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ABSTRACT Experimental evidence shows that synonymous mutations can have important consequences
on genetic fitness. Many organisms display codon usage bias (CUB), where synonymous codons that are
translated into the same amino acid appear with distinct frequency. Within genomes, CUB is thought to
arise from selection for translational efficiency and accuracy, termed the translational efficiency hypothesis
(TEH). Indeed, CUB indices correlate with protein expression levels, which is widely interpreted as evidence
for translational selection. However, these tests neglect -1 programmed ribosomal frameshifting (-1 PRF), an
important translational disruption effect found across all organisms of the tree of life. Genes that contain -1
PRF signals should cost more to express than genes without. Thus, CUB indices that do not consider -1 PRF
may overestimate genes' true adaptation to translational efficiency and accuracy constraints. Here, we first
investigate whether -1 PRF signals do indeed carry such translational cost. We then propose two corrections
for CUB indices for genes containing -1 PRF signals. We retest the TEH in Saccharomyces cerevisiae under
these corrections. We find that the correlation between corrected CUB index and protein expression
remains intact for most levels of uniform -1 PRF efficiencies, and tends to increase when these efficiencies
decline with protein expression. We conclude that the TEH is strengthened and that -1 PRF events consti-
tute a promising and useful tool to examine the relationships between CUB and selection for translation
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efficiency and accuracy.

Across an organism’s genome, among those codons that decode for the
same amino acids (codon families) some are used preferentially over
others (Sharp and Li 1986) (reviews in (Hershberg and Petrov 2008;
Plotkin and Kudla 2011)). The variation of this codon usage bias (CUB)
within organisms’” genomes is mainly explained by selection for trans-
lation efficiency by protein expression demands -the translation
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efficiency hypothesis (TEH) (Hershberg and Petrov 2008; Plotkin
and Kudla 2011).

The main support for the TEH stems from two separate lines of
evidence that concern associations between CUB and tRNA abun-
dances and CUB and protein expression, respectively (Plotkin and
Kudla 2011). In the first line, studies revealed that the most frequently
used codons -so called preferred codons (Hershberg and Petrov
2008)- typically match the most abundant iso-accepting tRNA in
both Escherichia coli (Ikemura 1985; Yamao et al. 1991) and Saccha-
romyces cerevisiae (Ikemura 1985). Similar conclusions were drawn
for a number of additional species (Kanaya et al. 1999, 2001), but
using tRNA gene copy numbers as proxies for tRNA abundances. The
assumption here was that tRNA gene copy numbers and tRNA abun-
dances correlate, as is the case in E. coli and yeast (Ikemura, 1981,
1982). Further studies suggest that employing these more abundant
tRNAs in translation provides efficiency (Tuller ef al. 2010) as well as
accuracy gains (at least for E. coli (Stoletzki and Eyre-Walker 2007;
Varenne et al. 1984) and Drosophila melanogaster (Akashi 1994)).
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Furthermore, exchanging preferred codons in highly expressed genes by
non-preferred had strong effects on gene expression (Carlini and Stephan
2003; Carlini 2004). If valid, these two mechanisms together imply that
the disproportionately frequent usage of such preferred codons in an
mRNA sequence is indicative of high translational efficiency.

The second line of evidence concerns the existence of associations
between CUB and protein expression (Ghaemmaghami et al. 2003;
Jansen et al. 2003; Kliman et al. 2003; Roth et al. 2012; Quax et al.
2015). High protein expression demands are assumed to generate a
selective pressure for translation efficiency (Hershberg and Petrov
2008; Chamary et al. 2006; Duret 2002). Given the mechanisms of
the first line of evidence, these efficiency increases could be provided
by synonymous mutations that alter codon usage frequencies toward
preferred codons (Hershberg and Petrov, 2008, 2009). Taken together
with the first line of evidence, these associations suggest that protein
expression is also associated with translation efficiency, completing the
support of TEH.

The test of TEH by detection of CUB-protein expression association
does therefore not rely on a direct comparison between translation
efficiency and protein expression. Instead, CUB indices serve as a
measure for adaptation due to translational selection and thus as a
proxy for translational efficiency (Roth et al. 2012). CUB indices are
computed from a given mRNA sequence. Thus, the test of the TEH by
CUB-protein expression association hinges on the assumption that the
CUB index of an analyzed mRNA appropriately reflects its translational
efficiency.

The phenomenon of programmed ribosomal frameshifting (PRF)
(Jacks and Varmus 1985; Craigen et al 1985; Clare et al. 1988;
Caliskan et al. 2015; Dinman, 2006, 2012b, 2012a) indicates that the
validity of that assumption may not always be warranted. Programmed
ribosomal frameshifting is a process by which ribosomal translation of
an mRNA sequence is induced to stall at specific sites, termed slippery
sites, which leads to a rearrangement of the ribosome on the mRNA
sequence (Plant and Dinman 2006; Caliskan et al. 2015). Translation
then proceeds in a new frame that is shifted relative to the original open
reading frame (ORF) (Belew and Dinman 2015). This mechanism
emerges in all domains of the tree of life (Cobucci-Ponzano et al.
2012; Baranov et al. 2015; Caliskan et al. 2014; Dinman, 2012b). Here,
we focus on events that shift ribosomes one nucleotide back in the
translational direction, termed -1 PRF (Caliskan et al. 2015; Advani
and Dinman 2016), further restricting ourselves to yeast.

The function of -1 PRF differs across organisms. In viruses, -1 PRF is
predominantly employed to package more information into available
sequence material. By opening a new reading frame, the -1 PRF
mechanism allows for dual coding. This function is exemplified in
the gag-pol gene overlap appearing in many retroviruses (Jacks and
Varmus 1985), in particular human immunodeficiency virus (HIV)
(Brierley and Dos Ramos 2006). In these viruses, the appropriate pro-
portion of gag vs. pol protein expression is regulated by a -1 PRF signal
(Maia et al. 1996; Dulude et al. 2006; Brierley and Dos Ramos 2006). In
eukaryotes, -1 PRF is predominantly ( > 99%) used for gene expression
regulation (Plant et al. 2004; Advani and Dinman 2016). About 10% of
genes in yeast are hypothesized to contain functional slippery sites
(Belew et al. 2008). Ribosomes redirected to -1 shifted frames majorly
encounter premature termination codons (PTC), that is, stop codons
that appear well before the poly-A tails of mRNA sequences (Advani
and Dinman 2016). This typically triggers the activation of the non-
sense-mediated decay (NMD) pathway (Chang et al. 2007). The NMD
pathway induces the degradation of both the mRNA, as well as of the
partly assembled protein, while leaving the ribosome intact (Advani
and Dinman 2016). Thus, -1 PRF acts as an NMD-mediated
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destabilizing element of mRNA (Belew et al 2011, 2014; Advani
et al. 2013). -1 PREF efficiency appears to be controlled by sequence
specific elements, such as miRNA (Belew et al. 2014), but can be uni-
formly affected across all PRF-harboring genes by mutations as well as
drugs (Advani et al. 2013).

The reason why CUB may not appropriately reflect translation
efficiency for genes containing -1 PRF signals, is because -1 PREF is
likely to conceal costs to translation. When a -1 PRF signal redirects a
fraction of the mRNA-translating ribosomes to premature termination
(Dinman, 2012b; Advani and Dinman 2016), a translation efficiency
cost is incurred that is not reflected in the sequence’s CUB index.

In this study, we retest the CUB-protein expression association that
lends major support for the TEH while accounting for the -1 PRF
phenomenon. We draw from PRFdb, a database of predicted -1 PRF
signals in the Saccharomyce cerevisiae genome (Belew et al. 2008). First,
we devise a series of hypotheses for how -1 PRF signals are influenced
by evolutionary pressures. In accordance with our hypotheses, we find
evidence for the existence of a cost of -1 PRF mechanism maintenance.
Second, we devise general corrections for any codon usage bias index of
mRNA containing -1 PRF signals. We use sequences from PRFdb to
compute the new, corrected codon bias indices, and compare them to
uncorrected values. We find that the TEH is robust against these cor-
rections and strengthened under biologically plausible assumptions of a
-1 PRF dependency on protein expression. We conclude that the -1
PRE signals offer untapped potential to analyze translation efficiency in
mRNA.

MATERIALS AND METHODS

Slippery site data

We obtained a dataset of the Saccharomyces cerevisiae S288C strain
genes with predicted -1 PRF events from the Programmed Ribosomal
Frameshifting database (PRFdb) of the University of Maryland (Belew
et al. 2008). These putatitve -1 PRF signals were identified using first a
filter for slippery site identification, and subsequent detection of mRNA
pseudoknots by means of the Nupack algorithm (Dirks and Pierce
2004). For a slippery site to be found, a confluence of signals in mRNA
is required. First, a site must match the pattern (X XXY YYZ), where X
is some base, Y is either A or U, and Z is A, C or U. Second, a spacer
sequence of a minimum of 8 nucleotides in length needs to exist be-
tween the slippery site and the following pseudoknot. Third, a pseu-
doknot predicted by minimum free energy values of the mRNA
secondary structure is expected downstream the slippery site. The
dataset also included a full list of gene annotations, accession numbers,
the relative position of the slippery sites within the gene in which they
were found, as well as the gene mRNA. For each slippery site, we
computed were premature stop codons first appear downstream. With
this, we computed the frameshifted sequences.

Protein expression and mRNA level data

We obtained protein expression as well as mRNA level data from the
Supporting Information of (von der Haar 2008). Von der Haar has
produced an extensive curated data set that merges data from various
sources. For protein expression, the data include the seminal studies of
Ghaemmaghami et al. (Ghaemmaghami et al. 2003), Newman et al.
(Newman et al. 2006), and Lu et al. (Lu et al. 2007). Additional data
stems from 46 further studies, specified in (von der Haar 2008). To
ensure comparability, only studies were included in which yeast was
grown in rich medium. Transcriptome data for mRNA levels were
obtained from (Holstege et al. 1998; Arava et al. 2003; Holland 2002;
Jelinsky and Samson 1999; Roth et al. 1998). These data include about
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6000 genes. The construction of the curated data set is described in
detail in (von der Haar 2008).

Indices for codon usage bias

Many indices have been proposed to assess the degree of codon usage
bias present in a gien mRNA sequence. Here, we focus on the codon
adaptation index (CAI) (Sharp and Li 1987; Carbone et al. 2003). In the
following, we give the implemented definition of the CAI. Let L be the
length of the mRNA sequence in codons, ¢ is the index of the synon-
ymous codons decoding the same amino acid g, and o, is the observed
count of the synonymous codon ¢ of amino acid a in the sequence. C, is
the index set of all codons within an amino acid a. A is the index set of
all amino acids a. We define

Oqc

Z oac’

ceC,

1

Wge =

as the relative adaptiveness of codon ac within amino acid a of a given
mRNA sequence.
Then, the codon adaptation index is defined as

1
CAInrNA = I Z ZOucln (“’Zecf) )

acAceC,

@

where o0, is measured on the observed on the mRNA of interest, and
@' is taken from a reference sequence of highly expressed genes. For
the reference sequence, we concatenated all of the mRNA of ribo-
somal genes (Friberg et al. 2004). The ribosomal genes were taken
from the ribosomal gene database http://ribosome.med.miyazaki-u.

ac.jp/ (Nakao et al. 2004).

Data Availability

The code used for analysis of the data are available on Figshare
(doi: 10.6084/m9.figshare.5955886; url: https://figshare.com/
s/ff89f9e614b129469fd4). Supplemental material available at
Figshare: https://doi.org/10.6084/m9.figshare.6970277.

RESULTS

The cost of -1 PRF maintenance

Effective -1 PRF events classically comprise three constitutive ele-
ments. The first element is a heptameric sequence —the slippery site—
(Jacks and Varmus 1985; Plant et al. 2004). This site has the struc-
ture (X XXY YYZ), where X can be any base (A,C,G,U), Y is either A
or U, and lastly, Z is either A, C or U (Plant et al. 2004; Plant and
Dinman 2006; Ketteler 2012). The second element is a spacer se-
quence, separating the slippery site from the third element (Dinman,
2012b). The spacer sequence typically comprises around 1-12 nu-
cleotides (Ketteler 2012; Dinman, 2012a). The third element is a
pseudoknot, an mRNA secondary structure that is thought to gen-
erate a mechanical tension on the spacer sequence when the slippery
site is being translated (Ketteler 2012; Dinman, 2012b, a). To release
the tension, the ribosome, while stalling at the slippery site, is pushed
one nucleotide back (Dinman, 2012b; Caliskan et al. 2015; Ketteler
2012). The frequency with which the ribosome is redirected to the -1
frame is called -1 PRF efficiency (Advani et al. 2013; Advani and
Dinman 2016).

These criteria were used to generate an extensive database of -1
PREF signals, PRFdb, of the yeast genome by algorithmic search (see
Materials and Methods). If PREdb comprises a sufficiently large set of
functional slippery sites, the effects of putative -1 PRF induced costs
to translation efficiency should be detectable.

-=.G3:Genes| Genomes | Genetics
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Figure 1 Notation for -1 PRF signals. A) The mRNA sequence in which
a -1 PRF signal does not lead to ribosomal frameshifting is termed x
(green). Arrows indicate the distances in nucleotides. B) The mRNA
sequence with -1 PRF is termed x'. This is the concatenation of the
mRNA x until the slippery site (green), and the -1 frame after the
slippery site until a premature termination codon is encountered
(violet).

To this end, we devised three hypotheses. We derive these hypotheses
from the assumption that the maintenance of -1 PRF signals carries an
intrinsic cost to the organism. Furthermore, we assume that mutations
that alter CUB are accumulated more slowly than mutations that alter -1
PRE efficiency, p. This is because the -1 PRF regulation mechanism is
very likely to be affected by only a few mutations, whereas several
mutations would be needed to significantly modify CUB. Hence, most
short-term changes in protein expression demand in genes with slip-
pery sites are more likely absorbed by -1 PRF.

We first introduce a framework to formulate these hypotheses (see
Figure 1). Let L be the length (in nucleotides) of an mRNA sequence x.
A single slippery site is located at site [ of x, downstream from the start.
Ribosomes are redirected to the -1 frame with probability p, the -1 PRF
efficiency. They continue with the mRNA’s translation until encoun-
tering a premature termination codon (PTC) at a distance A post
slippery site.

In a first hypothesis, we formed expectations about how the number
of slippery sites per gene should vary with the ratio of protein expression
to mRNA levels per cell. This ratio has been used as a measure for
translation efficiency in past studies (Tuller et al. 2010). To formulate
the first hypothesis, we conduct a thought experiment. Let us assume
that an organism’s environmental conditions favor lower expression of
a protein from a -1 PRF-gene. Then, increasing the average p in that
gene will adapt the organism to the new conditions. Conversely, if such
environmental changes demanded higher protein expression, genes
containing -1 PRF signals may adapt by reducing p. If protein demands
exceed the production capacity of a gene with very small p, the -1 PRF
mechanism may offer only costs, but no benefits from protein regula-
tion. Then, mutations that remove the heptameric slippery site signa-
ture will be selected for. Taken together, these effects imply an
asymmetry in the probability of slippery site loss depending on the
direction of protein demand changes. Losses of slippery sites are likelier
when protein demands increase than when they decrease. -1 PRF sig-
nals should thus become rarer with increasing protein expression levels.

The second hypothesis states that the costs of -1 PRF maintenance
are reduced as slippery sites approach the 5" end or start of the mRNA.
Every time ribosomes slip through -1 PRF, the energy of translating

Volume 8 October 2018 | -1 PRF and codon usage bias | 3175


http://ribosome.med.miyazaki-u.ac.jp/
http://ribosome.med.miyazaki-u.ac.jp/
https://figshare.com/s/ff89f9e614b129469fd4
https://figshare.com/s/ff89f9e614b129469fd4
https://doi.org/10.6084/m9.figshare.6970277

0.010 1.0
3000

0.008 r:-0.08743 slope: -0.00022

o
@

o : : 2500 e
e p-val: 1.323E-07 p-val: 1.108E-05 5
3 c
3 £
= H
E ] 2000 3
5 0.006 ‘ %06
= ' > Fal
g g g
L 5 &
& g 1500 g
3 E k-]
& c
£ 0.004 § 04
B 8
5 1000 .
:
8 %

0.002 o2

500
mean: 0.4724 +/-0.0042
Ty *
0.000 5 3 0.0 e o ML
LT S T S T T R bo 02 04 0.6 08 10 1 10" 10" 10t 10" 10" 10

relative slippery site position

protein expression [molecules/cell/mRNA level [molecules/cell] protein expression [molecules/cell]

Figure 2 Testing the cost of -1 PRF mechanism maintenance. A) Number of slippery sites —identified by relying on Nupack algorithm for pseudoknot
detection (Dirks and Pierce 2004)- per gene and per nucleotide across protein expression levels per mRNA level for genes from the von der Haar
data set (von der Haar 2008). The red dotted line is the average number of slippery sites per gene. The blue line is a regression line through the
data set. The text in the panels gives i) the Spearman correlation coefficient r and the p-value for the null-hypothesis that the correlation is zero
and ii) the slope of the line and the p-value of the t-test for a non-zero slope value. B) The frequency distribution of the within-gene positions of the
slippery sites, relative to the length of the gene, I/L. To ensure comparability, only genes from the von der Haar data set are considered. The
mean of the distribution, as well as its 95% confidence intervals, are smaller than 0.5 -the expectation in the absence of selective pressure.
C) Slippery site positions relative to gene length across protein expression levels in the von der Haar data set. The red line is the average slippery
site position (computed across 20 bins of equal width in logarithmic scale) and the widgets are the uncertainty (=1.96 standard error of the mean)
around the average estimate. Averages with large uncertainties are in violet. Analogously to A), a regression line with the corresponding
correlation coefficient r (with p-value) and slope (with p-value) are added.

a stretch of length / + A of mRNA is wasted for protein production.
Since A is roughly constant across within-gene sites (see Fig. S1), the
cost to translational efficiency incurred from -1 PRF should depend on
I. Therefore, diminishing ! will minimize cost. Thus, the distribution of
slippery site positions relative to the gene length should be skewed
toward mRNA starts, that is, small [ values.

This effect is expected to be weaker than the effect in the first
hypothesis. In the first hypothesis, if protein demands exceed yields
generated by a gene and p is small, a fitness cost is incurred from i) the
reduction of protein expression, ii) the cost of NMD-mediated mRNA
degradation and iii) the cost of unnecessary translation of frameshifted
mRNA sequences. Displacing the slippery site would only reduce the
latter cost. Thus, we expect the signal for this hypothesis to be weaker
than for the first hypothesis.

The third hypothesis states that a skew in the distribution of the
location of the slippery site within a gene (relative to that gene’s length)
should also become more pronounced with higher expression levels.
This is because for fixed p, increasing expression levels should mirror an
increase in -1 PRF induced translation costs. Thus, the benefits of
slippery sites closer to translation-initiation positions should increase
with expression levels. As in the second hypothesis, selection for such
an effect is likely to be very weak compared to effects in the first
hypothesis.

Figure 2 shows the results of testing all three hypotheses. Figure 2A
shows that -1 PRF signals in genes become rarer with gene expression,
consistent with our first hypothesis. Figure 2B shows that slippery sites
positions are more prevalent in the first half of a gene than in the
second, consistent with our second hypothesis. The frequency of slip-
pery sites diminishes toward both extremes of mRNA sequences, and
more markedly so toward the stop codon of the mRNA. This skew
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persists when including all genes from the PRFdb (see Figure S2).
Figure 2C shows that the average slippery site position is displaced
toward the 5" end of the mRNA as protein expression levels increase
from 102 molecules per cell to 10° molecules per cell. Above 10° mol-
ecules per cell, the uncertainty around the averages becomes large due
to low sample sizes, and unambiguous deductions become impossible.
The decreasing trend in the average I/L with protein expression is
confirmed by a linear regression. Lastly, we retested all of the hypoth-
eses with an alternative integrated data set from PaxDB, and obtained
the same results (see Figure S3).

Thus, with increasing demand for protein production, the data
suggest that production gains will primarily be attained by disposing
of the -1 PRF mechanism present in a gene, rather than minimizing the
cost of faulty translation. We speculate that, most likely, this occurs by
altering the slippery site sequence. The test of the other two hypotheses
involving slippery site displacement (or loss of large-I slippery sites)
provide further evidence for an intrinsic -1 PRF cost to translation. The
selective pressure on this latter adaptive process appears to be weak.

Retesting the translational efficiency hypothesis while
accounting for -1 PRF genes

Since -1 PRF signals carry a translational cost, their presence in an
mRNA sequence changes the meaning of the associated CUB index. In
fact, a slippery site may indicate a mismatch between the CUB index of
that sequence and the actual efficiency with which it is translated (see
Figure 3).

To elucidate this point, consider an mRNA without -1 PRF signal. In
the -1 PREF signal’s absence, the CUB index of a translated mRNA
sequence appropriately reflects how efficiently ribosomes elongate it
in a pre-specified time (see Figure 3A) (Tuller et al. 2010; Stoletzki and
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Eyre-Walker 2007; Akashi 1994). However, given a functional slippery
site in that same mRNA sequence, the interpretation changes (see
Figure 3B). Let us assume an average -1 PRF efficiency p. Then, a
fraction p of the times in which a ribosome is in the process of trans-
lating a specific mRNA4, it will be redirected to another frame by -1 PRF.
This redirection leads to degradation of the mRNA. Thus, the produc-
tion of the same number of proteins will require more energy and time
in the presence of a -1 PRF signal than it would in its absence. However,
traditional CUB indices will give no indication of that process. If
accounted for, -1 PRF must therefore lead to a downward correction
of the mRNA’s translational efficiency and with it, of the associated
CUB index.

Since a substantial fraction of genes may contain -1 PRF signals
(hypothesized to be ~ 10% of genes in yeast (Belew et al. 2008)),
neglecting this effect might introduce considerable biases in CUB index
values. These biases could affect the associations found between CUB
and protein expression (Ghaemmaghami et al. 2003; Jansen et al. 2003;
Kliman et al. 2003; Roth et al. 2012; Quax et al. 2015). To address this
issue, in the following we propose two general corrections for CUB
indices in the presence of -1 PREF signals, and retest the basis for the
TEH stemming from CUB and protein expression correlations.

Codon Usage Bias Index Correction from Translation Efficiency: In
afirst approach, we derive an estimator for a CUB index correction from
basic relationships between CUB indices and translation efficiencies of
an mRNA. In the absence of a -1 PRF signal, the CUB on x will be
measured by some index function I(x). As noted, if a functional -1 PRF
signal is present, I(x) does not account for the translation efficiency loss
due to the unproductive translation of the hybrid sequence x’ (see
Figure 1). We aim to derive a “corrected” index I (x) that more appro-
priately reflects the diminished translation efficiency in the presence of
-1 PRF signals.

To find an expression for I.(x), we begin with the assumption that
there exists a monotonous mapping F that maps the translation effi-
ciency 1(x) of a sequence x (in the absence of -1 PRF) to a codon usage
bias index I: I(x) = F(m(x)). F is a monotonously increasing function,
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2 E(—) +2 E(2)

Codon Usage (=)

tive translation efficiency when accounting for -1 PRF
must be smaller than A). This diminished efficiency
should be reflected by a correction in the codon usage
bias index value.

where increases in translation efficiency are reflected by increases in the
codon usage bias index. Research by Tuller et al. further suggests that F
is concave (Tuller et al. 2010), such that codon usage bias index values
saturate with increasing translation efficiency values. We define trans-
lation efficiency 77(x) classically as an input-output energy ratio. More
specifically, n(x) is the ratio of the total per-protein energy E,(x)
contained in the n(x) synthesized proteins from x to the energy, E;(x),
used for producing those proteins in a sufficiently long time frame At :

n(x)Ep(x)
X) =———"7". (3)

%) ="E00

Here, the energy going into the synthesization machinery, E;(x), does

not contain the expenditure for -1 PRF’s regulatory use. Thus, for a

sequence x that additionally carries a functional slippery site, we have

~ n(x)Ep(x)
T EG) L E() @

ne(x)Ep (%)
Ei.c (x)

(%) = ()

Here, the same number of proteins were produced as when -1 PRF was
not considered, that is, n.(x) = n(x). Since the final proteins are
structurally equivalent to those in the absence of -1 PRF, we also have
Epc(x) = E,(x). However, more energy was expended to produce
these proteins, and therefore E; . (x) = E;(x) + E;(x") > E;(x). Their
synthesization requires at least E;(x). A part of the expended energy
on translation is not implemented in the proteins, but in the trans-
lation of x" and the NMD pathway activation, E;(x"). Thus, it follows
that 7, (x) <m(x).
The corrected usage bias statistic I.(x) is defined as

I(x) = F(n(x)) = F(%)

Since the form of F as well as the values of E,(x), E;(x) and E;(x’) are
either difficult to measure or unknown, we aim to to compute I.(x)
indirectly from I(x). To this end, we separate the translation effi-
ciency 7.(x) into two components:

(©)
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ne(x) = n(x) + Q(x,x"). (6)

Solving for Q(x, x") gives

n(x)Ep(x)  Ei(x')
(Ei(x) + Ei(x")) Ei(x)

Qxx') = — = — @R (xx), (7

where R(x,x") = E;(x")/Ei(x). With this, we have

_ )
Ne(x) = T+ RGex) (8)

Further analysis of the ratio R(x, x") is complicated by the inability to
directly measure E;(x) and E;(x'). To address this issue, we pursue
an approach where the ratio is approximated by information about
the relative one-elongation energies spent translating x and x’. More
specifically, we assume that each time x is translated, an energy
input of T(x) = E;(x)/n(x) is expended per time unit At. The total
number of times translation is initiated on the mRNA sequence,
N(x), is N(x) = n(x)/(1 — p). This is because n(x) corresponds to
the fraction 1 — p of times that an mRNA-elongating ribosome re-
mains in frame. Analogously, the number of times translation is
interrupted by a -1 PRF event is n(x') = N(x)p = n(x)p/1 — p.
Hence, each time the sequence x' is translated, an energy expendi-
ture of T(x") = E;(x")/n(x") is ensued. Note that n(x') does not
correspond to a protein number. The ratio between these two is
approximated by:

T(x')
T(x)

CE(X) (1-p\ _l+A+w
G (50) = ©

which is independent of the number of synthesized proteins n(x).
Here, we have assumed that ratio of the per-run translation energies
expended for the non-frameshifting to the frameshifting scenarios
corresponds roughly to the ratio of the lengths of the translated
sequences x’ to x, respectively. However, there is an extra cost to each
frameshifted mRNA, x’ stemming from NMD-mediated degradation.
This cost is accounted for by ar, which is an unknown fixed cost
associated with each -1 PRF event. 77 is measured in units of equiv-
alents of translation cost per nucleotide.
With (9), we can approximate the R(x, x") :

NLUEE) I+d+m( op
R(x7x) = E() R~ T (l—p)' (10)

With this, we are ready to address the last approximation required to
find an analytical expression for I;(x). Since F is concave, it follows
that F(an) = aF(n) for a € R. Thus, setting a = (1 + R(x,x")) ™",
and using definition (4), we find a lower bound for I.(x):

() = Fin(x) = F( (1 + R(x.x')) " n(x))

= (14 R(x,x')) 1F(n(X))

— i) = (1 + m‘%(%ﬂ)) ey
(11)

The approximation for R(x, x") results in reasonable and useful prop-
erties of 7,(x). More specifically, as p—1 we have that n(x)—0.
This entails that no mRNA is translated into proteins, as expected.
The same follows if 77— 0. The extraction of a from within the
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brackets leads to the undesirable behavior that as p—1 or 7— oo,
we have that I.(x) — 0. Instead, I (x) should approximate some minimal
value I min (x) = F(0).

A major drawback of I, (x) is its reliance on p and 77, which are both
unknown. Typically, p is assumed to lie between 1 — 10%, but may
reach up to 70% (for example the EST2 gene in yeast, (Advani et al.
2013)). In the following, and if not stated otherwise, we assume that
p is constant across all genes. It is unclear how large 7 should be. We
have found no evidence that the value of 7 is dependent on any char-
acteristic of mRNA, such as its length, or codon composition (Chang
et al. 2007; Dinman, 2012b). NMD is an evolutionarily conserved
surveillance pathway (Chang et al. 2007). Its activation may thus differ
in energy expenditure between organisms (indeed, in yeast, NMD does
not require an exon-junction complex, unlike most other eukaryotes).
However, we have found no indication that the energy required to fully
complete the NMD process will substantially vary from mRNA to
mRNA within an organism. Thus, we assume that 7 is uniform across
genes, although we do not know how large it is relative to other energy
inputs. Again, if not stated otherwise, we assume that 7 = 0 in order to
give a conservative estimate of the effects of -1 PRF on the TEH.

Codon Usage Bias Index Correction from Averaging: In a second
approach, we define a correction for a -1 PRF-aware CUB index using a
balancing principle. To this end, we add the CUB index I(x) in success-
ful, non-NMD mediated translations of x and the index I(x") of un-
translated x’, while weighing both with their respective probability of
occurrence:

Ip(x) = (1= p)I(x) +pI(x'). (12)

The corrected index I,(x) is thus the expected value of I when con-
sidering that x is translated a fraction (1 — p) of the time, and x’ is
translated a fraction p of the time. I(x") therefore acts as a penaliza-
tion function. I, may underestimate the extra energy costs to -1 PRF
incurred from the activation of the NMD-mediated degradation
processes, since these are not comprised in I(x’). Similarly to I (x),
the major drawback of the estimator I, (x) is its dependence on p. As
before, we thus evaluate I,(x) for different, plausible values of p to
assess -1 PRF’s effect on the TEH. However, I,(x) has the advantage
that it is also well defined for p = 1.

Reexamining the TEH with corrected CUB indices: Both corrections
I, and I, represent a change in the value of a codon usage bias index
given a -1 PRF efficacy. The models for correcting I presented here do
not relate these measures to protein expression levels, P. They do there-
fore not predict protein expression. Instead, they allow us to reexamine
the association between protein expression and a corrected codon usage
bias index that in part underpins the TEH.

To examine how these corrections affect associations between CUB
and protein expression, we used the widely employed codon adaptation
index (CAI) (Carbone et al. 2003) as an example for a CUB index I. We
then computed both corrected I and I, for different values of p and
for all genes in the von der Haar data set (von der Haar 2008) that
contain -1 PRF signals. For I we also assumed different values of .

A precise computation of I, and I, would require information
about the value of p across genes. Since no such information is avail-
able as of now, we follow two approaches. First, we treat all -1 PRF
sites equally, assuming an equal p value for all, independent of the
protein expression levels P of the genes they are located in. Second, we
assume that p is associated with P, and allow p to slowly decrease with
the P of the gene.
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Figure 4 Corrected and original codon adaptation indices vs. protein expression levels for genes containing algorithmically identified -1 PRF
signals and with known expression levels (von der Haar 2008), assuming p = 0.3 and 7 = 0. A) The original codon adaptation index values of
mRNA sequences x of genes from the (von der Haar 2008) data set are shown as orange, semi-transparent points. The shown genes all contain
algorithmically identified -1 PRF signals. The shape of the relation between CAl and protein expression is similar to that shown in (Ghaemmaghami
et al. 2003) for all genes with known expression levels. Blue, semi-transparent points denote the values of -1 PRF corrected CAl values, I, vs. same
protein expression levels. Regressions between the log,,-protein expression levels and both corrected an original CAl values are shown as orange

and blue lines, respectively. B) is analogous to A) using the corrected CUB index I5.

Figure 4 shows that correcting for the presence of -1 PRF signals
with a -1 PRF efficiency of up to p = 0.3 does not substantially affect
the CUB index to protein expression relationship for both CUB
index corrections, if the extra cost of mRNA degradation by
NMD is neglected (77 = 0). Figure 4A) shows that all CAI values
for all genes are diminished when using the correction I.. A sub-
stantial correlation between protein expression and corrected CAI
index remains. Accounting for the frameshifted sequences x’ also
diminishes codon adaptation measures I, considerably compared to
uncorrected CUB index values, as shown in Figure 4B). However,
unlike with I, this reduction does not correspond to a uniform
negative offset. Instead, the effect of accounting for -1 PRF is to
both shift and broaden the distribution of I,(x) values relative to
I(x) (see Figure S4).

The two corrections I, and I, show different sensitivities to the -1
PREF efficiency. In particular, the sensitivity of I, to -1 PRF efficiency
is mediated by the value of 7. Figure 5A shows that the correlations
between both I and I, to protein expression levels decline for in-
creasing values of p and different values of 7. As p increases, and for
low costs of NMD-mediated mRNA decay, the correlation of fc to
protein expression levels declines to very low values (~ 0.2 at
p = 0.9 for 7 = 0,10, 100). If the energetic cost of -1 PRF induced
mRNA degradation, 7, becomes larger (77 = 1000, 10000), the cor-
relation declines very rapidly with p, and almost vanishes when
p reaches ~ 0.5. For I, estimates, correlations’ dependency on p is
moderate, never falling below 0.4 at biologically implausible values
of p of unity.

These results corroborate the support for the translation effi-
ciency hypothesis. For uniform -1 PRF efficiencies and for I,-based
estimates, correlations of corrected CAI to protein expression levels
decline with p. They only become sufficiently diminished to chal-
lenge the TEH when both the values of 7 and p are very high.
Indeed, according to our mathematical framework, 7= = 1000, 10000
corresponds to the cost of either translating a large gene, or tenfold
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that cost. Except for 7 = 10000, all correlation values between
corrected CUB indices and protein expression levels remain at
around 0.4 — 0.5 for biologically relevant -1 PRF efficiencies of
p =1-—10%. For I, estimates, correlation seems generally robust
to changes in p.

Varying -1 PRF efficiency with protein expression levels: Since the
data in Figure 2 strongly suggest a cost to -1 PRF maintenance, we also
explored how a -1 PREF efficiency decline with protein expression levels
consistent with such cost would affect the correlations in Figure 5A.
Unlike a uniform p across protein levels, corrections to I, are expected
to be larger at low expression levels than at high levels. The -1 PRF
decline is assumed as follows: p(P) = py,/log,,(P), where we call p;, the
baseline -1 PRF efficiency.
For I, this additional assumption leads to a measure:

o I+A+7 Pb -
Analogously, I, becomes
Ia(x) = I(x) = (pp — log,o(P)) (I(x) — I(x")). (14)

Figure 5B shows that under this assumption, correlations between
protein expression and I, rise with larger baseline -1 PRF efficiencies
for all except the largest values of 7, while again I, remains unaf-
fected. We observe analogous results using the Spearman rank cor-
relation (see Figure S5).

When -1 PRF efficiencies decline with protein expression —in
accordance with a cost to -1 PRF- most correlations between
I.-based estimates and protein expression rise with -1 PRF baselines.
Except for 7 = 10000, all correlation values increase with -1 PRF
baselines. This also adds support for the TEH, suggesting that
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-1 PRF conceals stronger associations than measured with uncor-
rected codon usage bias indices.

DISCUSSION

In this study, we have investigated the hypothesis that -1 PRF presup-
poses translational costs to an organism, while at the same time
generating benefits associated with protein expression regulation. We
explored whether such a cost might be identified more directly in data
and used both PRFdb (Belew et al. 2008) and the von der Haar data set
(von der Haar 2008) to address this question. We devised three hy-
potheses for likely signals of such cost in -1 PRF carrying genes. We
could not find contradictory evidence for any of those hypotheses in the
data. In a second step, we explored whether these costs, if not accounted
for, bias important measures of CUB. We devised two new general
approaches to correct CUB indices for the presence of -1 PRF signals.
We then tested whether the concealment of such costs may unduly
influence, falsify or strengthen, one classical test of the translational
efficiency hypothesis: the association of CUB indices with protein ex-
pression levels. Under the assumption of uniform -1 PRF efficiencies,
the energetic costs related with NMD activation would need to be
implausibly high to warrant this conclusion. We find that on the con-
trary, assuming that -1 PRF efficiency decreases with protein expression
levels -as suggested by the existence of a cost to -1 PRF-, the TEH is
strengthened. Thus, taken together, our results suggests that high or-
ganismal demands for specific proteins are reflected in CUB-mediated
translation efficiency gains.

Our study comes with a series of caveats. A first caveat of this study
lies in that the slippery sites are inferred (utilizing the Nupack algorithm
(Dirks and Pierce 2004) for mRNA pseudoknot detection), but not
always experimentally confirmed (Advani et al. 2013). Previous studies
suggest that inferred slippery sites are likely to be functional. In (Advani
et al. 2013) it is reported that in previous work, nine out of nine high
confidence -1 PRF sites detected by methods used in the PRFdb in
S. cerevisae were confirmed to be functional in vivo. Crucially,
whether a -1 PRF site is regarded to be functional depends on whether
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it exceeds a predetermined p-threshold. For example, in (Advani et al.
2013), a search of -1 PRF slippery sites identified 10 candidate genes in
EST2, three in ESTI, 2 in STN, and 1 in CDC in mRNA involved in
telomerase. Out of these, and employing a cutoff of 1% for -1 PRF effi-
ciency, seven carry functional slippery sites (EST2: 3, ESTI: 2, SIN: 1,
CDC: 1) (see (Advani et al. 2013), Table 1). Had a cutoff of 0% -1 PRF
efficiency been employed, all slippery sites except one would be functional.
This limited sample provides confidence that the methods described by
(Belew et al. 2008) appropriately capture biological mechanisms.

Even with such uncertainty, it is unlikely that the presence of non-
functional -1 PRF sites in the analyzed data would affect the claim of an
intrinsic -1 PRF maintenance cost (Figure 2). This claim would only be
biased if the probability of a candidate site to be functional were affected
by either protein expression levels of the gene within which it resides or
alternatively, the relative position in the gene of the putative slippery
site. Note that these effects should arise from mechanisms that are
independent of the ones studied here. Again, we are unaware of any
such mechanisms acting in yeast, except for the requirement of a spacer
sequence. A spacer sequence of a minimum length of say, 8 nt, will
prohibit slippery sites to be located within 8 nt of the mRNA end. This
restriction will slightly bias the a priori position of candidate slippery
sites. However, as average mRNA by far exceed this length, such a
restriction cannot explain the effects documented here.

Another caveat of our study was the lack of estimates for p for the
whole data set. Due to this restriction, we could not explore how -1 PRF
efficiency p relates to CAI or protein expression. As assumed in Figure
5B, we expect that -1 PRF maintenance costs should on average trans-
late into an inverse relationship between p and protein expression
levels, because higher protein expression demands by the organism
should be countered with reductions of p, minimizing the loss of
mRNA to NMD-induced degradation. However, it is also possible that
there exist cases in which -1 PRF has important functions in highly
expressed genes. Hence, although there are fewer slippery sites for
highly expressed genes and they are costly in terms of translation
efficiencies, these sites could have large -1 PRF efficiencies. We have
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not found evidence in the literature to support this notion, and it would
concomitantly contradict the evidence here presented. Additional test-
ing of our hypotheses on the costs -1 PRF maintenance would be greatly
helped if information on how -1 PRF efficiencies vary with protein
expression was available.

While our analysis of the behavior of I, gives us an indication how -1
PRF costs to translation efficiency could bias CUB indices, these in-
sights rely on the assumptions made during I.’s derivation. Impor-
tantly, I. is a lower bound to I, which means that downward
corrections of I, are potentially exaggerated. Thus, the claim that cor-
rected CUB indices will leave the basis for the TEH unaffected is re-
sistant to such a bias. Another key assumption is that CUB indices of an
mRNA sequence should increase monotonically with translation effi-
ciency. In practice, this association is surely not perfect, due to multiple
additional influences on CUB from unrelated biological processes. For
these processes to systematically bias our results they should i) domi-
nate over translational efficiency effects or ii) result in directional effects
when combined. Despite these possible shortcomings, the assumption
reflects key properties with which many CUB indices are designed,
namely to mirror translational efficiency. For example, the CAI uses
ribosomal mRNA as a reference to compute preferred codons because
it is highly plausible that they are translationally efficient.

Moreover, our results suggest that utilizing expected values for
corrected CUB index definition, such as in the case of I,,, is suboptimal.
Analysis of the distribution of I, levels with p = 1 of genes in the von
der Haar data set show that corrected codon adaptation can increase.
This behavior contradicts the rationale behind introducing such cor-
rections in the first place, as, surprisingly, I(x") > I(x) can occur.

To test the hypotheses about the TEH derived here, we have only
utilized genes with identified slippery sites, and not all genes. Testing on
all genes would be indicated if the TEH was challenged. However, if the
correlation coefficient measured within a subset in which a correction
has been applied is not substantially diminished relative to uncorrected
values, the same correction will not affect the whole set either. Therefore
testing it on the whole set is not necessary.

The results indicating intrinsic -1 PRF maintenance cost and TEH
support are in mutual agreement. -1 PRF maintenance induces a
reduction of the size of | with increasing protein expression levels
(Figure 2C). At fixed p, as assumed in our analysis, significant reduc-
tions in / would diminish the penalization to the original, un-corrected
CUB. This could only be compensated by increases of p or 7 with
protein expression levels, contrary to intuition and available evidence
(Advani et al. 2013). In fact, our analysis shows that a more plausible
p dependency to protein expression leads to a strengthening of the basic
CUB index to expression level association.

These results have to be interpreted in the context of current codon
usage bias research. The mechanism of translational selection (TEH)
remains the main explanation put forward for selection based origins
of codon bias. This explanation presupposes that silent mutations
affect fitness via translation processes. These fitness increases origi-
nate from translation efficiency and accuracy gains, that in turn are
hypothesized to stem from translation initiation and elongation
processes. In fact, mRNA elongation rates do indeed appear to cor-
relate positively with preferred codon frequencies (Gustafsson et al.
2004), although better evidence would be desirable. However, for
initiation processes —which are assumed to contribute the bulk of
these fitness increases—, the effects of CUB on initiation rate increase
remain subject of debate (Quax et al. 2015). In fact, Tuller and Zur
have analyzed the effect of the structure of the 5" end of an mRNA on
translation initiation and elongation rates and found various regulatory
signals that affect these rates in different ways (Tuller and Zur 2015).
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Indeed, the induced folding at the 5" end of the ORF appears to affect
translation efficiency.

Overall, the evidence from codon usage bias statistics and its
associations to tRNA abundance and protein expression offers a com-
pelling narrative for the TEH. However, current research efforts aiming
to identify the exact mechanisms that give rise to these associations must
account for conflating selective forces. Indeed, the mechanisms laid out
in the TEH may not be the only way in which selection shapes codon
usage frequencies. For example, besides the abundance of tRNAs, other
factors have been discovered to crucially affect elongation rates and
hence, to be possible targets selection (Chamary et al. 2006; Resch et al.
2007, 2009; Hunt et al. 2009). More precisely, specific synonymous
changes can influence mRNA splicing, mRNA secondary structure,
protein stability as well as protein folding (Komar 2009; Chamary
et al. 2006; Carlini and Genut 2006; Parmley et al. 2006; Tsai et al.
2008; Komar 2007). Synonymous changes may also alter the secondary
structure of mRNA and thus affect the rate of translation —as established
in vitro (Ivanov et al. 1997; Parmley and Hurst 2007; Tuller and
Zur 2015) and subsequently in vivo (Kimchi-Sarfaty et al. 2007). A
comprehensive review on how protein expression is fine tuned by co-
don usage bias is given by Quax (Quax et al. 2015). Further, in a very
recent study, a synonymous difference between mammalian cytoskel-
etal B- and 7y-actin proteins was found to affect co-translational pro-
cessing, ubiquitination, and co-translational degradation, leading to
differential stability properties of the corresponding protein products
(Zhang et al. 2010).

Within genomes, the biologial role of a gene influences that gene’s
CUB in various additional ways. Some codons are more abundant
in genes depending on their function, displaying distinct codon bias
patterns. Supek has reviewed how gene function modifies codon pref-
erences (Supek 2016). Selective pressure to maintain (or alter) gene
function is superimposed to what is expected from translational effi-
ciency and accuracy optimization. Genes where altered CUB patterns
have been found are involved in diverse functions: amino acid starva-
tion responses, cyclical protein expression, tissue specific expression,
cellular differentiation, stress responses, and carcinogenesis. While
genes can differ in function, there are also differences in function within
a gene’s sequence that also affect local CUB. For example, Tuller and
Zur have surveyed the multiple roles of the 5" end of coding sequences
in gene expression regulation (Tuller and Zur 2015). They hypothesize
that due to multitude of regulatory signals found in that region, selec-
tion pressures regarding codon utilization are likely different than in
other regions. Unlike cross-gene function, such effects are local, which
should not affect our analysis. How effects from gene function may
affect our results, crucially depends on their frequency and direction.
The literature reviewed here does not appear to warrant the assumption
that all the function-dependent selective pressures will align to influ-
ence CUB in the same way, leading to systematic bias. The phenome-
non of -1 PRF is thus only one of many ways in which CUB may be
influenced.

The particular appeal of the -1 PRF phenomenon lies in its potential
to elucidate many of these processes. Because slippery sites are pre-
cisely localized and -1 PRF efficiencies measurable, -1 PRF signals
constitute natural experiments to translation efficiency and accuracy
theories. This is because the separation of the mRNA by a slippery site
should create differential translational costs across that mRNA. This
translational cost gradient should be reflected in codon usage bias
differences. -1 PRF based approaches to analyzing codon usage bias
behavior, like the one presented in this study, may thus offer novel tools
to better understand the means by which translation efficiency gains
are realized in nature.
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