performed in a population of size 40000 individuals residing on a 200 × 200 square lattice with first nearest neighbor von Neumann

connectivity and periodic boundaries. The simulations are performed for 6000 time steps, and averages and standard deviations are calculated based on the last 4000 time

steps. The simulations start from random initial conditions. Here, ν = 0.005.

https://doi.org/10.1371/journal.pcbi.1010429.g012

Fig 13. Strategic response to cooperators and defectors in game B, in the reputation-based model with three archetypal games in the structured population. The

density of strategies who play up with cooperators u(C), down with cooperators d(C), up with defectors, u(D), and down with defectors, d(D), as a function of the

probability of error in inferring the PD strategy of the opponent, η, are plotted. The payoff values used for the games are presented in Table 1. Simulations are performed

in a population of size 40000 individuals residing on a 200 × 200 square lattice with first nearest neighbor von Neumann connectivity and periodic boundaries. The

simulations are performed for 6000 time steps, and averages and standard deviations are calculated based on the last 4000 time steps. The simulations start from random

initial conditions. Here, ν = 0.005.

https://doi.org/10.1371/journal.pcbi.1010429.g013
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evolution of cooperation supporting norms, as in this case, such norms do not evolve in the

system.

As the probability of error increases beyond 0.5, the density of strategies that play up with

defectors and down with cooperators rapidly increases (Fig 13). Combined with the fact that

in this regime, individuals are more likely to make an error in recognition of cooperators and

defectors than making a correct inference, this guarantees that cooperators to be more likely to

be played soft with compared to defectors. Consequently, as was the case in the mixed popula-

tion, the population self-organizes into a regime where a set of cooperation supporting moral

norms emerges and supports cooperation in the system.

I note that while in the mixed population, in the cooperative fixed point, Ddu and Ddd
types are the only defective types which are found in large densities, in a structured population,

depending on the parameter values, it can happen that all the defective strategies exist in large

densities. This is due to the fact that in a structured population, domains of similar strategies

are formed. While a given strategy may perform poorly globally, when surrounded by certain

types, it can survive. This phenomenon, in turn, removes the bistability of the dynamics: The

fate of the dynamics does not depend on the initial condition. To more closely see how this is

the case, in Fig 14A to 14C, I present snapshots of the time evolution of the system, starting

from a defection favoring initial condition, in which all the individuals are defectors, and a

defection favoring norm prevails. That is, all the individuals are of the Dud type: They defect in

the PD, play hard with cooperators, and soft with defectors. The time evolution of the densities

of different strategies is presented in Fig 14D and 14E.

As Dud individuals defer to defectors, the two defective types who play hard with defectors,

Duu and Ddu, reach a higher payoff. Consequently, in the first stage of the time evolution of

the system, domains of Duu and Ddu form and rapidly grow in the sea of Duds. However, Dud

Fig 14. Time evolution of the system. A to C: snapshots of the population during the evolution for different times, t, are presented. D and E: The densities of different

strategies as a function of time. Here, ν = 10−4, and game B is the Snow Drift game. The payoff values of the games are presented in Table 1. The initial population is of

type Dud. The population resides on a 400 × 400 first nearest neighbor square lattice with von Neumann connectivity and periodic boundaries.

https://doi.org/10.1371/journal.pcbi.1010429.g014
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can coexist with Ddu and Duu. This is so because two neighboring Ddus, two neighboring

Duus, or a Ddu in the neighborhood of a Duu, play mutually hard. On the other hand, a Dud
by deferring to the two former strategies can perform better in their immediate neighborhood.

While in a disadvantage in the sea of Duds, as the Ddu type defers to cooperators, cooperators

of type Cdu and Cuu, by playing hard against Ddu, reach a high payoff which compensates for

the cost of cooperation, and thus, Cdus and Cuus grow in the Ddu domains. This sets the sec-

ond stage of the system’s time evolution, where the density of both Cdu and Cuu increases,

and the density of Ddu, and less rapidly, Duu decreases. There is an important difference in

the spatial patterns of the domains of Cdu and Cuu types: While Cdu strategies, by playing soft

with each other can occupy neighboring positions, as neighboring Cuu types play mutually

hard, they decrease the payoff of their neighbors of similar type. Consequently, Cuu types tend

to avoid being neighbors. Instead, they form cross-like patterns where they coexist with Ddu
type. This is crucial for the fate of the dynamics: Cuu and Ddu form a winning coalition. Cuu
benefits Ddu in the PD, and Ddu benefits Cuu in the game B. This winning coalition can over-

come the coexisting domains of Duu and Dud and invade their territories. Consequently, in

the third stage of the evolution, domains of coexisting Cuu and Ddu grow by invading the

domains of coexisting Duu and Dud. This is the stage where a cooperative norm slowly

replaces a defection favoring norm. The densities of both Duu and Dud decreases, while the

density of Cuu slowly increases in this stage.

Although, due to reaching a higher payoff in the game B, Cuu wins in a direct competition

with Cdu, Cuus benefit Cdus in an indirect way. This is so because, due to the fact that Cuus

repel each other, Cdu can survive in the domains of coexisting Ddu and Cuu. Consequently,

elimination of Duu and Dud, by the coalition of Cuu and Ddu benefits Cdu as well by increas-

ing its territorial domain. For this reason, the density of Cdu slightly increases in the expansion

phase of the Cuu and Ddu coalition. Finally, while Ddd performs poorly in the initial stages of

the time evolution of the system, its density increases once a cooperative norm is established

and Dud is removed. The reason is, in the presence of the anti-cooperative Dud type, Ddd per-

forms poorly in indirect competition with both Ddu and Duu, who can exploit Dud better.

However, once Dud is removed, Ddd can emerge in the system as well.

Discussion

We have studied the evolution of strategies in a complex strategic setting, where individuals in

a population play different games and base their strategy in a game on what happens in

another game. By considering a situation where two interacting games exist, a Prisoner’s

Dilemma followed by a second game, we have seen that as long as the second game belongs to

the coordination or anti-coordination class, the Nash equilibrium of the two-stage game can

be of two types: defective equilibria, where the Nash equilibria of each of the composing games

are played, and cooperative equilibria, in which coupling between games emerge and give rise

to a new class of Nash equilibria not reducible to the Nash equilibria of the composing games.

For the cooperative equilibrium to exist, the cost of cooperation should be smaller than a value

determined by the structure of the second game. A similar condition ensures the existence of a

cooperative fixed point in the evolutionary dynamics. Investigation of the evolutionary

dynamics shows that a cooperative fixed point exists in a mixed population for both coordina-

tion and anti-coordination games. However, while in the former case, the cooperative fixed

point has a small basin of attraction and disappears in a structured population, in the latter, a

cooperative fixed point in which a set of cooperation supporting moral norms emerges and

supports cooperation can evolve starting from a rather broad range of initial conditions. The

evolution of moral norms, in this case, originates from the fact that it is in the individuals’ best
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interest to take the information about what happens in the social dilemma into account when

making strategic choices in a second game to better anti-coordinate in the second game. Con-

sequently, in the course of evolution, a set of cooperation supporting moral norms emerges

based on the individual’s self-interest. This appears to provide a possible mechanism for the

evolution of morality in a biological population composed of self-interested individuals with

simple cognitive abilities.

Importantly, population structure facilitates the evolution of a moral system by removing

the bistability of the system and ensuring a cooperative state to flourish starting from all the

initial conditions when the second game is an anti-coordination game. Analysis of the model

in a structured population shows that noise in recognition can be beneficial for the evolution

of a moral system in structured populations. Nevertheless, recognition noise also limits coop-

erators’ ability to benefit from stronger moral norms, and thus, adversely affects cooperation.

Finally, our analysis reveals in a complex strategic setting, very high levels of recognition noise

facilitate the evolution of cooperative behavior in the Snow Drift game in structured popula-

tions. This shows, in contrast to what is the case in a simple strategic setting [51], network

structure can be beneficial for the evolution of cooperation in the Snow Drift game. Further-

more, this provides another case for the surprisingly beneficial role that noise may play for bio-

logical functions [52–55].

Our findings provide new insights into the evolution of indirect reciprocity. By considering

a simple strategic setting, namely one in which individuals only can play a social dilemma,

models of indirect reciprocity have shown that specific moral rules can support an evolution-

ary stable cooperative state. However, the simplicity of the strategic setting requires the moral

assessment module and action module to occur in the same context, which is typically a social

dilemma game that individuals play. This self-referential structure can destabilize the dynam-

ics. To solve this problem, the theory often appeal to higher-order and complex moral assess-

ment rules. In addition to the lack of a natural mechanism to break the chain of higher-order

rules, this requires a relatively high cognitive ability and a large amount of information about

the past actions of the individuals in moral assessment [19], which appears to limit its applica-

bility [20]. Furthermore, the dichotomy of moral assessment module and action module, com-

monly incorporated in many models of indirect reciprocity, can give rise to severe problems,

when instead of public information, individuals have private information about the reputation

of others [7, 59–62]. In this case, a punishment dilemma can arise: individuals may have differ-

ent beliefs about the reputation of others, and thus, disagree as to what is a justified punish-

ment [5, 59].

In contrast, as I have shown, the introduction of interaction between games circumvents

these problems and leads to a simple dynamical mechanism for the evolution of a set of coop-

eration supporting moral norms. In this regard, in a strategically complex context, it is not

necessary to define good and bad a priori to the dynamics of the system. This avoids the pun-

ishment dilemma when information is private. Nor it is necessary to define different moral

assessment rules [12–14, 17, 18] and search for efficient ones [17–19, 21, 63]. Rather, the

dynamics self-organizes into a symmetry broken cooperative phase where the symmetry

between cooperation and defection breaks. A set of cooperation supporting moral norms

evolves and costly cooperation emerges as a morally valuable or “good” trait due to a purely

dynamical phenomenon and as a result of a symmetry-breaking phase transition.

As our analysis shows, a moral system not only promotes cooperation in a social dilemma,

but it also increases soft strategies which can be considered as a more rational form of coopera-

tive behavior in a second game, a strategic setting which may be a social dilemma (as in the

case of SD) or may not be a social dilemma. By considering three archetypal games, and con-

tinuous variations of the structure of the second game, I have shown this is the case for a broad
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range of strategic settings. In this sense, a moral system not only works to promote coopera-

tion, but it also helps to solve coordination problems and help an efficient allocation of roles

and resources. This finding seems to conform to many stylized facts about moral systems. For

instance, while some moral values encourage self-sacrificing and other-regarding behavior [7,

46, 64], many other aspects of moral systems do not seem to go against individuals’ self-inter-

est, but encourage mutually beneficial behaviors, such as mutualistic cooperation [46–50], or

conflict resolution [47, 49]. Fairness, loyalty, courage, respecting others, cherishing friendship,

working together, and deferring to superiors are examples of such mutualistic moral values.

Based on these observations, it is suggested promoting mutually beneficial behavior can pro-

vide yet another explanation for the evolution of morality [48–50]. Importantly, in our model,

this second role is what makes a moral system evolvable based solely on the individuals’

self-interest. In other words, the positive role of a moral system in bringing order and organi-

zation is beneficial at both the individual and group levels. This makes adherence to a moral

system beneficial on an individual level and helps its evolution in a simple dynamical way.

Interestingly, this aspect of a moral system acts like a Trojan Horse: Once established due to its

organizing role, it also suppresses anti-social behavior and promotes cooperation and self-

sacrifice.

Another aspect of the theory developed here is that the cost of cooperation can be consid-

ered as a cost paid by individuals to reach a high moral status to benefit from favorable

encounters in interactions that do not involve a strict social dilemma. Interestingly, the model

shows that the stronger the social dilemma and the higher the cost of cooperation, a stronger

set of cooperation supporting moral norms emerges, as the likelihood that cooperators receive

a favorable encounter in the game B increases with increasing the strength of the social

dilemma (see Fig G in S1 Text for a mixed population, and Fig T in S1 Text for a structured

population). Although this may not fully compensate for the higher cost of cooperation coop-

erators pay in stronger dilemmas, it partly alleviates cooperators’ loss of payoff and helps the

evolution of cooperation when the cost of cooperation is high.

Some empirical evidence has shown that costly cooperative traits can give cooperators an

advantage over a diverse set of strategic contexts, such as coordination, partner choice, and

conflict resolution [23–25, 65]. The prevalent theoretical understanding of these contexts, in

the framework of costly signaling theory, is that the costly cooperative traits can function as an

honest signal of quality based on which cooperators might receive more favorable interactions

[24, 65]. More recently, an alternative theory has pointed out a simple dynamical phenomenon

resulting from the density-dependent selection that can explain why cooperative traits can

bring more favorable strategic responses [41]. This theory shows that the very fact that a trait is

costly can lead to its scarcity, which in turn can lead to the evolution of favorable strategic

responses, as such strategies do not impose a high cost on their bearer. A similar density-

dependent selection can give rise to the evolution of cooperation in costly public goods [45],

or consistent cooperative personalities in multistage public goods [66]. The models studied

here show that a similar dynamical phenomenon can underlie the evolution of moral norms in

complex strategic settings. This is the case because strategies that play softly with cooperators

do not impose a high cost on their bearers due to the scarcity of costly cooperative traits. This

can lead to the evolution of social norms that favor cooperative behavior over diverse issues

such as conflict resolution and coordination. Counter-intuitively, once such cooperation-

favoring norms evolve, the dynamics can get fixated in a cooperative state where the very tenet

underlying the virtue of cooperative traits, their scarcity, get lost in a cooperative fest. This the-

ory thus can provide an alternative explanation for the prevalence of cooperation-favoring

norms in human societies, usually looked at through the lens of costly signaling theory.
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The density-dependent selection underlying the evolution of moral norms has a surprising

consequence: harmful social norms are just as likely to evolve as socially beneficial ones. A

large body of empirical evidence has documented the existence of harmful social norms [67,

68]. Such harmful norms abound in cultures of honor, ranging from honor killing [67, 69], to

pious and harmful cultural practices [68] and irrational and severe punishment [70, 71]. Ineffi-

cient gift-giving is suggested as another example of such bad social norms involving a collective

loss [71]. While it is argued that reputation and reciprocity play an important role in the evolu-

tion of such harmful norms [67, 72], given their collective cost, the evolution and persistence of

such harmful norms seem a puzzle. Our theory provides a simple explanation for the evolution

of such detrimental norms: the cost of norms, not their benefit, determines their evolution. In

other words, moral norms need to be costly for the individual but not necessarily beneficial for

the group. This fact can give rise to bad norms which incur a collective cost. Surprisingly, such

costly norms are just as effective as socially beneficial norms in promoting order and organiza-

tion, and this phenomenon underlies their evolvability within the framework developed here.

According to this viewpoint, the key to the puzzle of the evolution of harmful social norms

does not rely on their potential advantage. Instead, their evolution is a consequence of the evo-

lutionary process underlying the evolution of moral systems. Intuitively, costly traits provide a

density-dependent mechanism for coordination and more efficient allocation of resources, and

this fact underlies the evolution of norms that prescribe differing to such costly traits. This,

counter-intuitively, can lead to an equilibrium state that costly traits are neither costly nor rare

anymore because of the payoff they accrue due to favorable strategic responses. This frame-

work appears to explain why many moral systems incorporate both socially beneficial and

harmful but often individually costly elements. Furthermore, the positive role that our theory

suggests that costly norms play in bringing order and organization appears to conform to the

fact that culture of honors often originate and persist in law-less environments and play a cru-

cial role in stabilizing societies in the absence of law-enforcement organizations.

Methods

The replicator-mutator dynamics

The model can be solved in terms of the discrete-time replicator-mutator equation, which

reads as follows:

rxðt þ 1Þ ¼
X

y

nx;yryðtÞ
py

�p
: ð1Þ

Here, ρx is the density of strategy x, πy is the expected payoff of strategy y, �p is the mean pay-

off, and νx,y is the mutation rate from strategy y to the strategy x. This can be written as:

ny;x ¼
1 � n if y ¼ x;

n=7 if y 6¼ x:

(

ð2Þ

The payoff of an strategy can be written as follows. First I define:

rC;uðCÞ ¼ rCuu þ rCud; rC;dðCÞ ¼ rCdu þ rCdd;

rC;uðDÞ ¼ rCuu þ rCdu; rC;dðDÞ ¼ rCud þ rCdd;

rD;uðCÞ ¼ rDuu þ rDud; rD;dðCÞ ¼ rDdu þ rDdd;

rD;uðDÞ ¼ rDuu þ rDdu; rD;dðDÞ ¼ rDud þ rDdd:

ð3Þ
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Here, the first letter in the indices shows the strategy in the PD, and s(C) (s(D)), is the strat-

egy in the second game against a cooperator (defector). That is, for example, ρC,u(C) is the den-

sity of those individuals who cooperate in the PD and play the up strategy with cooperators.

Besides, in the following, I use ρC and ρD for the total density of those individuals who, respec-

tively, cooperate and defect in the PD. That is, ρC = ρCuu + ρCud + ρCdu + ρCdd and ρD = ρDuu +

ρDud + ρDdu + ρDdd.
Given these definitions, the payoffs of different strategies, in the first model can be written

as follows:

pCuu ¼ rCRþ rDSþ rC;uðCÞPB þ rD;uðCÞPB þ rC;dðCÞTB þ rD;dðCÞTB;

pCud ¼ rCRþ rDSþ rC;uðCÞPB þ rD;uðCÞSB þ rC;dðCÞTB þ rD;dðCÞRB;

pCdu ¼ rCRþ rDSþ rC;uðCÞSB þ rD;uðCÞPB þ rC;dðCÞRB þ rD;dðCÞTB;

pCdd ¼ rCRþ rDSþ rC;uðCÞSB þ rD;uðCÞSB þ rC;dðCÞRB þ rD;dðCÞRB;

pDuu ¼ rCT þ rDP þ rC;uðDÞPB þ rD;uðDÞPB þ rC;dðDÞTB þ rD;dðDÞTB;

pDud ¼ rCT þ rDP þ rC;uðDÞSB þ rD;uðDÞSB þ rC;dðDÞRB þ rD;dðDÞRB;

pDdu ¼ rCT þ rDP þ rC;uðDÞPB þ rD;uðDÞPB þ rC;dðDÞTB þ rD;dðDÞTB;

pDdd ¼ rCT þ rDP þ rC;uðDÞSB þ rD;uðDÞSB þ rC;dðDÞRB þ rD;dðDÞRB:

ð4Þ

Here the first two terms in each expression are the payoffs from the PD, and the last four

terms are the payoff from game B. The validity of these expressions can be checked by enumer-

ating all the possible strategies that a focal individual can play with. For example, the third

term in the expression for πCuu can be written by noting that a focal Cuu player, meets an indi-

vidual of type C, u(C) with probability ρC,u(C). In this interaction, the focal individual plays u
and the opponent plays u, leading to a payoff of PB for the focal individual. Using similar argu-

ments, it is possible to drive expressions for the payoff of different strategies in the reputation-

based model. See the Supporting Information Text, S. 2 for details.

Mixed strategy Nash equilibria

Cooperative mixed strategy Nash equilibria when game B is a coordination game. A

mixed strategy is a set of probabilities, {xCuu, .., xDdd}, such that a strategy i is played with proba-

bility xi. The support of a mixed strategy is the set of all strategies which are played with nonzero

probability. A mixed strategy Nash equilibrium is defined as a set of two mixed strategies, (s, s0)
in which each strategy is the best response to the other strategy: s = BR(s0) and s0 = BR(s) [73].

This condition is achieved for a mixed strategy s if the payoff of all the strategies in the support

of a mixed strategy is the same, and no other strategy outside of the support gives a higher pay-

off against the mixed strategy [73]. The first criteria can be satisfied by solving a set of linear

equations to achieve indifference of each player over the support of their mixed strategy. To see

this, consider the mixed strategy corresponding to the cooperative fixed point I of the evolution-

ary dynamics when game B is the Stag Hunt game. The expected payoff of the strategy Cdd
against a mixed strategy, (xCdd, cDdu) is (R + RB)xCdd + (S + RB)xDdu and the expected payoff of

Ddu is equal to (T + RB)xCdd + (P + SB)xDdu. Equaling these payoffs and setting the normaliza-

tion condition, xCdd + xDdu = 1, gives a set of two equations which can be solved to give:

xCdd ¼
P � RB � Sþ SB

P þ R � RB � Sþ SB � T
;

xDdu ¼
R � T

P þ R � RB � Sþ SB � T
:

ð5Þ
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It is also easy to check that within the general parametrization of the Stag Hunt game, no

other strategy gives a higher payoff than Cdd and Ddu against this mixed strategy (the highest

payoff outside of the support is reached by Ddd which is equal to that reached by Ddu and Cdd).

Using similar steps, it is possible to derive the mixed strategy corresponding to the fixed

point II of the evolutionary dynamics when game B is a Stag Hunt game as follows:

xCud ¼
P þ PB � RB � S

P þ 2PB þ R � 2RB � S � T
;

xDdu ¼
PB þ R � RB � T

P þ 2PB þ R � 2RB � S � T
:

ð6Þ

Cooperative mixed strategy Nash equilibria when game B is an anti-coordination

game. The mixed strategy Nash equilibria corresponding to the cooperative fixed point of

the evolutionary dynamics when game B is an anti-coordination game involves the strategies

Cuu, Cdu, Ddu, and Ddd, and can be derived using similar steps. Using the helping game ver-

sion of the Prisoner’s dilemma, this mixed strategy is given by the following expression:

xCuu ¼
ðRB � TBÞðcPB þ cRB þ PBRB � cSB � ðcþ PB þ RBÞTB þ T2

BÞ

ðPB þ RB � SB � TBÞðS2
B þ PBð2RB � SB � TBÞ þ T2

B � RBðSB þ TBÞÞ
;

xCdu ¼
ðPB � SBÞðcPB þ cRB þ PBRB � cSB � ðcþ PB þ RBÞTB þ T2

BÞ

ðPB þ RB � SB � TBÞðS2
B þ PBð2RB � SB � TBÞ þ T2

B � RBðSB þ TBÞÞ
;

xDdu ¼
ðTB � RBÞ½ðPB � SBÞð� RB þ SBÞ þ cðPB þ RB � SB � TBÞ�

ðPB þ RB � SB � TBÞðS2
B þ PBð2RB � SB � TBÞ þ T2

B � RBðSB þ TBÞÞÞ
;

xDdd ¼
ðSB � PBÞ½ðPB � SBÞð� RB þ SBÞ þ cðPB þ RB � SB � TBÞ�

ðPB þ RB � SB � TBÞðS2
B þ PBð2RB � SB � TBÞ þ T2

B � RBðSB þ TBÞÞ
:

ð7Þ

These expressions describe the cooperative fixed point of the evolutionary dynamics for all

the three games belonging to the anti-coordination class considered. Using the general formu-

lation of the Prisoner’s Dilemma, it turns out that the fixed point only depends on two combi-

nations, T − R and P − S, which are equal to the cost of cooperation in the Helping game

version of the Prisoner’s dilemma. This implies that the condition for the evolution of coopera-

tion only depends on the parameters of the Prisoner’s dilemma through the cost of

cooperation.

Fully cooperative mixed strategy Nash equilibrium. As we have seen, when game B is a

Snow Drift game, for small cost of cooperation, the evolutionary dynamics of the two-stage

game has a fully cooperative fixed point which is composed only of the cooperative strategies.

This fixed point corresponds to a fully cooperative mixed strategy Nash equilibrium. To derive

this equilibrium, consider the mixed strategy defined by the probabilities, xCuu, xCud, xCdu,

xCdd, and zero probability of playing the defective strategies. The expected payoff of Cuu and

Cud is equal to xCuu(R + PB) + xCud(R + PB) + xCdu(R + TB) + xCdd(R + TB) and the expected

payoffs of Cdu and Cdd is equal to xCuu(R + SB) + xCud(R + SB)+ xCdu(R + RB)+ xCdd(R + RB).

Equating these payoffs, subject to the normalization condition xCuu + xCdu + xCud + xCdd = 1,

we derive for the probabilities:

xCuu ¼
RB � TB

PB þ RB � SB � TB
� xCud;

xCdu ¼
PB � SB

PB þ RB � SB � TB
� xCdd:

ð8Þ
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For this strategy profile to be a Nash equilibrium, the payoff of the strategies in the support

should be at least as high as the payoff of the all the strategies outside the support of the mixed

strategy. The payoffs of Duu and Dud strategies against this mixed strategy equals xCuu(T + SB)

+ xCud(T + TB) + xCdu(T + PB) + xCdd(T + TB), and the payoffs of Ddu and Ddd equals xCuu(T +

SB) + xCud(T + RB) + xCdu(T + SB) + xCdd(T + RB). The payoff of all the strategies in the support,

which are now equalized using Eq 8, is equal to
RB � TB

PBþRB � SB � TB
ðRþ PBÞ þ

RB � TB
PBþRB � SB � TB

ðRþ TBÞ.

Requiring the payoffs of the defective strategies to be larger than this value,

xCuuðT þ SBÞ þ xCudðT þ TBÞ þ xCduðT þ PBÞ þ xCddðT þ TBÞ �

RB � TB

PB þ RB � SB � TB
ðRþ PBÞ þ

RB � TB

PB þ RB � SB � TB
ðRþ TBÞ;

xCuuðT þ SBÞ þ xCudðT þ RBÞ þ xCduðT þ SBÞ þ xCddðT þ RBÞ �

RB � TB

PB þ RB � SB � TB
ðRþ PBÞ þ

RB � TB

PB þ RB � SB � TB
ðRþ TBÞ;

ð9Þ

subject to Eq 8, and using the payoff values of the Snow Drift game, we arrive at the condition:

xCud þ xCdu < 1=3 � c=2: ð10Þ

Eqs 8 and 10 define a set of two equations that give infinitely many fully cooperative mixed

strategy Nash equilibria. By using Eq 10, it can be seen that such fully cooperative mixed strat-

egy Nash equilibria exist only if the cost of cooperation is smaller than 2/3, which agrees with

the results from the replicator-mutator dynamics presented in Fig 4. It is possible to derive

conditional expressions for the existence of a fully cooperative Nash equilibrium for a general

form of the game B belonging to the anti-coordination class. By using such expressions, it is

possible to show that no fully cooperative mixed strategy Nash equilibrium exists when the

game B is the leader or the Battle of the Sexes, given by the payoff values presented in Table 1.

Simulations and numerical solutions

Numerical solutions result from numerically solving the replicator-mutator dynamics. Simula-

tions are performed based on the model definition. Matlab codes used in simulations and

numerical solutions are given in the Supporting Information Text, S. 9. The base payoff values

used in this study (unless otherwise stated) are presented in Table 1. See Supporting Informa-

tion Text for more details on simulations and analytical calculation.

Supporting information

S1 Text. Supporting information text. Overview of the models, details of methods and fur-

ther analysis of the models.

(PDF)

S1 Video. Supplementary Video 1. Illustration of the dynamics of the model in a structured

population for the interaction of the Prisoner’s Dilemma and the snow drift game.

(AVI)

S2 Video. Supplementary Video 2. Illustration of the dynamics of the model in a structured

population for the interaction of the Prisoner’s Dilemma and the Battle of the Sexes.

(AVI)

PLOS COMPUTATIONAL BIOLOGY Interaction between games give rise to the evolution of moral norms of cooperation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010429 September 29, 2022 31 / 35

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010429.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010429.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010429.s003
https://doi.org/10.1371/journal.pcbi.1010429


S3 Video. Supplementary Video 3. Illustration of the dynamics of the model in a structured
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48. Baumard N, André JB, Sperber D. A mutualistic approach to morality: The evolution of fairness by part-

ner choice. Behavioral and Brain Sciences. 2013 Feb; 36(1):59–78. https://doi.org/10.1017/

S0140525X12000672 PMID: 23445574

49. Curry OS. Morality as cooperation: A problem-centred approach. InThe evolution of morality 2016

(pp. 27-51). Springer, Cham.

50. Curry OS, Mullins DA, Whitehouse H. Is it good to cooperate? Testing the theory of morality-as-cooper-

ation in 60 societies. Current Anthropology. 2019 Feb 1; 60(1):47–69. https://doi.org/10.1086/701478

51. Hauert C, Doebeli M. Spatial structure often inhibits the evolution of cooperation in the snowdrift game.

Nature. 2004 Apr; 428(6983):643–6. https://doi.org/10.1038/nature02360 PMID: 15074318

52. Salahshour M. Phase diagram and optimal information use in a collective sensing system. Physical

review letters. 2019 Aug 6; 123(6):068101. https://doi.org/10.1103/PhysRevLett.123.068101 PMID:

31491131

53. Wiesenfeld K, Moss F. Stochastic resonance and the benefits of noise: from ice ages to crayfish and

SQUIDs. Nature. 1995 Jan; 373(6509):33–6. https://doi.org/10.1038/373033a0 PMID: 7800036

54. Zhang H. Errors can increase cooperation in finite populations. Games and Economic Behavior. 2018

Jan 1; 107:203–19. https://doi.org/10.1016/j.geb.2017.10.023

55. Ackermann M, Stecher B, Freed NE, Songhet P, Hardt WD, Doebeli M. Self-destructive cooperation

mediated by phenotypic noise. Nature. 2008 Aug; 454(7207):987–90. https://doi.org/10.1038/

nature07067 PMID: 18719588
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