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Alterations of neural network organization
during REM sleep in women: implication
for sex differences in vulnerability to mood
disorders
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Abstract

Background: Sleep plays an important role in vulnerability to mood disorders. However, despite the existence of
sex differences in vulnerability to mood disorders, no study has yet investigated the sex effect on sleep network
organization and its potential involvement in vulnerability to mood disorders. The aim of our study was to
empirically investigate the sex effect on network organization during REM and slow-wave sleep using the effective
connectivity measured by Granger causality.

Methods: Polysomnographic data from 44 healthy individuals (28 men and 16 women) recruited prospectively
were analysed. To obtain the 19 x 19 connectivity matrix of all possible pairwise combinations of electrodes by
Granger causality method from our EEG data, we used the Toolbox MVGC multivariate Granger causality. The
computation of the network measures was realized by importing these connectivity matrices into EEGNET Toolbox.

Results: In men and women, all small-world coefficients obtained are compatible with a small-world network
organization during REM and slow-wave sleep. However, compared to men, women present greater small-world
coefficients during REM sleep as well as for all EEG bands during this sleep stage, which indicates the presence of a
small-world network organization less marked during REM sleep as well as for all EEG bands during this sleep stage
in women. In addition, in women, these small-world coefficients during REM sleep as well as for all EEG bands
during this sleep stage are positively correlated with the presence of subclinical symptoms of depression.

Conclusions: Thus, the highlighting of these sex differences in network organization during REM sleep indicates
the presence of differences in the global and local processing of information during sleep between women and
men. In addition, this small-world network organization less marked during REM sleep appears to be a marker of
vulnerability to mood disorders specific to women, which opens up new perspectives in understanding sex
differences in the occurrence of mood disorders.
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Highlights

e Women present small-world network organization
less marked during REMS

e There are no sex differences in small-world network
organization during SWS

e These results help to better understand sex
differences in mood disorders

Introduction

At the cerebral level, there are several elements in favour
of the presence of a small-world network (SWN)
organization both during wakefulness and sleep [1-4].
The presence of this SWN cerebral organization seems
to promote the emergence of complex behaviours and
the optimal cognitive functioning [5, 6] through minimal
wiring cost and high dynamic complexity characterized
by a rapid transfer and synchronization of information
as well as a balance between local processing and global
integration [7]. Indeed, the presence of optimal SWN
organization is associated with more efficient cognitive
functioning [8], whereas the presence of altered SWN
organization favours the occurrence of cognitive dys-
functions [9, 10]. Thus, the SWN organization seems to
be a very attractive model to explain the organization of
brain anatomical, functional or effective networks given
its compatibility with both segregated/specialized and
distributed/integrated information processing [11].

Sex is a central factor in the inter-individual variations
of the human brain [12, 13]. Indeed, in the literature,
there are many arguments in favour of a cerebral sex di-
morphism at the anatomical, morphological, metabolic,
neurochemical and neurophysiologic level [12, 13]. In
addition, this cerebral sex dimorphism is also character-
ized by the presence of specific patterns of SWN
organization in men and women during wakefulness,
which seems to indicate the existence of sex differences
in the cerebral processing of information [14-20].
Nevertheless, this potential effect of sex on SWN
organization has not yet been investigated during sleep.
However, it has been shown that sex may strongly influ-
ence both the cognitive functions related to sleep (such
as memory and regulation of emotions) [21, 22] and the
sleep architecture [23]. Indeed, compared to men, women
present a specific polysomnographic pattern characterized
by modifications of slow-wave sleep and disinhibition of
rapid eye movement (REM) sleep [24, 25]. Moreover,
these particular polysomnographic characteristics have
been identified as markers of vulnerability in individuals at
high risk of mood disorders [26], which may be explained
by the implication of these sleep stages in the pathophysi-
ology of mood disorders [27-30]. However, women seem
to have a higher vulnerability to mood disorders [31] that
could be partially induced by this sex dimorphism in these
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sleep stages [32]. Thus, given the presence of this sleep sex
dimorphism and its potential pathophysiological implica-
tions for mood disorders, it seems important to study the
potential effect of sex on SWN organization during sleep in
order to highlight possible sex differences in the cerebral
processing of information during sleep and their possible
implications in the vulnerability to mood disorders.

Our first hypothesis was that there were sex differ-
ences in SWN organization during REM and slow-wave
sleep. Our second hypothesis was that these sex differ-
ences in SWN organization during these sleep stages
were correlated with the presence of subclinical symptoms
of depression. In order to test these hypotheses, we inves-
tigated empirically the sex effect on SWN organization
during REM and slow-wave sleep as well as for all EEG
bands during these sleep stages using the effective con-
nectivity measured by the Granger causality in healthy in-
dividuals. The aim of our study was to highlight sex
differences in the global and local processing of informa-
tion during these sleep stages in order to better under-
stand the differences in the occurrence of mood disorders
between men and women.

Material and methods

The methodology used in this study is similar to that
used in previous studies of our research group on sleep
network organization [4, 33].

Introduction to graph theory analysis

Networks are constituted by a set of nodes (vertices) and
links (edges) between the pairs of nodes allowing a
mathematical representation of complex biological, so-
cial and informatics systems [34]. In addition, each net-
work is characterized by two fundamental parameters:
the characteristic path length corresponding to the mini-
mum number of edges needed to make a connection be-
tween nodes and the clustering coefficient
corresponding to a measure of topological clustering of
edges between nodes [35, 36]. The combination of these
two parameters leads to the determination of three types
of networks according to their characteristics: ordered
(characterized by a high clustering coefficient and long
path length), random (characterized by a low clustering
coefficient and short path length) and small-world (char-
acterized by a high clustering coefficient and short path
length) [37].

In order to study these particular network organiza-
tions, it is possible to use several methods based on dif-
ferent types of connectivity: anatomical (based on the
physical or structural connections between the various
brain structures), functional (measuring the statistical
dependence between distant cerebral structures and
highly time-dependent) and effective (measuring the dir-
ect or indirect causal influences between two brain
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regions) [38, 39]. Among the methods to study the ef-
fective connectivity, the Granger causality is an applica-
tion of time series based on the following prediction: “If
the predicted error on the first time series is reduced by
including measurements of the second in a linear regres-
sion model, then the second temporal series has a causal
influence on the first” [40, 41]. In addition, it is possible
to apply the Granger causality to electrophysiological
time series since this type of data may be sampled in a
timely manner and there is no lag between recorded re-
sponses and their underlying causes [42].

Population
Through advertisements, we recruited prospectively 44
healthy individuals (28 men and 16 women) between
January 2007 and January 2012 from the community. Un-
like women, all men included in this study come from our
previous studies on sleep network organization [4, 33].
Upon admission to the Sleep Laboratory of the Erasme
Hospital, all these individuals benefited:

— From a systematic clinical interview by a unit
psychiatrist in order to exclude an axis I or axis II
disorder according to the diagnostic criteria of the
Diagnostic and Statistical Manual of Mental
Disorders Fourth Edition-Text Revision [43].

— From a complete somatic check-up (physical
examination, chest X-ray, electrocardiogram (ECG),
electroencephalogram (EEG) and laboratory tests,
such as blood test and urinalysis) by an internist in
order to exclude the presence of somatic conditions
or pathologies that may affect sleep.

— From a complete assessment of sleep (systematic
sleep-specific interview and sleep examination) by a
specialist in sleep medicine in order to exclude the
presence of sleep disorders according to the
diagnostic criteria of American Academy of Sleep
Medicine (such as insomnia disorder, circadian
rhythm disorder, obstructive or central sleep apnoea
syndrome, restless legs syndrome, periodic limb
movements during sleep, parasomnia and
hypersomnia disorder) [44], antecedents of sleep
disorders and irregular sleep-wake schedules.

— From an assessment of their subjective complaints
of depressive symptoms via the Beck Depression
Inventory (BDI reduced to 13 items). This scale
consists of 13 items that can be scored from 1 to 3.
The final score can vary from 0 to 39. A final score
of 0—4 indicates an absence of depression, 5-7 a
subclinical depression, 8—15 a moderate depression
and > 16 severe depression [45].

Moreover, these individuals have never been under som-
atic or psychotropic treatment (such as antidepressants,
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thymostabilizing treatments [lithium or anti-epileptic treat-
ments], benzodiazepines, Z-drugs, neuroleptics, antihista-
mines, opioids, melatonin, plants with psychotropic effect
[valerian, passiflore, St. John’s wort, etc.] and psychostimu-
lant treatments) that may influence sleep.

Methods
In order to allow the repeatability of our study, the main
steps of our methodology are summarized in Fig. 1.

EEG recordings and experimental conditions

All individuals included in our study performed three
consecutive nights of polysomnographic recording
within the Sleep Laboratory of the Erasme Hospital. For
each of these nights, the recording time was a minimum
of 8 h. Regarding the women included in this study,
these three consecutive nights of polysomnographic re-
cording were performed during the follicular phase (out-
side of menstruation period) of their menstrual cycle in
order to avoid potential sleep disturbances associated
with post-ovulation luteal phase and menstrual period
[46]. To achieve our analysis, we selected an “artefact-
free night” from the last two nights recorded in order to
avoid the “first night effect” on sleep parameters [47].
However, if these two nights had similar levels of arte-
facts, the selected night was randomly chosen. To allow
the visual detection of these eventual artefacts, our spe-
cialized technicians have used the software Endymion
(Endymion 1993-2020), Sleep laboratory, Erasme Hos-
pital [48-51] developed in our sleep laboratory for data
analysis.

Furthermore, the applied polysomnography-montage,
the sampling frequencies of the different channels, the
applied analogue filters, the used data format and the
instructions to follow during the stay within the Sleep
Laboratory are available in the Supplementary data.

In order to determine the different sleep stages, special-
ized technicians visually scored the polysomnographic re-
cordings according to the criteria of Rechtschaffen and
Kales [52]. All subsequent analyses, such as stage deter-
mination and spectrum calculation, were carried out on
the sampled data, avoiding synchronization problems be-
tween the stages and the other calculations.

EEG signal analysis

For our analysis, we selected the first three 20-s epochs
of background EEG activity without large EEG graphoe-
lements (slow oscillation, delta waves [except for slow-
wave sleep], sigma spindles during REM sleep, spindles
or K-complex during slow-wave sleep, etc.) and artefacts
(no eye blinks, slow eye movements, excess muscle activ-
ity, electrocardiogram artefacts, etc.) for wakefulness
(during the period preceding sleep onset) and each of
the three sleep stages studied (regardless of the sleep
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Step 1
Visual scoring of polysomnographic
recordings by specialized technicians
according to the criteria of Rechtschaffen
and Kales

—

Step 2
In each individual included, visual selection
of the first three 20-s epochs of
background EEG activity by specialized
technicians for wakefulness and each of
the three sleep stages studied
Inclusion criteria
= Epochs localized during the period
preceding sleep onset for
wakefulness
= Epochs localized regardless of the
sleep cycle for the three sleep
stages studied
Exclusion criteria
= Presence of large EEG
graphoelements (slow oscillation,
delta waves [except for slow-wave
sleep], sigma spindles during REM
sleep, spindles or K-complex
during slow-wave sleep, etc.)
= Presence of artefacts (no eye
blinks, slow eye movements,
excess muscle activity,
electrocardiogram artefacts, etc.)

Step 6
Statistical analysis in order to test the
hypotheses of our study

= Presence of sex differences in
small-world network organization
during REM and slow-wave sleep

= These sex differences in small-
world network organization during
these sleep stages were correlated
with the presence of subclinical
symptoms of depression

<mm

Step 5
Importation of these connectivity matrixes
obtained with the Toolbox MVGC
multivariate Granger causality in the
Toolbox EEGNET
= Computation of the small-world
coefficient in order to determine
the network organization during
wakefulness and the three sleep
stages studied as well as for the
different EEG bands during
wakefulness and these sleep
stages in each individual included

<=

Fig. 1 Summary of main steps of the methodology applied in this study for both EEG signal and network analysis

Step 3
Division of each of these selected 20-s

epochs of background EEG activity into
four 5-s epochs
= Inclusion of 12 epochs of 5
seconds for wakefulness and
each of the three sleep stages
studied in each individual of this
study

Step 4

Importation of these 12 epochs of 5
seconds of background EEG activity for
wakefulness and each of the three sleep

stages studied in the Toolbox MVGC

multivariate Granger causality
= Obtaining the 19x19 connectivity
matrixes of all possible pairwise
combinations of electrodes by
the Granger causality method
from our EEG data for
wakefulness and each of the
three sleep stages studied in
each individual included

cycle). Subsequently, each of these 20-s epochs of back-
ground EEG activity has been divided into four 5-s
epochs [4, 33]. Thus, for each individual of this study,
we have included 12 epochs of 5s of background EEG
activity for wakefulness and each of the three sleep
stages studied (REM sleep, stage 3 and stage 4). This
number of 20-s epochs (three) used in this study was ar-
bitrarily chosen in order to be able to investigate the
network organization of wakefulness and each sleep
stage over an identical number of epochs. Indeed, in
some individuals included in this study, it was impos-
sible to obtain more than three 20-s epochs of back-
ground EEG activity without large EEG graphoelements
and artefacts for wakefulness and/or some sleep stages.
Furthermore, for wakefulness and each of the three sleep
stages studied, the spectral power content of each of
these epochs has been calculated in order to check the
homogeneity of the epochs included for a given stage
(wakefulness, REM sleep, stage 3 and stage 4) in each in-
dividual. Finally, given the impossibility of obtaining
polysomnographic recordings without any artefacts, this
selection of a limited number of epochs of background
EEG activity without artefacts for wakefulness and each
sleep stage seems to be the best compromise for a

quality study of network organization during wakeful-
ness and sleep stages since this approach has already
been used by our research group as well as in the litera-
ture [2, 4, 33, 53-58].

In our study, we did not investigate the network
organization during stage 1 and stage 2 because our aim
was to focus on the network organization of sleep stages
who are most involved in vulnerability to mood disor-
ders (REM and slow-wave sleep) [59-61].

The Granger causality
To obtain the 19 x 19 connectivity matrix of all possible
pairwise combinations of electrodes by the Granger
causality method from our EEG data, we used the Tool-
box MVGC multivariate Granger causality [46] developed
for use under Matlab. This toolbox is based on a multivar-
iable autoregressive (MVAR) model of the data. The
mathematical developments used in the Toolbox MVGC
multivariate Granger causality (model order estimation,
MVAR model estimation, time domain analysis, and fre-
quency domain analysis) [62] are beyond the scope of this
paper but are summarized in the Supplementary data.
Since both time and frequency domain causalities were
obtained, we also calculated the time-domain causalities
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by integrating their spectral counterparts and checked that
this frequency integrated value was not different from
time domain value. The frequency-based connectivity
matrices were calculated for the following EEG bands: /5
(16—32 Hz), 0 (12-16 Hz), a (8—12Hz), 8 (3-8 Hz) and §
(0.25-3 Hz) [63]. A comparison of our method based on
the Granger causality with other methods in the literature
is available in the Supplementary Data.

An example of the connectivity matrix obtained with
the Toolbox MVGC multivariate Granger causality [62]
for the different sleep stages (REM sleep, stage 3 and
stage 4) in a man and a woman from our sample is avail-
able (Fig. 2).

Calculation of network characteristics

In order to determine the network organization during
wakefulness and the three sleep stages studied (stage 3,
stage 4 and REM sleep) as well as for the different EEG
bands during wakefulness and these sleep stages, we
imported the connectivity matrix obtained with the
Toolbox MVGC multivariate Granger causality into the
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Toolbox EEGNET developed for use under Matlab [64].
Indeed, based on graph theory analysis, this software al-
lows the computation of the small-world coefficient
(SWC) measuring the propensity of the network to have
a small-world structure. Values of SWC are restricted to
the interval — 1 to 1 regardless of network size. Values
close to zero, positive values and negative values indicate
a graph with more small-world, random and regular
characteristics, respectively [65].

Statistical analysis

Statistical analyses were performed using Stata version
14. The normal distribution of the data was verified
using histograms, boxplots, and quantile-quantile plots.
Since most data followed an asymmetric distribution, we
used non-parametric tests for all variables, beginning
with the Wilcoxon test to evaluate for significant differ-
ences between the medians observed in men and women
groups. Results were considered significant when the p
value was < 0.05 for global tests and < 0.05 after

Comparison Man-¥Woman : significant connectivity values for 3 sleep stages
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Bonferroni correction for multiple comparisons. Cor-
relation analyses were performed using Spearman
correlations.

Results

Demographic and polysomnographic data (Table 1)
Compared to men, women showed greater BDI scores.
However, despite this significant difference in the BDI,
scores remained below 8 for both men and women, indi-
cating the absence of clinical depression. There were no
significant sex differences for age, educational level,
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social status and possible consumption (caffeine, tobacco
and alcohol).

Polysomnographic data (Table 1)

Compared to men, women had greater sleep latency and
percentage of REM sleep, smaller sleep period time and
percentage of stage 1 and shorter REM latency. There
were no significant sex differences for other polysomno-
graphic parameters.

Table 1 Comparison of demographic and polysomnographic data between men and women groups

Median (P25-P75) Median (P25-P75) P value
Men group (N = 28) Women group (N = 16)
Demographic variables
Age (years) 25 (22-34.5) 22.5(21.5-25) 0.157
BDI score 1(0-3) 4 (3-6) < 0.001
Social status 0336
Unmarried 60.7% 75.0%
Married 39.3% 25.0%
Educational level 0.165
University students 46.4% 75.0%
University graduates 21.4% 6.3%
Non-university graduates 23.1% 18.7%
Smoking 0.552
No 92.9% 87.5%
Yes 7.1% 12.5%
Alcohol 0.832
No 78.6% 81.2%
Occasional 21.4% 18.8%
Caffeine 0447
No 42.9% 31.2%
Yes 57.1% 68.8%
Polysomnographic variables
SL (min) 20.83 (13.67-31.50) 34.34 (19.67-61.00) 0.038
SE (%) 87.33 (84.18-91.65) 87.12 (83.03-93.34) 0.961
SPT (min) 536.50 (509.33-564.00) 510.84 (499.17-518.67) 0.031
TST (min) 493,67 (466.67-515.50) 476.00 (452.17-497.67) 0.113
WASO (%) 6.87 (5.00-11.75) 541 (2.72-11.17) 0.223
Stage 1 (%) 6.90 (5.76-8.96) 535 (4.21-6.68) 0.017
Stage 2 (%) 51.70 (47.07-55.29) 45.89 (41.84-53.90) 0.118
Stage 3 (%) 6.06 (5.01-7.06) 7.02 (5.24-7.65) 0278
Stage 4 (%) 7.27 (4.23-11.20) 1091 (5.87-13.06) 0.134
SWS (%) 1443 (10.32-16.99) 16.93 (12.73-20.98) 0.140
REM (%) 20.04 (17.75-21.71) 22.19 (20.37-24.29) 0.036
REM latency (min) 66.50 (58.17-77.17) 52.50 (49.17-63.83) 0.047

BDI Beck depression inventory, SL Sleep latency, SE Sleep efficiency, SPT Sleep period time, TST Total sleep time, REM Rapid eye movement sleep, WASO wake after

sleep onset.
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Network parameters—time domain (Table 2)

Compared to men, women showed greater SWC dur-
ing REM sleep. There were no significant sex differ-
ences at the level of SWC for stage 3, stage 4 and
wakefulness.

Network parameters—frequency domain (Table 2)

For all EEG bands during REM sleep, women have
greater SWC compared to men. There were no signifi-
cant sex differences at the level of SWC for all EEG
bands during stage 3, stage 4 and wakefulness.
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Correlations analyses

Correlations between sex and network parameters (Table 3)
Woman sex was positively correlated with SWC only for
REM sleep as well as for all EEG bands during this sleep
stage. There were no significant correlations between
woman sex and SWC for stage 3, stage 4 and
wakefulness.

Correlations between BDI scores and network parameters
(Table 4)

In women, BDI scores were positively correlated with
SWC for REM sleep as well as for all EEG bands during

Table 2 Comparison of network characteristics between men and women groups

Median (P25-P75) Median (P25-P75) P value
Men group (N = 28) Women group (N = 16)

Wakefulness—Time domain

SWC —0.002 (- 0.005-0.014) 0.010 (0.002-0.035) 0.060
Wakefulness - Frequency domain

SWC—power bands 3 — 0.002 (- 0.004-0.004) — 0.001 (- 0.010-0.038) 0.558

SWC——power bands o — 0.006 (- 0.011-0.008) —0.002 (- 0.013-0.036) 0.591

SWC—power bands a —0.005 (- 0.011-0.010) —0.005 (- 0.020-0.043) 0.961

SWC—power bands 6 — 0.004 (- 0.010-0.012) 0.008 (— 0.009-0.033) 0.196

SWC—power bands 6 — 0004 (- 0011-0011) — 0.003 (- 0.014-0.033) 0661
REM—time domain

SWC 0.054 (0.035-0.091) 0.094 (0.060-0.147) 0.007
REM—frequency domain

SWC—power bands 3 0.075 (0.042-0.110) 0.122 (0.083-0.174) 0.006

SWC—power bands o 0.068 (0.031-0.110) 0.120 (0.084-0.156) 0.005

SWC——power bands a 0.076 (0.042-0.109) 0.133 (0.077-0.172) 0.011

SWC—power bands 6 0.065 (0.032-0.120) 0.115 (0.075-0.173) 0.006

SWC—power bands 6 0.068 (0.049-0.103) 0.124 (0.082-0.172) 0.007
Stage 3—time domain

SWC 0.009 (0.0004-0.033) 0.036 (0.007-0.061) 0.242
Stage 3—frequency domain

SWC—power bands (3 0.013 (-~ 0.001-0.043) 0.042 (0.001-0.064) 0.341

SWC—power bands o 0.011 (= 0.003-0.046) 0.028 (= 0.006-0.065) 0.733

SWC—power bands a 0.002 (- 0.004-0.028) 8 (- 0.007-0.061) 0.526

SWC—power bands 6 0.011 (- 0.007-0.035) 0.038 (- 0.003-0.071) 0.575

SWC—power bands & 0.013 (- 0.004-0.061) 0.047 (0.010-0.071) 0.150
Stage 4—time domain

SWC 0.006 (- 0.003-0.034) 0.022 (- 0.004-0.044) 0714
Stage 4—frequency domain

SWC—power bands 3 0.003 (- 0.007-0.039) 0.015 (= 0.009-0.045) 0.714

SWC—power bands o 0.005 (- 0.006-0.042) 0.019 (- 0.009-0.052) 0678

SWC—power bands a 0.004 (- 0.006-0.044) 0.012 (- 0.009-0.050) 0.788

SWC—power bands 6 — 0.001 (- 0.007-0.028) 0.012 (- 0.013-0.039) 0.845

SWC—power bands & 0.002 (- 0.005-0.036) 0.020 (- 0.010-0.047) 0.558

REM rapid eye movement sleep, SWC small world coefficient
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Table 3 Correlations between sex and network parameters

(N = 44) Small world coefficient

Woman sex
REM 0.409° Stage 3 0.179 Stage 4 0.056 Wakefulness 0.287
Power band 0417° Power band 0.145 Power band 3 0.056 Power band 0.089
Power band o 0432° Power band o 0.052 Power band o 0.063 Power band o 0.082
Power band a 0.387° Power band a 0.097 Power band a 0.041 Power band a 0.007
Power band 6 04172 Power band 6 0.086 Power band 6 0.030 Power band 6 0.197
Power band & 04132 Power band & 0.222 Power band & 0.089 Power band & 0.067

3p < 005

REM rapid eye movement sleep

2 indicates the presence of a significant correlation (p <0.05)

this sleep stage, whereas in men, there were no signifi- Discussion

cant correlations between BDI scores and SWC for this
sleep stage. Both in men and women, the other correla-
tions analyses between BDI scores and SWC were not
significant for stage 3, stage 4 and wakefulness.

Comparisons of network parameters between the
different sleep stages and wakefulness (Supplementary
data—Table 1)

Both in men and women, REM sleep showed greater
SWC than stage 3, stage 4 and wakefulness. All other
comparisons between the different sleep stages and
wakefulness were no significant.

Table 4 Correlations between BDI scores and network parameters

In our study, we have shown that all SWC obtained are
compatible with a SWN organization during REM and
slow-wave sleep for both men and women. However,
compared to men, women present greater SWC during
REM sleep as well as for all EEG bands during this sleep
stage, which means that the SWC values during REM
sleep as well as for all EEG bands during this sleep stage
deviate more from the small-world characteristic thresh-
old in women than in men. In addition, in women, SWC
during REM sleep as well as for all EEG bands during
this sleep stage seem to deviate more from the values of
wakefulness than in men. These different elements
therefore indicate the presence of a SWN organization

Small world coefficient

BDI score

Men sex (n = 28)
REM 0.031 Stage 3 0212
Power band 0.061 Power band 3 0.259
Power band o 0.135 Power band o 0.239
Power band a 0.072 Power band a 0.110
Power band 6 —-0.083 Power band 6 0.095
Power band & 0.032 Power band 6 0.200

Woman sex (n = 16)
REM 0636° Stage 3 0.167
Power band 0.593° Power band §8 0.070
Power band o 0.643° Power band o —0.003
Power band a 0627° Power band a 0.085
Power band 6 0612° Power band 6 - 0097
Power band & 0.608° Power band & 0.130

Stage 4 0.064 Wakefulness - 0.167
Power band 3 - 0.154 Power band 3 - 0076
Power band o 0.062 Power band o - 0.141
Power band a —0.089 Power band a —0.047
Power band 6 - 0023 Power band 6 — 0341
Power band & - 0017 Power band 6 - 0301
Stage 4 - 0134 Wakefulness - 0.009
Power band - 011 Power band 3 0.158

Power band o 0.006 Power band o -0214
Power band a —0.088 Power band a —-0.087
Power band 6 -0.197 Power band 6 0.137

Power band & —0.046 Power band & 0.251

3p < 005

BDI Beck depression inventory, REM rapid eye movement sleep
@ indicates the presence of a significant correlation (p <0.05)
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less marked during REM sleep as well as for all EEG
bands during this sleep in women. Moreover, woman
sex is positively correlated with SWC only for REM sleep
as well as for all EEG bands during this sleep stage. Fi-
nally, in women, these SWC during REM sleep as well
as for all EEG bands during this sleep stage are positively
correlated with the presence of subclinical symptoms of
depression.

In the literature, there are several elements in favour of
a modulatory effect of sex steroid hormones on some
structural and functional brain connectivity parameters
such as white matter structure, grey matter structure and
overall network connectivity [66]. Indeed, at the cerebral
level, ovarian hormones (oestrogen and progesterone)
seem to favour both cortico-cortical and subcortico-
cortical functional connectivity, whereas androgens (tes-
tosterone) appear to decrease subcortico-cortical func-
tional connectivity and increase functional connectivity
between subcortical brain structures [67]. In addition,
these sex steroid hormones play an important role in over-
all functional connectivity of cerebral hemispheres by pro-
moting intra-hemispheric functional connectivity in men
and inter-hemispheric functional connectivity in women
[68]. This modulatory effect of sex steroid hormones on
cerebral connectivity may allow a better understanding of
sex differences highlighted in our study at the sleep net-
work organization level. Indeed, given the existence during
REM sleep of a desynchronized cortical EEG activity and a
rupture of the communication between the anterior and
posterior cortical areas [69—71], the presence in men of a
better connectivity between subcortical brain structures
[67] playing an important role in REM sleep regulation
[72] and a better intra-hemispheric connectivity promot-
ing more efficient antero-posterior communication within
the cerebral hemispheres [68] may explain the presence in
men of a SWN organization more marked during REM
sleep as well as for all EEG bands during this sleep stage
compared to women. On the other hand, the lack of sex
differences in the SWN organization during slow-wave
sleep may be explained by the fact that slow-wave sleep is
characterized by the presence of highly synchronized delta
waves associated with diffuse communication between dif-
ferent cerebral areas regardless of sex [69-71]. Thus, there
is a sex effect on the sleep network organization only dur-
ing REM sleep as well as for all EEG bands during this
sleep stage, which seems to indicate the presence of sex
differences in the local and global processing of informa-
tion during this sleep stage.

Unlike the literature [14-20], we did not highlight any
sex differences in SWN organization during wakefulness,
which could be explained by the fact that in this study, we
selected only epochs of wakefulness during the period pre-
ceding sleep onset. Indeed, during this particular period of
wakefulness, there is a gradual decrease in the high-
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frequency EEG bands (8 and @) and a gradual increase in
the low-frequency EEG bands (J) in order to prepare the
sleep-wake transition [73]. However, the presence of these
modifications in the frequency bands during this period
preceding sleep onset seems to be associated with a more
efficient antero-posterior cerebral communication favour-
ing a more marked SWN organization in both men and
women [74]. Furthermore, we demonstrated that com-
pared to men, women had a greater sleep latency and a
shorter sleep period time which seems to indicate the
presence of reduced sleep duration in women. However,
one of the possible compensatory mechanisms in case of
reduced sleep duration is the presence of a more marked
SWN organization during the period of wakefulness fol-
lowing this reduced sleep duration [75]. Thus, the pres-
ence of this reduced sleep duration in women compared
to men could possibly explain the sex differences in SWN
organization during wakefulness highlighted in the litera-
ture [18, 19].

The presence of a positive correlation between SWC
during REM sleep as well as for all EEG bands during this
sleep stage and subclinical symptoms of depression in
women could allow a better understanding of sex differ-
ences in vulnerability to mood disorders [76]. Indeed, in
major depression, there is a deregulation of REM sleep
(characterized by REMS increased, REM latency shortened
and REM density increased) [77] secondary to alterations
in neurotransmission characterized by hypoactivity of the
monoaminergic system and hyperactivity of the choliner-
gic system [78]. Moreover, in major depressed individuals,
these alterations of neurotransmission related to REM
sleep lead to changes in both processing and transmission
pathways of information [79], which may induce a SWN
organization less marked during REM sleep [2, 33]. How-
ever, these different alterations of REM sleep induce and
maintain cognitive distortions playing a central role in the
pathophysiology of major depression [80]. Nevertheless,
similar to major depression [33], women (compared to
men) present a SWN organization less marked during
REM sleep as well as a particular pattern of REM sleep
(characterized by REMS increased and REM latency short-
ened) [24, 25] probably induced by the action of ovarian
hormones on the neurotransmission pathways involved in
the REM sleep regulation [81]. Thus, the presence of these
particular features of REM sleep in women could predis-
pose them to develop subclinical symptoms of depression
(such as cognitive distortions [including negative self-
esteem and the overnight consolidation of negatively
toned emotional memories]) favouring the emergence of
mood disorders [80].

Limitations
In our study, we measured the effective connectivity
determined by the Granger causality only at the level
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of the scalp, which may limit the interpretations of
our results. Otherwise, although we only analysed
data from a relatively small group of healthy individ-
uals, the samples included in this study were at least
similar or even larger than those of most other studies in-
vestigating the SWN organization during sleep [2, 4, 33,
55, 57, 69, 75, 82—87], which should allow an adequate in-
terpretation of our results. However, in order to confirm
the results highlighted in our study, it seems important to
carry out replication studies on samples at least similar to
those in our study. Moreover, in our study, we included
only non-menopausal women in the follicular phase (out-
side of menstruation period) of their menstrual cycle,
which mean that our results cannot be generalized to
women in the post-ovulation luteal phase of their men-
strual cycle or menopausal. Currently, there are several
methods based on the effective connectivity measured by
the Granger causality (each having their advantages and
disadvantages) developed by different research teams,
which leads to many expert debates on the preferential
method [88].

Perspectives and significance

Despite its limitations, this paper confirms the existence of
a sex difference in sleep network organization, which had
not yet been demonstrated in the literature. Indeed, com-
pared to men, women present greater small-world coeffi-
cients during REM sleep as well as for all EEG bands
during this sleep stage, which indicates the presence of a
small-world network organization less marked during REM
sleep as well as for all EEG bands during this sleep in
women. Moreover, in women, these small-world coeffi-
cients during REM sleep as well as for all EEG bands during
this sleep stage are positively correlated with the presence
of subclinical symptoms of depression. Thus, the highlight-
ing of these sex differences in network organization during
REM sleep indicates the presence of differences in the
global and local processing of information during sleep be-
tween women and men. In addition, this SWN organization
less marked during REM sleep appears to be a marker of
vulnerability to mood disorders specific to women, which
opens up new perspectives in understanding sex differences
in the occurrence of mood disorders.

Conclusion

In our study, we demonstrated the presence of sex differ-
ences in the global and local processing of information
during sleep, which could allow a better understanding of
differences in vulnerability to mood disorders between
men and women.
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1186/513293-020-00297-5.
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