
1

SLEEPJ, 2021, 1–14

doi: 10.1093/sleep/zsab146
Advance Access Publication Date: 10 June 2021
Original Article

This is an Open Access article distributed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits 
non-commercial reproduction and distribution of the work, in any medium, provided the original work is not 
altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact 
journals.permissions@oup.com

Submitted: 24 November, 2020; Revised: 13 April, 2021

© Sleep Research Society 2021. Published by Oxford University Press on behalf of the Sleep Research Society.

Original Article

Prediction of shiftworker alertness, sleep, and circadian phase 

using a model of arousal dynamics constrained by shift 

schedules and light exposure
Stuart A. Knock1,2, Michelle Magee2,3, , Julia E. Stone2,3, , Saranea Ganesan2,3, 
Megan D. Mulhall2,3, Steven W. Lockley2,3,4,5, Mark E. Howard2,3,6, ,  
Shantha M.W. Rajaratnam2,3,4,5, , Tracey L. Sletten2,3 and  
Svetlana Postnova1,2,7,8,*
1School of Physics, the University of Sydney, Camperdown, NSW, Australia, 2Cooperative Research Centre for Alertness, Safety and 

Productivity, Melbourne, VIC, Australia, 3Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia, 4Division of 

Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, USA, 5Division of Sleep 

Medicine, Harvard Medical School, Boston, MA, USA, 6Institute for Breathing and Sleep, Austin Health, Heidelberg, VIC, Australia, 7Sydney 

Nano, the University of Sydney, Camperdown, NSW, Australia and 8Woolcock Institute of Medical Research, Glebe, NSW, Australia

*Corresponding author. Svetlana Postnova, School of Physics, University of Sydney, Camperdown 2006, NSW, Australia. Email: svetlana.postnova@sydney.edu.au.

Abstract
Study Objectives: The study aimed to, for the first time, (1) compare sleep, circadian phase, and alertness of intensive care unit (ICU) nurses working rotating shifts 

with those predicted by a model of arousal dynamics; and (2) investigate how different environmental constraints affect predictions and agreement with data.

Methods: The model was used to simulate individual sleep-wake cycles, urinary 6-sulphatoxymelatonin (aMT6s) profiles, subjective sleepiness on the Karolinska 

Sleepiness Scale (KSS), and performance on a Psychomotor Vigilance Task (PVT) of 21 ICU nurses working day, evening, and night shifts. Combinations of individual 

shift schedules, forced wake time before/after work and lighting, were used as inputs to the model. Predictions were compared to empirical data. Simulations with 

self-reported sleep as an input were performed for comparison.

Results: All input constraints produced similar prediction for KSS, with 56%–60% of KSS scores predicted within ±1 on a day and 48%–52% on a night shift. Accurate 

prediction of an individual’s circadian phase required individualized light input. Combinations including light information predicted aMT6s acrophase within ±1 h of 

the study data for 65% and 35%–47% of nurses on diurnal and nocturnal schedules. Minute-by-minute sleep-wake state overlap between the model and the data was 

between 81 ± 6% and 87 ± 5% depending on choice of input constraint.

Conclusions: The use of individualized environmental constraints in the model of arousal dynamics allowed for accurate prediction of alertness, circadian phase, 

and sleep for more than half of the nurses. Individual differences in physiological parameters will need to be accounted for in the future to further improve 

predictions.
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Statement of Significance

The current work examines how well a physiologically based model of arousal dynamics can predict sleep, circadian phase, and alertness of nurses working ro-

tating shifts in intensive care unit (ICU). We show that the mean error in prediction of alertness during shifts is similar in the model using individual shift sched-

ules to constrain sleep dynamics and that using self-reported sleep as an input. This is an important finding for making prospective predictions of alertness during 

shiftwork and optimization of shift schedules. Further work is needed to test the model against larger datasets and to incorporate inter-individual variability in 

physiological parameters to make more accurate individual predictions.
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Introduction

Modern lifestyles combined with 24/7 operations, transmeridian 
travel and man-made lighting disrupt circadian rhythms and 
sleep, leading to reduced alertness and increased risk of dis-
ease [1–5]. Approximately 20% of the workforce engage in 
shiftwork, which is associated with adverse effects on health, 
safety and performance, leading to a 60% higher risk of work-
place accidents compared to daytime workers [1]. There is large 
inter-individual variability in the response to sleep loss associ-
ated with shiftwork, [6–9] with the most vulnerable individuals 
likely being at higher risk of errors and accidents. Prediction of 
an individual’s alertness during shiftwork is therefore critical 
for the design of alertness-safe work schedules, development of 
interventions, and personalized management of shiftwork.

Mathematical models have been developed to capture the 
dynamics of the key physiological processes underlying the 
human sleep-wake cycle and subsequent effects on alertness 
[10–29]. Models of alertness provide a predictive framework to 
guide shift design and interventions to potentially alleviate the 
negative impacts of shiftwork. The challenge of applying these 
models is in producing accurate predictions under real-world 
shiftwork conditions, which incorporate the interplay of physi-
ology, environment, exposure to stimulants, behavioral choices, 
and inter-individual differences.

Accurate prospective predictions of alertness require pro-
spective predictions of circadian timing and sleep [23] (note 
that here and in the following we refer to alertness as a gen-
eric cognitive property—not a specific measure or test). Several 
existing two-step alertness models predict sleep based on the 
work-rest schedules of individual shiftworkers and then pre-
dict alertness using these sleep times [15, 24, 30–37]. Conversely, 
one-step models use reported sleep as a model input to predict 
alertness, which is retrospective by design [38, 39]. So far, pub-
lished models have not considered simultaneous prediction of 
both sleep and circadian timing and their effects on alertness 
in shiftworkers. Similarly, inclusion of individual-specific light 
exposure has not yet been studied.

There are two key groups of factors that affect an individual’s 
alertness during real-world shiftwork and lead to inter-
individual variability. One group consists of the environmental 
and behavioral influences, such as, shift schedules, lighting, 
commuting, task on shift, use of stimulants, stress, and social 
and behavioral choices [1, 5, 30, 31, 37]. The other group con-
sists of an individual’s endogenous physiological parameters, 
manifesting in their chronotype, response to sleep deprivation, 
habitual sleep times, sensitivity to light and sleep disorders, to 
name a few [7, 8, 40–42]. The physiological differences are best 
highlighted in controlled laboratory experiments, for example 
during a “constant routine,” where the environmental and be-
havioral influences are kept the same for all participants [43]. 
In real-world shiftwork the effects of the environmental and 
physiological differences are mixed, making individual predic-
tions a challenging task [17, 44, 45].

The aim of this study was to test our model of arousal dy-
namics for real-world shiftwork applications by comparing its 
predictions for sleep, circadian phase and alertness with data 
collected from a cohort of intensive care unit (ICU) nurses en-
gaged in rotating shiftwork. In the terminology of alertness 
models, our model of arousal dynamics is a three-step model 
as it predicts sleepiness and performance from model-predicted 

sleep and circadian phase. In this work, we use the model with 
default parameter settings, representing group average or a 
“typical” individual [12, 46, 47], assuming no knowledge about 
participants’ physiology. We focus on the impact of the different 
environmental constraints in which the model is evaluated. 
Specifically, we include shift schedules, times that individuals 
need to be awake before/after work including both the com-
mute and preparation for work/rest (labeled “commute”), and 
individual-specific light exposure. We also investigate how pre-
dictions of alertness and circadian phase are affected by using 
individual reported sleep times.

Methods

Experimental protocol and data collection

Data were collected for 2–3 weeks from nursing staff working 
rotating shifts in the ICU at Austin Health, Australia [48–52]. The 
study was conducted during usual hospital operation with no 
manipulation of shift or sleep-wake times. Shift patterns were 
comprised of day (07:00–15:30), evening (13:00–21:30), and night 
(21:00–07:30) shifts, and days off. Typically, participants were 
studied when they had a diurnal schedule (series of day and 
evening shifts and days off) followed by a nocturnal schedule 
(≥3 consecutive night shifts). Other shift combinations were also 
included, such as schedules with day and evening shifts only, 
and schedules with blocks of night shifts separated by days off. 
The details of the protocol and data collection have been pub-
lished previously [48–52].

Participants recorded their sleep and shift schedules in 
daily logs and wore wrist-actigraphs measuring activity and 
light (photopic illuminance) at 1-min resolution (Actiwatch 
Spectrum, Respironics, Bend, OR, USA). Self-reported sleep times 
were checked against actigraphy to verify that reported sleep 
coincided with low activity levels. Circadian phase was assessed 
from the acrophase (peak) of urinary 6-sulphatoxymelatonin 
(aMT6s) rhythms during both the diurnal schedule and night 
shifts. An alertness and performance test battery was adminis-
tered on a day shift during a diurnal schedule and the first and 
the last night shifts during a nocturnal schedule. Relevant to 
this analysis, the tests included subjective sleepiness ratings on 
the Karolinska Sleepiness Scale (KSS, 1 = “very alert” to 9 = “very 
sleepy”) and 5-min visual Psychomotor Vigilance Task (PVT) 
measuring sustained attention [29]. The tests were performed 
2–3 times during the shifts, at the start, middle and end of 
shift. Nurses missing data for either shift and sleep logs, aMT6s 
acrophase, actigraph light or KSS and PVT, as well as nurses 
who experienced daylight saving time (DST) transition during 
the shiftwork protocol, were excluded from the modelling study. 
The final set of participants included 21 nurses (16 female), aged 
33.14 ± 9.34 years.

Assessment of model predictions

Model structure
Our model of arousal dynamics [12, 46] was used to predict 
sleep, circadian phase, subjective sleepiness (KSS) and ob-
jective performance (PVT) under a range of individual en-
vironmental and behavioral constraints. The schematic in  
Fig. 1 shows the key model structures relevant to this analysis. 
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Inputs provided to the model act either to keep the sleep-
wake switch in a wake state (forced wake) or provide light 
input (light) to the central circadian clock. Sleep is predicted 
to occur when the modelled homeostatic and circadian drives 
combine to cause the electrical activity of the wake-active 
monoaminergic nuclei (MA) to fall below a critical threshold. 
Circadian phase is calculated based on predicted daily profiles 
of urinary aMT6s, the major metabolite of pineal melatonin, 
considered a reliable marker of the central circadian pace-
maker. Sleepiness and performance measures in the model, 
including KSS and PVT, depend on the combined action of the 
homeostatic drive due to time awake and the circadian drive 
controlled by the suprachiasmatic nucleus (SCN) of the hypo-
thalamus. Model equations and parameters have been pub-
lished previously [12, 46].

Default model dynamics
In the absence of specified forced-wake episodes and light input, 
the model’s default parameter configuration produces a 24-h 
sleep–wake cycle with ~8.5 h sleep starting at ~23:30. The default 
24-h light cycle is set to 250 lux from 08:00 to 20:00 and 40 lux at 
other times if awake, while during sleep light is set to 0 lux [12, 
46, 47]. Default entrained initial conditions for model variables 

were used for all constraints without light input (i.e. those la-
beled Shift, Shift+Commute, and Sleep, as described in the following 
section). To set the model’s initial conditions for evaluation under 
specific lighting conditions (identical for all participants), sleep-
wake cycles were simulated for 1 week prior to the start of shift 
schedules using an average light-profile derived from all partici-
pants during day-shifts.

Protocol simulations and input combinations
The dynamics of each participant were simulated for the en-
tire duration of their monitored shift schedule and compared to 
their experimental data for sleep, circadian phase, and alertness. 
To assess what input information produces the most accurate 
predictions, four shift-based combinations of input constraints 
were tested:

 (i) Shift: Each individual’s shift schedule was the only input 
to the model, which was implemented by imposing forced 
wakefulness during shifts.

 (ii) Shift+Commute: Each individual’s shift schedule and esti-
mated commute times were provided as inputs to define 
times of forced wakefulness. For this study, commute 
times were defined as the times the participants had to be 
awake before/after shifts and include both commute and 
getting ready for work/rest. These were estimated for each 
participant by taking the median time between wake and 
start of day shift (07:00) for duration of commute to work 
and the median time between end of night shift (07:30) 
and start of sleep for commute from work. Commute times 
of >2.5 h were considered outliers and were excluded from 
the calculation.

 (iii) Shift + Light: Each individual’s light exposure from the 
actigraph was provided as an input along with their shift 
schedule. Any gaps in the light data (median of 11% of 
protocol data across individuals), were filled with average 
light profiles across all nurses for the relevant shift or shift 
transition type.

 (iv) Shift + Commute + Light: Combination of the three con-
straints above. This imposed forced wakefulness during 
both shift and commute to/from work times and added an 
individual’s light exposure.

To investigate how individual self-reported sleep affects model 
predictions, we tested two additional input constraints:

 (v) Sleep: Each individual’s self-reported sleep times, in-
cluding naps, were provided as the only model input. This 
enforced wakefulness at all times except for the sleep 
opportunity starting 15  min before the self-reported 
sleep. Self-reported sleep rather than actigraphy-based 
rest-activity times were used because actigraphy fails to 
distinguish between sleep and immobility during quiet 
wakeful rest.

 (vi) Sleep + Light: Each individual’s light exposure from 
actigraphy was added as an input together with their self-
reported sleep.

For each participant we ran six simulations, one for each of 
these constraints, and compared predictions to experimental 
data. For each input combination, mean prediction errors were 
calculated by averaging errors across all participants.

Figure 1. Key components of the model of arousal dynamics. Light activates 

photoreceptors in the eye, which transmit activation to the central circadian 

clock in the suprachiasmatic nucleus (SCN). The circadian drive from the SCN 

suppresses the sleep-active neurons in the ventrolateral preoptic nucleus 

(VLPO), thereby reducing inhibition of the wake-active monoaminergic neurons 

in the hypothalamus and brainstem (MA). MA has mutually inhibitory connec-

tions with the VLPO, so only one population is active at a time. Activation of the 

MA leads to increase of the homeostatic sleep drive, which together with the 

circadian drive from the SCN produce a total sleep drive controlling the switch 

between sleep and wake. The homeostatic and circadian drives together deter-

mine alertness levels. When MA is inactive, sleep state is predicted by the model 

and the eyelids are closed so the light input is reduced to zero. SCN controls syn-

thesis of melatonin, which is released to blood circulation, diffused to saliva and 

metabolized into 6-sulphatoxymelatonin (aMT6s) which is excreted in the urine. 

Circadian phase markers, including aMT6s acrophase and dim light melatonin 

onset (DLMO) are calculated from the hormone profiles. Shifts and commute are 

simulated by keeping MA awake.
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Sleep overlap
To quantify the quality of sleep predictions with each of the six 
input constraints we evaluated how well the model’s predictions 
overlap with the participant-reported sleep during the entire 
study. Minute-by-minute sleep-wake state in the model and in 
the study data were compared to obtain two different percent-
ages: state percentage overlap, which considers any time when 
both model and participants report the same state and con-
verts that to a percentage of total duration; and sleep percentage 
overlap, which only considers times when both model and parti-
cipants report sleep and converts that to percentage of the total 
sleep time, where total sleep time is taken to be whichever is 
maximum between the model and study data—this definition 
being necessary to avoid a model that predicts continuous sleep 
being identified as having 100% overlap with the study-data.

The percentage values, however, are susceptible to biases 
that can produce misleading interpretations. For example, the 
state percentage overlap on a day with 8 h sleep in both model 
and data cannot fall below ~33%. These measures would also re-
port false misalignment in cases of missing data. For this reason, 
we also included surrogate normalized values for the overlap be-
tween participant-reported and model-predicted sleep. These 
provide improved discrimination while avoiding the potential 
misinterpretations.

The steps to calculate the surrogate normalized values 
were to (1) generate large numbers of surrogate datasets by 
resampling original self-reported sleep data. The re-sampling 
preserved the distributions of the total sleep times between 
shifts across all data while randomizing over individuals, their 
past schedule, and specific timing of sleep episodes. The re-
sulting datasets thus include all the original sleep durations 
between pairs of shift types but distributed randomly across 
individuals. (2) Compute sleep overlap between 4,096 surrogate 
datasets and the original study data, resulting in a distribution 
of sleep overlap percentages. The large number of datasets is 
needed to accurately determine mean overlap values. (3) Rescale 
the percentage sleep-overlap obtained for the model using the 
mean percentage sleep-overlap from 4,096 surrogate datasets. 
With this approach, the surrogate normalized sleep overlap can 
take values less than or equal to 1. A value of zero means the 
model prediction has equivalent predictive power to the surro-
gate (i.e. to re-sampled original data), negative values indicate 
the model has less predictive power than the surrogate, while 
positive values indicate the model has greater predictive power 
than the surrogate—a value of one means perfect prediction by 
the model.

Day partitioning for sleep distributions
For calculation of sleep distributions, the simulated and the 
experimental data for all participants were partitioned by 
uniquely assigning each calendar day to one of four day types 
based on the shift that starts that day: day shift (D); night shift 
(N); evening shift (E); or day off (O). Day-type (and thus tran-
sition) definitions were based on what shift, if any, started on 
a given calendar day (00:00 to 23:59). If no shift started during 
that 24-h episode, then that day was counted as a day-off. To 
consistently assign boundaries to shift transitions, and enable 
consistent counting of sleep episodes, days off were given an 
effective “shift” boundary at 12:00. The resulting sequence was 
used to group sleep episodes by the shift transition type they 
occur within. Only the transitions that appeared three or more 

times across the study data set were included, resulting in 12 
out of a possible 16 shift-to-shift combinations.

Circadian phase
The model predicts melatonin and aMT6s dynamics as well 
as circadian phase markers derived from them. For aMT6s 
acrophase prediction, the predicted urine quantity of aMT6s 
for each individual was sampled by averaging over two-hour 
blocks—equivalent to taking urine samples every two hours 
[46]. A  nonlinear least-squares fit of a cosine function to the 
two-hour averages was then performed to obtain predictions of 
circadian acrophase on each day for comparison to the experi-
mental data. In the experiment urinary aMT6s acrophase was 
measured across 1–2 days during the diurnal schedule including 
day/evening shifts and days off, and also across 1–2 days at the 
end of the nocturnal schedule (night shifts only), typically on a 
third or fourth night shift. The same measurements were per-
formed in the model. Phase change was calculated as the dif-
ference between aMT6s acrophase on the diurnal and nocturnal 
schedules.

Alertness
The model produces predictions of sleepiness and perform-
ance measures (collectively we call it alertness throughout the 
paper), including KSS scores and PVT reaction times (PVT RT) 
on a 10-min test as described in detail in a previous publica-
tion [12]. To compare with the study data, prediction values were 
taken at the same times on the protocol as the experimental 
measurements. The non-integer KSS values in the model were 
rounded to the closest integer value. For calculation of average 
KSS profiles the data were binned into 3-h bins resulting in four 
bins for day shifts and five bins for night shifts. Direct quantita-
tive comparison to study data was only possible for KSS. In the 
experiment PVT was measured in a 5-min test (as opposed to 
10-min in the model), so only qualitative comparison was in-
cluded for PVT.

Results
Model predictions of sleep, circadian phase, and alertness were 
compared against data collected from ICU nurses engaged in 
shiftwork. Six different input constraints were tested to in-
vestigate how well individual-specific constraints can explain 
shiftwork dynamics using a typical individual model that was 
previously calibrated on group average data. Statistics for all six 
input constraints are presented in the Tables, while figures show 
results for representative constraints of Shift, Shift + Commute + 
Light, and Sleep.

Sleep

On average, model performance predicting self-reported sleep is 
similar for all Shift-based constraints, demonstrating only minor 
differences in sleep overlap values (Table 1). Importantly, even 
minimal information (i.e., Shift constraint) was sufficient for the 
model to outperform the surrogate datasets as shown by the 
positive surrogate normalized values of 0.53± 0.15 (73± 12 % 
and 87±5 % for sleep overlap and state overlap, respectively). 
This value was similar when light was added as a model input 
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(Shift + Light) but decreased when commute information was 
used (Shift + Commute and Shift + Commute + Light). The results 
for the sleep-based constraints (Sleep and Sleep + Light) are re-
ported for completeness. As expected, restricting sleep oppor-
tunity time in the model based on the sleep diary data for each 
individual resulted in near perfect prediction of sleep times 
with mean surrogate normalized values of 0.90± 0.06. They are 
not identical, however, because the model predicts sleep only 
when the sleep drive is sufficiently high during the defined sleep 
opportunity window.
Individual sleep overlap. The degree of overlap for the shift-based 
constraints between model and data was different across indi-
viduals, as shown in Figure 2. For example, when using the Shift 
+ Commute + Light constraint the surrogate normalized values 
vary from 0.04 for participant 69 to 0.68 for participant 42. The 
overall trend is similar for the overlap values for Shift and Shift + 
Commute + Light constraints in Figure 2, a–c but there are differ-
ences. Normalized sleep overlap values are >0.1 higher for par-
ticipants 69, 81, 13, and 77 when using Shift vs. Shift + Commute + 
Light constraint, while the opposite is true for participant 65. The 

Sleep constraint results in high individual overlap values, which 
are also varied across individuals. The three different overlap 
measures show similar dynamics, but their ordering of overlap 
values from lowest to highest is not identical.

To illustrate the source of differences in the overlap values 
under different constraint conditions, the raster plots in Figure 
3 show predicted and self-reported sleep for four representative 
participants with high (ID 12), medium (ID 53), and low (IDs 69 
and 58) overlap values under the Shift, Shift + Commute + Light, 
and Sleep constraints. A weakness of the Shift constraint for all 
participants is that it does not capture the awake time straight 
before day and after night shifts (Figure 3, left panels). This is 
corrected with the Shift + Commute + Light constraint in, but 
also leads to earlier sleep onset on diurnal schedules (Figure 3, 
middle panels). Using the Sleep constraint leads to near iden-
tical sleep between the model and the data for all participants. 
Daytime naps in participants 53 and 58 are not reproduced by 
any of the model constraints used here, because accumulated 
sleep debt is predicted to remain below the sleep threshold. 
Conversely, naps during night shifts for participant 53, Figure 3, 
d–f, are reproduced with the Sleep constraint, but not with the 
Shift-based constraints, because these impose forced wakeful-
ness during shifts. Participant 58 in Figure 3, g–i did not report 
sleep on days 8–10 and reported short sleep duration on the 
other days. As a result, the overlap between the model and the 
data is low for all Shift-based constraints where sleep prediction 
is free outside of shifts, but the overlap is high for the Sleep con-
straint. For participant 69, Shift constraint in Figure 3, j produces 
reasonable prediction with the surrogate normalized overlap 
of 0.31, but the predicted sleep starts and ends earlier than the 
self-reported times. Addition of commute and light information 
in Figure 3, k further advances sleep onset time, resulting in a 
large discrepancy with the data for this participant (normalized 
overlap of 0.04).
Sleep distributions. Sleep distributions in Figure 4 allow us 
to assess how well the model predicts sleep-wake patterns 
across all participants and shift transitions. For nine of the 
12 shift transitions, Figure 4, a–i, all Shift-based constraints 
predicted a main peak in sleep distributions at the same time 
as that observed in the study data. The addition of Commute 
information allowed for better alignment of the model-
predicted sleep onset time with the study data during NN and 
NO transitions, with predicted distributions rising through 
50% sleeping within 15 min of the study-data, while without 
Commute there is more than 1 h difference, (Figure 4, e, f, and 
i). Similarly, it allowed for a better alignment of the predicted 
wake onset with the study data during transitions to day shift, 
again improving from more than 1 hour difference at the 

Table 1. Sleep-wake overlap between the model and the study data. Surrogate normalized and percentage overlap between model and study 
data (mean ± SD). The first column indicates the context used for the model’s evaluation; the next column presents surrogate normalized 
values for the sleep-only percentage overlap. The remaining two columns are direct percentage overlap values, the first for sleep only state and 
the second for sleep–wake states

Evaluation constraint Sleep [surrogate normalized] Sleep (%) Sleep–wake state (%)

Shift 0.53 ± 0.15 73 ± 12 87 ± 5
Shift + Light 0.53 ± 0.17 73 ± 12 87 ± 5
Shift + Commute 0.39 ± 0.19 66 ± 14 81 ± 6
Shift + Commute + Light 0.49 ± 0.18 71 ± 13 85 ± 5
Sleep 0.90 ± 0.06 94 ± 3 98 ± 1
Sleep + Light 0.90 ± 0.06 95 ± 3 98 ± 1

Figure 2. Overlap between the model-predicted and self-reported indi-

vidual sleep. Comparisons for three evaluation constraints are shown: Shift, 

Shift+Commute+Light and Sleep. (a) Surrogate normalized overlap for partici-

pants, (b) sleep overlap, and (c) sleep-wake state overlap. The participants on the 

X-axes in all panels are ordered from low to high of the surrogate normalized 

overlap values for Shift + Commute + Light condition.
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Figure 3. Example raster plots comparing predicted and self-reported sleep during shiftwork schedules. Three evaluation constraints are illustrated: Shift in the left 

column, Shift + Commute + Light in the middle, and Sleep in the right. (a–c) Raster plots for participant 12 for Shift, Shift + Commute + Light, and Sleep constraints; (d–f) raster 

plots for participant 53; (g–i) raster plots for participant 58; and (j–l) raster plots for participant 69. Panel titles show participant ID, surrogate normalized sleep overlap 

(0–1), percentage sleep overlap, and percentage state overlap.
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50% sleeping mark to only 15 min difference when including 
Commute (OD, ED, and DD in Figure 4, c, i, and l). For the day 
shift to day off, evening and day shifts (DO, DE, and DD in 
Figure 4, j–l), the addition of commute and light led to worse 
agreement between the model and the data, compared to use 
of the shift schedules alone, due to the advance of sleep onset 
and wake times. This resulted in a longer sleep duration in the 
model compared to the study data on these shift transitions. 
Overall, sleep duration was well predicted by the model as 
seen from the distribution overlaps (see Supplementary Table 
S1 for quantitative data).

The transition from day off to night shifts (ON in Figure 4, d) 
features a second smaller peak of 38% in the distribution, ap-
pearing at around 16:00. This indicates a second sleep episode, a 
nap, which appears between the end of the main night-time sleep 
and start of the night shift. This nap is also seen in the raster plots 
for the participants 53 and 58 in Figure 3. The modelpredicted 
distribution does not have this second peak, indicating that the 
nap is not reproduced for any of the participants.

Circadian phase

Of the 21 nurses, 16 were monitored during both diurnal 
(day/evening shifts and days off) and nocturnal (night shifts) 

schedules and have acrophase reported for both schedules. 
Two nurses were on both diurnal and nocturnal schedules but 
missing acrophase measurement on one of them, and three 
were on diurnal schedules only (Table 2 and Figure 5). For most 
evaluation constraints, during both diurnal and nocturnal 
schedules, the model predicts average aMT6s acrophase at a 
later time than that observed in the data (Table 2). The largest 
mean absolute error is obtained using the Shift constraint, with 
the values of 1.26±1.02 h and 3.01± 2.98 h for the diurnal and 
nocturnal schedules, respectively. The errors are reduced once 
individual light information is added to the model. The lowest 
mean absolute error on the diurnal schedule is obtained for the 
Shift + Commute + Light constraint (0.87±0.83 h), closely followed 
by Sleep + Light (0.90±0.88 h) and Shift + Light (0.96±0.84 h). For 
the nocturnal schedule the lowest absolute error is for Sleep 
+ Light constraint (1.41±1.19  h), followed by Shift + Commute + 
Light (1.42±1.19 h) and Sleep (1.45±1.82 h). Shift + Light produces 
the lowest absolute prediction error (1.31±1.13 h) for the phase 
change followed by Sleep, Shift + Commute + Light, and Sleep + 
Light, while the Shift condition results in the highest absolute 
error and standard deviation of the error (3.05±4.22 h).
Individual phase predictions. The later prediction of mean 
acrophase on the diurnal schedule compared to the study data 
comes from approximately half of the participants, IDs 40–69 in 
Figure 5a, while there is better overlap for the other participants 
(IDs 23-13). One participant’s (81) acrophase is predicted ~2.2 h 
earlier than the data. Inclusion of individual light reduces the 
discrepancy between the model and the study data for 14 out 
of 20 participants, with the percentage of individual acrophases 
predicted within ±1 h of the data increasing from 50% for Shift 
and Shift + Commute, and 55% for Sleep to 65% for Shift + Commute 
+ Light, Shift + Light, and Sleep + Light. On the nocturnal schedule 
in Figure 5b, both Shift and Sleep conditions result in a wider 
range of discrepancy between the model and the data (e.g. see 
ID 67, 40, 65) compared to the Shift + Commute + Light case. The 
percentage of participants’ acrophase predicted within ±1  h 
was lowest for Shift at 29% and highest (53%) for both Sleep and 
Sleep + Light, followed closely by Shift + Commute + Light (47%). For 
the phase change in Figure 5c, of the 16 participants who were 
studied under a diurnal and then a nocturnal shift schedule, 11 
delayed, three did not change (phase shift less than 15 min), and 
two advanced. All evaluation constraints reproduce the direc-
tion of change for a majority of participants (12–13 out of 16 de-
pending on the constraint used).

Alertness

The model predicts sleepiness and performance using a 
linear weighted sum of the homeostatic and circadian drives 
(Postnova et al., 2018), so that both sleep and circadian phase 
predictions feed into the prediction of subjective sleepiness on 
the Karolinska Sleepiness Scale (KSS) and sustained attention 
measured with the Psychomotor Vigilance Task (PVT).
Subjective sleepiness, KSS. The absolute prediction error for KSS 
and its standard deviation were similar across all six evalu-
ation constraints for both day and night shifts (Table 3). On the 
day shift the mean absolute prediction error varied from 1.45±
0.99 for Shift + Commute + Light to 1.55±0.96 for Sleep. On the 
night shift the lowest absolute errors of 1.50±1.11 and 1.51±
1.04 were obtained with the Shift + Light and Shift + Commute 
+ Light constraints, while the highest errors of 1.64±1.30 and 
1.66±1.28 were obtained with Sleep and Sleep + Light constraints 
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Figure 4. Comparison of predicted and reported sleep distributions for 

common shift to shift transitions. Model predictions are shown for Shift and 

Shift+Commute+Light inputs. Shifts notation is: D ⇒ day shift; E ⇒ evening shift; 

N ⇒ night shift; and O ⇒ day off. (a) Sleep distribution for the day off to day off 

transition, OO; (b) day off to evening shift, OE; (c) day off to day shift, OD; (d) day off 

to night shift, ON; (e) night shift to night shift, NN; (f) night shift to day off, NO; (g) 

evening shift to day off, EO; (h) evening shift to evening shift, EE; (i) evening shift 

to day shift, ED; (j) day shift to day off, DO; (k) day shift to evening shift, DE; (l) day 

shift to day shift, DD. The Y-axis shows percentage of participants sleeping at any 

time between shifts of a given type. The white background indicates the time be-

tween a shift end and the subsequent shift start. The title for each panel contains: 

transition-type; and number of transitions with reported sleep/total number of 

transitions. Sleep-based inputs produce predicted distributions that are almost 

identical to the study data—therefore, those results are omitted from the figure.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab146#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab146#supplementary-data
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respectively. Overall, there is no one inputs constraint combin-
ation that is decidedly better than others—all produce similar 
prediction errors. The differences in the absolute error between 
constraints are small compared to the standard-deviation of ab-
solute error for each constraint. The mean (not absolute) error is 
less than 1 KSS score for all input constraints, but the standard 
deviation ranged from 1.75 to 2.09. The percentage of partici-
pants’ KSS scores predicted within ±1 varied between 56% and 
60% on the day shifts and 48% and 52% on the night shifts.

The averaged KSS profiles in Figure 6, a, c show nearly flat 
KSS across the day shift and rising KSS values during the night 
shift for both the model and the data. The biggest discrepancy 
in the predicted and experimental average profiles was observed 
during the first 3 h of the day shift where higher KSS is reported 
in the study data compared to the model.

On the day shift in Figure 6, b, three out of 20 participants 
reported increased sleepiness (IDs 24, 67, 13) towards the end 
of the shift, four reported no change (IDs 26, 40, 65, 69)  and 
the remaining 13 participants reported a decrease of sub-
jective sleepiness. The model predicts a narrower range of KSS 
change on the day shift than that seen in the study data. All 
input constraints result in either no change in KSS between 
the start and end of the day shift or an increase of KSS to-
wards the shift’s end as the homeostatic drive increases. The 
individual KSS trend on the day shift is correctly predicted for 
seven participants. The discrepancy is likely explained by the 
lack of sleep inertia component in the model. Conversely, on 
the night shift (Figure 6, d) the model predicts an increase of 
KSS towards the end of the shift for all participants, which 
agrees with the data for 12 of the 17 participants. The overall 
change of KSS is better predicted on the night shift than on 

the day shift, which is also reflected in the lower absolute 
error and standard deviation of the error on the night shift 
for Shift, Shift + Light, Shift + Commute + Light, and Sleep + Light 
constraints (Table 3).
Objective performance, PVT. Direct quantitative comparison for pre-
dicted and experimentally measured PVT outputs is not feasible 
in this study because the model was calibrated for a 10-min test 
while the experimental study reported results for a 5-min test. It 
is useful, however, to compare qualitative trends for changes in 
PVT metrics during shifts, i.e. increase, decrease or no change, as 
these should not be strongly affected by the duration of the test.

Figure 7 shows mean PVT reaction times (RT) for the group 
average and change in PVT RT for individuals as predicted by the 
model (10-min test) and measured in the experiment (5-min) on 
the day and night shifts. The study data shows nearly flat group 
average PVT RT on the day shift (Figure 7, a), but an increasing 
trend on the night shift (Figure 7, c). This is reproduced by the 
model with a weak decrease of RT predicted on the day shift 
(~60 ms range) compared to stronger increase on the night shift 
(~500 ms range). Individual PVT RT on the day shift (Figure 7, b) 
decreased for 11 nurses and increased for nine. The model cor-
rectly predicted these trends for 11 of the 20 participants when 
using Sleep-based and Shift + Commute + Light constraints, and 
for 13 participants when using the other Shift-based constraints. 
On the night shift, Sleep-based constraints and Shift + Commute 
+ Light predicted an increase in PVT RT on the night shift for all 
18 individuals. Overall, the increase of PVT RT on night shifts is 
correctly predicted for 10 of the 17 participants but the range 
of change in the data are much smaller because of the shorter 
test duration.. Similar dynamics were observed for PVT lapses 
(Figure S1).

Table 2. Comparison of study data and model predictions for the urinary aMT6s acrophase. aMT6s was measured during the diurnal (day and 
evening shifts) and nocturnal (night shifts) schedules. The rows include mean and standard deviation (std) of error and absolute error and the 
percentage of individual predictions that fall within plus minus one hour of the study data

Diurnal  
(N = 20)

Nocturnal  
(N = 17)

Phase change  
(N = 16)

Study data Mean acrophase ± SD (h) 3.86 ± 1.35 4.78 ± 1.77 −1.15 ± 1.83
Shift Mean acrophase ± SD (h)  

Mean error ± SD /9h)  
Mean absolute error ± SD (h)  
Percent within ± 1 h

4.88 ± 0.32  
−1.02 ± 1.27  
1.26 ± 1.02  
50 %

7.73 ± 2.45  
−2.95 ± 3.04  
3.01 ± 2.98  
29 %

−1.63 ± 5.38  
−0.48 ± 5.24  
3.05 ± 4.22  
31%

Shift + Light Mean acrophase ± SD (h)  
Mean error ± SD (h)  
Mean absolute error ± SD (h)  
Percent within ± 1 h

4.37 ± 0.39  
−0.51 ± 1.16  
0.90 ± 0.88  
65 %

5.29 ± 0.51  
−0.51 ± 1.89  
1.55 ± 1.13  
35 %

−0.95 ± 0.80  
0.20 ± 1.75  
1.31 ± 1.13  
50%

Shift + Commute Mean acrophase ± SD (h)  
Mean error ± SD (h)  
Mean absolute error ± SD (h)  
Percent within ± 1 h

4.51 ± 0.66  
−0.65 ± 1.27  
1.10 ± 0.89  
50 %

6.04 ± 2.49  
−1.26 ± 2.85  
2.21 ± 2.14  
35 %

−1.82 ± 2.30  
−0.67 ± 2.55  
1.91 ± 1.76  
44%

Shift + Commute + Light Mean acrophase ± SD (h)  
Mean error ± SD (h)  
Mean absolute error ± SD (h)  
Percent within ± 1 h

4.22 ± 0.46  
−0.36 ± 1.16  
0.87 ± 0.83  
65 %

4.74 ±0.63  
0.04 ± 1.89  
1.42 ± 1.19  
47 %

−0.55 ± 0.82  
0.61 ± 1.61  
1.38 ± 0.97  
50%

Sleep Mean acrophase ± SD (h)  
Mean error ± SD (h)  
Mean absolute error ± SD (h)  
Percent within ± 1 h

4.70 ± 0.36  
−0.85 ± 1.28  
1.15 ± 1.00  
55 %

5.95 ± 1.65  
−1.17 ± 2.02  
1.45 ± 1.82  
53 %

−1.50 ± 1.40  
−0.35 ± 1.88  
1.35 ± 1.31  
50%

Sleep + Light Mean acrophase ± SD (h)  
Mean error ± SD (h)  
Mean absolute error ± SD (h)  
Percent within ± 1 h

4.39 ± 0.42  
−0.53 ± 1.17  
0.96 ± 0.84  
65 %

4.78 ± 1.77  
0.01 ± 1.88  
1.41 ± 1.19  
53 %

−0.46 ± 0.86  
0.69 ± 1.64  
1.41 ± 1.05  
44%

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab146#supplementary-data
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Discussion
In occupational settings it is often necessary to predict alert-
ness on future shift schedules to guide development of safe 
rosters and minimize risk of accidents and errors at work. This 
requires prospective prediction of alertness and thus requires 
prospective prediction of sleep and circadian timing [33]. The 
Shift-based constraints in our model allow for such prospective 
predictions and we used Sleep-based constraints for com-
parison. As expected, Sleep and Sleep + Light resulted in higher 
sleep overlap values (e.g. normalized overlap of 0.90 ± 0.06 for 
Sleep, see Table 1 for corresponding percentage values) but Shift-
based constraints performed well too with normalized overlap 
for Shift being 0.53  ± 0.15. Likewise, the Sleep- and Shift-based 
constraints produce similar KSS prediction errors on both day 
and night shifts, and similar qualitative trends for objective per-
formance measured with PVT. The model with Shift-based con-
straints predicted up to 60% of KSS scores within ±1 on the day 
shift and up to 52% on the night shift, while using Sleep resulted 
in 56% and 48% respectively. For circadian phase, light is the key 

input needed to reduce prediction error with both Shift- and 
Sleep-based constraints producing similar results when light 
was included. The model using Shift + Commute + Light, and Sleep 
+ Light predicted 65% of acrophase values within ±1 h of study 
data on the diurnal schedule and 47% vs. 53% on the nocturnal 
schedule, respectively.

Several other models previously tested predictions of both 
sleep and alertness in shiftwork settings [15, 30–35, 53, 54]. The 
three-process model was calibrated to predict group average 
sleep [35] and applied to predict KSS scores during rapidly ro-
tating shift schedules of paper mill workers [34]. This study used 
shift times as input and showed accurate predictions for KSS 
on night and afternoon shifts but not on the morning shifts. 
Similarly to our study they found that using individuals’ sleep 
times as an input does not improve predictions of KSS com-
pared to using shift information only. This model was further 
modified and applied to predict KSS and sleep in aircrew [15]. 
Individual predictions, however, were not reported. Similarly, 
Darwent et  al. [24, 32, 33] developed a probabilistic model to 
predict sleep distributions in pilots during transmeridian flight 
schedules [32], which was later adjusted and calibrated based 
on data from train drivers [33]. When using the train drivers’ 
shift times as the only input their model predicted sleep-wake 
percentage overlap of 85% across all participants. Predictions of 
alertness, however, were not presented. We found similar state 
overlap values for our group of ICU nurses when using Shift con-
straint (87 ± 5%). Addition of other constraints had marginal im-
pact on the sleep overlap.

Circadian phase is the second physiological factor 
determining alertness dynamics, together with sleep. Most 
alertness models do not include prediction of individual cir-
cadian phase. In our study, the most accurate circadian phase 
predictions were obtained when light was used as one of the 
input constraints. Further improvement in predictions is likely 
with access to a longer period of light data for diurnal schedules 
to entrain the model’s circadian pacemaker. In this study only 
3–6 days of data were typically available before the first circadian 
phase prediction. We had previously tested different models for 
their ability to predict individual circadian phase in real-world 
shiftworkers and healthy nocturnal sleepers [51, 52, 55]. The 
limit cycle oscillator model with photic and non-photic time 
cues (the same as the circadian component in the current ana-
lysis) showed the lowest prediction error for aMT6s acrophase 
during shiftwork [51]. Compared to that earlier limit cycle oscil-
lator study, the current model predicted a later mean circadian 
phase compared to the study data on the diurnal schedule and 
demonstrated slightly larger prediction error. This comes from 
(1) using a slightly different set of participants to allow analysis 
of sleep distributions (we did not include registrars on 12 h/12 h 
schedules), and (2) having different initial conditions in the two 
models. In Stone et  al.[51] we used the average diurnal mid-
sleep time to fit initial conditions for each individual, while in 
the present study we assumed no knowledge of future dynamics 
at the start of simulations.

Most discrepancies between our model predictions and the 
study data were seen for individuals whose dynamics can be 
described as atypical, e.g., short habitual sleep time, earlier/
later habitual sleep, or high sleepiness on diurnal schedules. 
There are, however, some systematic errors in the model pre-
dictions. One is the failure to predict naps before night shift 
when transitioning from a day off. Nearly a third of participants 

Figure 5. Comparison of study data and representative model predictions for 

aMT6s acrophase. Model predictions for three evaluation constraints are shown: 

Shift, Shift + Commute + Light and Sleep as indicated in the legend. (a) aMT6s 

acrophase data and predictions for participants during diurnal schedule. (b) 

aMT6s acrophase data and predictions for participants during night shifts, i.e. 

nocturnal schedule. (c) Acrophase difference between the diurnal and nocturnal 

schedules. Negative values correspond to phase delay and positive to phase ad-

vance. Only 16 of the 21 participants have both diurnal and nocturnal acrophase 

data. Participant 11 did not have acrophase measured on the diurnal schedule, 

12, 24, and 69 did not have night shifts, and 23 had night shifts but acrophase 

was only measured for the diurnal schedule.
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demonstrate this behavior, which is not replicated in the model. 
A similar shortcoming was observed in the three-process model 
[34]. A potential explanation is that this afternoon nap is choice-
driven (as opposed to a physiological need) in preparation for 
the night shift to ensure shorter time since wake while on shift. 
Another discrepancy is that the model predicts lower average 

KSS values at the start of the day shift compared to the study 
data. This is likely explained by sleep inertia experienced by the 
participants due to early start of the shift relative to their circa-
dian timing, which is not yet incorporated in our model.

So far, none of the existing alertness models have demon-
strated individual predictions that account for differences in 

0 3 6 9 12 15 18 21 0
1

3

5

7

9

K
S

S

(a) Day shift, average

0 3 6 9 12 15 18 21 0

Clock time [h]

1

3

5

7

9

K
S

S

(c) Night shift, average

11 12 13 23 24 25 26 28 34 36 40 42 53 58 60 62 65 67 69 77 81

-4

-2

0

2

4

K
S

S
 C

ha
ng

e

(b) Day shift, change, individuals

11 12 13 23 24 25 26 28 34 36 40 42 53 58 60 62 65 67 69 77 81
Participant ID

-4

-2

0

2

4

K
S

S
 C

ha
ng

e

(d) Night shift, change, individuals

Data Shift Shift+Commute+Light Sleep

Figure 6. Comparison of study data and model predictions for subjective sleepiness on the KSS. Model predictions for three evaluation constraints are shown: Shift, 

Shift + Commute + Light, and Sleep. (a) Group average KSS profile across all participants and data points on the day shift against clock time. (b) Individual predictions and 

study data for KSS change between the start and end of day shift (KSSend − KSSstart). (c) Group average KSS profile across all participants and data points on the night 

shift. (d) Predictions and study data for KSS change between the start and end of the night shift for each participant. In (a, c), the KSS values are binned in 3-h blocks 

and are plotted in the middle of each bin. Glyphs show mean values within each bin with bars indicating plus and minus the standard error in the mean. Blank spaces 

indicate missing data, typically due to the shift type being absent in a nurse’s schedule.

Table 3. Comparison of study data and model predictions for KSS during day and night shifts. The rows for model predictions include mean 
and standard deviation (SD) of error and of absolute error relative to the study data and the percentage of individual predictions that fall within 
plus minus one KSS score of the study data

Day shift (N = 20) Night shifts (N = 17)

Shift Mean error ± SD 0.30 ± 1.94 0.58 ± 1.77
Mean absolute error ± SD 1.53 ± 1.11 1.54 ± 1.05
Percent within ± 1 58 % 52 %

Shift + Light Mean error ± SD 0.53 ± 1.90 0.26 ± 1.83
Mean absolute error ± SD 1.52 ± 1.25 1.50 ± 1.07
Percent within ± 1 60% 51%

Shift + Commute Mean error ± SD −0.34 ± 1.75 0.50 ± 1.84
Mean absolute error ± SD 1.49 ± 0.96 1.55 ± 1.11
Percent within ± 1 58 % 52 %

Shift + Commute + Light Mean error ± SD −0.08 ± 1.76 0.25 ± 1.82
Mean absolute error ± SD 1.45 ± 0.99 1.51 ± 1.04
Percent within ± 1 56 % 50 %

Sleep Mean error ± SD −0.40 ± 1.79 −0.19 ± 2.09
Mean absolute error ± SD 1.55 ± 0.96 1.64 ± 1.30
Percent within ± 1 56 % 48 %

Sleep + Light Mean error ± SD −0.36 ± 1.79 −0.38 ± 2.07
Mean absolute error ± SD 1.53 ± 0.97 1.66 ± 1.28
Percent within ± 1 56 % 49 %
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both the environment and the physiology. Our use of the model 
with default parameter values and a selection of input con-
straints such as shift, commute, and light, have demonstrated 
accurate predictions for more than half of the participants. 
Other external factors like caffeine, stress, and type of task on 
shift, also affect alertness dynamics and including those may 
further improve predictions [56, 57]. To incorporate the vari-
ability in physiology, model parameters need to be adjusted 
separately for each individual. Several modelling studies dem-
onstrated how changes in model parameters manifest as dif-
ferences in sleep-wake dynamics. For example, Skeldon et  al. 
[58, 59] showed how variation of the circadian and homeostatic 
parameters allows reproduction of changing sleep patterns due 
to aging. Similarly, Phillips et al. [60] identified parameters that 
can account for different chronotypes. The difficulty in applying 
these findings to individuals is that different sets of param-
eters may produce similar dynamics under some conditions but 
distinct dynamics under others. Other studies used statistical 
modelling to fit individual parameters and predict PVT during 
sleep deprivation [29, 61–64] and sleep restriction [64] using 
prior PVT measures. These, however, do not yet account for cir-
cadian misalignment or environmental differences.

Overall, incorporating individual shift, commute and light 
constraints in the model, with parameters set to a typical in-
dividual, allowed for accurate predictions of alertness, circa-
dian phase, and sleep for more than half of the participants. 
For the other half, accurate individual predictions require ac-
counting for physiological differences. Thus, while the model 
with the default parameters is successful at predicting group 
average dynamics in the real world, its application to indi-
vidual predictions requires additional calibration. It should 

be noted that our study included a relatively small number 
of participants (N  =  21) so specific details beyond the broad 
general agreement between model predictions and study 
data should not be over-interpreted. A  future study testing 
the model against a larger number of participants would be 
useful to draw stronger conclusions on the differences among 
predictions with various input constraints. Quantitative com-
parison for objective measures of performance, such as PVT 
RT or lapses, is also required in the future as subjective meas-
ures like KSS are inherently noisy and may not reflect ob-
jective underlying alertness.

To enable external use and testing of the model of arousal 
dynamics, we have incorporated it in a web-based application 
programming interface, Alertness API, which can be found at 
https://www.alertnessapi.com. This interface allows simulation 
of customized work and wake schedules, including shiftwork 
and transmeridian travel as well as chronobiological and sleep 
experimental protocols. Both environmental constraints pre-
sented in this study and model parameters are enabled as in-
puts to the Alertness API with customizable outputs including 
alertness measures, sleep, and circadian rhythms.

Supplementary material
Supplementary material is available at SLEEP online.
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Figure 7. Comparison of study data and model predictions for objective performance measured with the PVT RT. Model predictions for three evaluation constraints are 

shown: Shift, Shift + Commute + Light, and Sleep. (a) Group average PVT RT profile across all participants on the day shift against clock time. (b) Individual predictions and 

study data for PVT RT change between the start and end of day shift (PVTRTend − PVTRTstart). (c) Group average PVT RT profile on the night shift. (d) Predictions and study 

data for PVT RT change between the start and end of the night shift for each participant. In (a, c), the PVT RT values are binned in three-hour blocks and are plotted in 

the middle of each bin. Glyphs show mean values within each bin with bars indicating plus and minus the standard error in the mean. The experimental data (Data) are 

plotted against the range on the right Y-axis, model predictions are shown against the range on the left Y-axis in (a) and (c). The y-axis scales are identical in (b) and (d).

https://www.alertnessapi.com
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