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Abstract

Chagas disease, caused by the parasite Trypanosoma cruzi, is considered endemic in more

than 20 countries but lacks both an approved vaccine and limited treatment for its chronic

stage. Chronic infection is most harmful to human health because of long-term parasitic

infection of the heart. Here we show that immunization with a virus-like particle vaccine dis-

playing a high density of the immunogenic α-Gal trisaccharide (Qβ-αGal) induced several

beneficial effects concerning acute and chronic T. cruzi infection in α1,3-galactosyltransfer-

ase knockout mice. Approximately 60% of these animals were protected from initial infection

with high parasite loads. Vaccinated animals also produced high anti-αGal IgG antibody

titers, improved IFN-γ and IL-12 cytokine production, and controlled parasitemia in the acute

phase at 8 days post-infection (dpi) for the Y strain and 22 dpi for the Colombian strain. In

the chronic stage of infection (36 and 190 dpi, respectively), all of the vaccinated group sur-

vived, showing significantly decreased heart inflammation and clearance of amastigote

nests from the heart tissue.

Author summary

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is a significant

endemic infectious disease in Latin America and is spreading in the U.S. and Europe with

the presence of its insect transmission vector. No approved vaccine against Chagas disease
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exists. We describe a vaccine candidate based on a carbohydrate found on the T. cruzi cell

surface, linked in the vaccine to a virus-like particle that provides a strong and focused

immune response. Mice were immunized and challenged with the Trypanosoma cruzi
parasites from two strains (Y and Colombian). Vaccination conferred substantial protec-

tion of mice against infection, compared with the unvaccinated group. Vaccinated ani-

mals presented low parasitemia, increased production of pro-inflammatory cytokines IL-

12 and IFN-γ, decreased cardiomyocyte damage, and rapid clearance of parasite nests

from heart tissue. These effects were especially significant at time points modeling chronic

disease, an important consideration for this pathogen. We, therefore, believe this is a valu-

able path to pursue in the development of vaccines against Chagas disease.

Introduction

Chagas disease is caused by the protozoan parasite Trypanosoma cruzi, commonly transmitted

through the feces of the infected reduviid bug (kissing bug). The disease cycle was discovered

in 1909 by the Brazilian physician Carlos Chagas [1]. It is estimated that 7 million people are

infected with T. cruzi, with approximately 18,000 new cases each year, [2] representing a seri-

ous health problem in Latin America that is spreading in the U.S. [3] and globally [4]. The

acute stage of the disease can have symptoms similar to viral infection or febrile illness, but

infected patients may progress to acute myocarditis, and meningoencephalitis may occur [5].

While patients with chronic Chagas disease can exhibit no adverse heart disease complications,

dilated cardiomyopathy with heart failure is the most common cause of death among these

patients [6–8]. Treatment is limited to the two drugs available, nifurtimox and benznidazole.

Their efficacy in the acute phase of the disease is questionable, [9] costly, and significant side

effects can present as gastrointestinal distress; cutaneous hypersensitivity and neurological

symptoms have also been reported.[10] With no vaccine currently available for Chagas disease,

[11,12] a new immunological approach is needed [13,11,14]. An extensive range of vaccine for-

mulations has been assessed in recent years, from the use of whole attenuated parasites to puri-

fied or recombinant proteins, viral vectors, and DNA vaccines [15–19].

Because humans lack the galactosyltransferase activity necessary to construct it, antibodies

against the α-Gal (Gal-α1,3-Gal-β1,4-GlcNAc) motif are the most abundant natural antibody

in humans [20–22]. The α-Gal trisaccharide has therefore attracted attention as a molecular

adjuvant in vaccines against a variety of targets, including cancer [23,24] and wound healing

applications [25–27]. It also represents an important antigen in its own right, as α-Gal is a cell-

surface marker of Leishmania, [28,29] malaria, [30] and T. cruzi [31]. Importantly, in the latter

case, both CD4 and CD8 T cell activation was reported.

The early identification and response to T. cruzi are mediated mainly by the TLR family of

type I transmembrane receptors. The surface of T. cruzi contains large amounts of glycoinosi-

tolphospholipids (GIPLs), presented alone or as anchors for glycoproteins and polysaccha-

rides.[32,33]. Macrophages respond to these ligands by producing proinflammatory cytokines,

which are crucial to controlling T. cruzi infection and disease outcome [34,35]. TLR4 expres-

sion has been reported to be particularly important in this regard [36]. As previously described

with Leishmania, [28] we report here that vaccination of α-galactosyltransferase knockout

(αGalT-KO) mice using VLPs displaying the α-Gal epitope produced higher titers of anti-

αGal IgG antibodies and protection against infection by T. cruzi Y and Colombian strains,

which display different levels of galactosylation in their glycoconjugates. Particularly notable
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was the effect of such immunization on the control of heart inflammation and the clearance of

parasite nests from heart tissue.

Results

We have previously described the preparation of Qβ virus-like particles functionalized with a

dense array of synthetic α-Gal trisaccharide (designated Qβ-αGal, with 540±50 trisaccharides

per particle) and the use of those particles to elicit high titers of anti-αGal IgG antibodies in

αGalT-KO mice [28,37]. These particles are approximately 30 nm in diameter, highly homoge-

neous in size, with most of the surface lysine residues acylated with a 10-atom linker bearing a

terminal azide group. To these azide groups were conjugated αGal bearing a β-linked short

chain with a terminal alkyne group. The rapid and selective nature of the copper-mediated

azide-alkyne ligation reaction [38] is required to achieve this high-density display of the αGal

motif.

To test protection against T. cruzi injection, αGalT-KO mice received a 10-μg dose of Qβ-

αGal, with control groups receiving unfunctionalized Qβ VLPs or PBS (Fig 1A). The vacci-

nated group showed significantly higher IgG anti-αGal antibody titers (Fig 1B) after one week.

A boost injection of the same dose was followed one week later with an intense challenge of

106 Y strain (TcII) parasites (recovered previously from mice in a standard passaging proce-

dure). Parasitemia was controlled much better in the vaccinated group (Fig 1C), and 58% of

this group survived more than 50 days compared to complete mortality within two weeks

post-infection in the control groups (Fig 1D).

To further assess Qβ-αGal as a candidate for vaccine development against T. cruzi infection,

the effectiveness of a single immunization was tested against a more typical lower parasite dose

of the Y strain. Experimental groups (6–10 mice) were sacrificed at either 8 or 36 dpi, model-

ing acute and chronic of Chagas disease stages, respectively. Given the high anti-αGal

responses (Fig 1B), we challenged immunized αGal-KO mice with 104 parasites each one

week after a single immunization. Parasitemia (Fig 2A) and survival rates (Fig 2B) were again

Fig 1. Immunization against high dose of T. cruzi Y strain. (A) Immunization and analysis schedule. αGalT-KO mice (5 per group)

were inoculated (subcutaneous) with two 10 μg doses of of Qβ-αGal, Qβ-WT, or PBS on days 0 and 7. On day 14 (dpi 0), all groups

were infected with 106 Y strain. (B) Relative anti-α-Gal IgG serum antibody levels measured by ELISA before infection, Y days before

infection (serum dilution = 1/100). (C) Parasite levels in blood checked daily starting at day 1 post-infection (dpi). (D) Mouse survival.

All experiments were performed independently in triplicate.

https://doi.org/10.1371/journal.pntd.0009613.g001
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dramatically improved; because of the lower parasite dose, approximately 60% of the control

animals survived, compared to 100% of the immunized groups. Since heart damage is a hall-

mark of T. cruzi parasite infection, heart tissue from all animals was examined and scored for

signs of degeneration, inflammation, cardiomyocyte hypertrophy, and parasite lesions [39–

41]. While degenerative damage was observed in all animals in the acute phase, this was

completely resolved for the immunized animals, in contrast to the control group (Fig 2C).

Similarly, abnormal cardiomyocyte hypertrophy was enhanced in the control group but miss-

ing among the immunized group (Fig 2D). Inflammation was suppressed by immunization at

both 8 and 36 dpi (Fig 2E), and very few parasites were found in the heart at day 36 (Fig 2F).

The myotropic Colombian (TcI) strain of T. cruzi is associated with Chagas disease cardio-

myopathy [42–44]. Groups of 7–10 αGalT-KO mice were vaccinated and infected with the

same protocol as above using a standard challenge of 103 parasites per mouse. Parasitemia was

followed for 45 days, and all groups of mice were kept for more than 190 days. All vaccinated

αGalT-KO mice showed higher anti-αGal IgG antibody levels throughout the experiment (Fig

3A). Parasitemia was well controlled in the vaccinated group (Fig 3B). Analysis of heart sec-

tions samples from all groups at 22 and 190 dpi showed the vaccinated αGalT-KO mice to

have significantly fewer degenerative changes at 190 dpi (Fig 3C) and lower inflammation at

both acute and chronic stages (22 and 190 dpi, respectively, Fig 3E). We observed a significant

decrease of cardiomyocyte hypertrophy of vaccinated animals at 22 dpi; by 190 dpi, hypertro-

phy had largely resolved for both groups, but was undetectable in the Qβ-αGal-immunized

mice (Fig 3D). Lesion intensity significantly decreased in the myocardium of the vaccinated

group at 22 and 190 dpi compared with the animals receiving the underivatized particle

(Fig 3F).

Fig 2. Immunization against moderate dose of T. cruzi Y strain. αGalT-KO mice (6–10 per group) were inoculated

(subcutaneous) with one 10 μg dose of Qβ-αGal, Qβ-WT, or Qβ-Glu (alternate control bearing glucose units instead of α-Gal).

Mice were challenged one week after immunization with 104 Y strain. (A) Parasite levels in blood checked daily starting at day 1

post-infection (dpi). Red dashed lines show the upper limit of the standard deviation for each set of data. (B) Mouse survival. (C)

Degenerative changes in the heart. (D) Hypertrophy. (E) Inflammation score. (F) Lesion intensity. All experiments were

performed independently in triplicate. Significance p< 0.05. ns (not significant). Data plotted as SEM (Standard Error of the

Mean).

https://doi.org/10.1371/journal.pntd.0009613.g002
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TLR4 has been reported to play an essential role in protecting mice against experimental T.

cruzi infection, [36,45] and a synthetic TLR-4 agonist was found to increase mice survival and

decrease cardiac colonization by the parasite [46]. We therefore tested the TLR agonistic potential

of Qβ-αGal particles in this context using standard C57BL/6 mice, as well as their TLR knockouts,

because the corresponding TLR variants of the GalT-KO strain were not available. We believe

these results to be potentially relevant because there is some IgG anti-α-Gal immune response in

C57BL/6 mice [47]. We collected peritoneal macrophages from unvaccinated wild-type, TLR 2-/-,

and TLR 4-/- knockout mice and treated them with unfunctionalized and α-Gal decorated VLPs.

Qβ-αGal was uniquely found to induce significant nitric oxide production (although not to the

level of lipopolysaccharide positive control) in wild-type and TLR2-knockout, but not in

TLR4-knockout mice (Fig 4A), suggesting its action as a TLR4 agonist. Next, we evaluate cytokine

production on heart homogenates. We observed higher concentrations of IL-12 and IFN-γ in

homogenates from heart tissue of vaccinated and challenged groups of αGalT-KO mice at dpi 8

and 36 for Y strain and dpi 20 and 190 for Colombian T. cruzi infection (Fig 4B and 4E).

The presence of amastigote parasites was analyzed in 100 fields per slide of heart sections

from vaccinated and unvaccinated αGalT-KO mice. Although parasites were found in the heart

of the vaccinated group at 8 dpi for Y T. cruzi infection, they were cleared by day 36 (Fig 4F).

Analysis at both dpi 22 and 190 after Colombian strain infection showed no amastigote nests for

the vaccinated animals (Fig 4G). Representative histopathology images are shown in Fig 4H.

Discussion

In Latin America, infection with the Trypanosoma cruzi parasite is the most common cause of

inflammatory heart disease [48]. Chagas heart disease is characterized by acute and chronic

stages, which can occur decades apart. The disease’s effects can lead to a spectrum of problems,

from organ damage due to high parasitemia in the acute stage (the first 2–3 months) to cardiac

Fig 3. Immunization against T. cruzi Colombian strain. αGalT-KO mice (6–10 per group) were inoculated (subcutaneous)

with two 10 μg doses of Qβ-αGal or Qβ-WT on days 0 and 7. On day 14, all groups were challenged with 103 parasites of the

Colombian strain. (A) Relative anti-α-Gal IgG serum antibody levels measured by ELISA (serum dilution = 1/100). “Pre-

infection” denotes day 7, one week before challenge. (B) Parasite levels in blood checked daily starting at day 2 post-infection

(dpi). Red dotted lines show the upper limit of the standard deviation for each set of data. (C) Degenerative changes in the

heart. (D) Hypertrophy. (E) Inflammation score. (F) Lesion intensity. All experiments were performed independently in

triplicate. Significance p< 0.05. ns (not significant). Data plotted as SEM (Standard Error of the Mean).

https://doi.org/10.1371/journal.pntd.0009613.g003
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lesions and neurogenic disturbances in the chronic stage [49,50]. Although 60% of infected

patients can survive for decades with the disease, about 30–40% of patients develop heart man-

ifestations in the chronic stage that may lead to death.[51–53] It is suggested that the persis-

tence of amastigote parasites in heart tissues correlates directly with the disease severity due to

direct disruption of host cells by parasite multiplication and exacerbation of inflammation

caused by parasite residue [54–58]. Furthermore, the recommended drug treatment for Cha-

gas disease, benznidazole, is not very efficient and is highly toxic upon sustained use [59].

The search for a vaccine against T. cruzi started in 1912 when it was observed that animals

surviving acute infection became resistant to a second infection.[60] Since then, a variety of

experimental vaccine candidates have been tested, involving live, killed, or attenuated para-

sites, recombinant T. cruzi proteins, peptides, and DNA [11,61–67]. Both the acute and

chronic stages of Chagas disease can be reflected in several experimental animal models, [68–

70] most examples using the Colombian (TcI) and Y (TcII) strains of T. cruzi [71].

Chagas disease patients from endemic areas are reported to have high levels of antibodies

against the α-Gal glycotope, which is expressed by T. cruzi amastigotes and trypomastigotes.

These antibodies are thought to confer protection to these individuals in the acute and chronic

phases of the disease [72–74]. Following the report from Almeida and colleagues [31], our

group also validated the α-Gal transferase knockout (αGalT-KO) mouse as an effective experi-

mental Chagas disease model that mimics the key immunological property of humans and

Fig 4. TLR activity, cytokine production and histopathology. (A) Nitric oxide production from stimulated peritoneal macrophages from

unvaccinated mice of the indicated strains. Treatment groups refer to 1 μg/mL concentrations of the indicated agent; “medium” = buffer. (B and C)

IL-12 and IFN-γ production by heart homogenate from vaccinated or unvaccinated αGalT-KO mice infected with Y strain. (D and E) IL-12 and IFN-

γ production by heart homogenate from vaccinated or unvaccinated αGalT-KO mice infected with Colombian strain. (F and G) Average number of

T. cruzi amastigote nests found in heart tissue by counting in 100 fields per slide of heart section. (H) Representative histopathological sections from

the indicated mice; for example, the top-left panel shows heart tissue from an unvaccinated animal 8 days after infection with T. cruzi Y strain.

Arrows point to amastigote colonies. All experiments were performed independently in triplicate.

https://doi.org/10.1371/journal.pntd.0009613.g004
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Old-World primates [22,23,75] of producing high titers of anti-α-Gal antibodies [76]. Having

earlier found that the virus-like particle bearing a high density of α-Gal is an effective experi-

mental vaccine candidate against Leishmania spp., [28] we describe here the application of this

particle to T. cruzi. Indeed, Almeida’s use of α-Gal linked to human serum albumin [31] gave

very promising results: the vaccinated group of αGalT-KO mice were protected against T.

cruzi infection and presented higher anti-αGal antibody titers [31]. To this important prece-

dent we add several important factors.

First, this is the first work comparing two different T. cruzi strains belonging to different

DTUs [77]. These remarkable genetic polymorphisms are significant in scope and may hinder

vaccine efficacy. For example, the strains used here display very different levels of galactosyla-

tion in their GPI-mucins, the Y strain being high and the Colombian strain low in this parame-

ter [78]. That the Qβ-αGal particle was effective for both further supports its consideration as a

promising vaccine candidate. Activity against the Colombian strain suggests that are other α-

galactosyl-containing GIPLs (or other cell-surface glycoconjugates) may be involved in the

immune response to this pathogen. Second, the vaccine used here is far better defined than the

“Galα3LN-HSA" material employed by Almeida and colleagues. Purchased from a commercial

supplier, we assume that it is created by conjugation to HSA lysine groups by virtue of an acti-

vated ester variant of the α-Gal trisaccharide using a “3 atom spacer” as described by the sup-

plier. No characterization data is available, so neither the number of carbohydrates nor the

homogeneity of the material are known. Virus-like particle platforms are, by contrast, homo-

geneous in size, shape, and in the number and location of the lysines functionalized by acyla-

tion and azide-alkyne ligation reactions. In addition, VLPs such as Qβ impart strong

immunogenicity to attached molecules including carbohydrates [79,80] by virtue of their regu-

lar structure and self-adjuvanting properties [81].

We explored acute Chagas disease in infected α-GalT-KO mice at 8 days post-infection (dpi)

with the Y strain and 22 dpi for the Colombian strain, whereas the chronic stage was evaluated at

36 and 190 dpi, respectively. The Qβ-αGal particle was highly effective, producing high titers of

anti-αGal IgG antibodies, controlling parasitemia, enhancing survival upon challenge with a very

high concentration of T. cruzi in strains belonging to different DTUs (I and II). It is also crucial

for patients infected with T. cruzi to prevent cardiac damage by long-term exposure to amastigote

colonies established in the heart tissue. Therapeutic vaccination has previously demonstrated a

correlation between the reduction of parasitemia and easing of long-term cardiac parasite burden

[15,82–84]. In our case, all animals vaccinated and infected with two different T. cruzi parasite

strains did quite well initially and also cleared the parasites from the heart at 36 dpi for Y strain

and 190 dpi for Colombian strain. This led to significant improvements in heart inflammation,

hypertrophy, lesion intensity, and degenerative changes in cardiac tissues. The Qβ-αGal particle

was found to function as a TL4 agonist in vitro experiments, inducing macrophages to produce

more nitric acid. Correspondingly, higher proinflammatory cytokines IL-12 and IFN-γ were

found in heart homogenates of vaccinated animals. The result was a promising combination of

protection against primary infection and an ability to clear amastigote parasites from the heart,

thereby limiting the damage by acute and chronic Chagas disease infection. The results showed

here suggest that Qβ-αGal particles could be a candidate for vaccinating different parasite DTUs.

Material and methods

Ethics statement

All experiments were approved and conducted according to the guidelines of the Ethics Com-

mittee on the Use of Animals (CEUA) of the Federal University of Minas Gerais (protocol n˚

255/2013).
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Mice. Mice (Mus musculus), females aged 6 to 8 weeks of the C57BL/6 lineage, depleted

the gene of α1,3-galactosyltransferase enzyme (αGalT-KO), were used. The mice were donated

by Director Peter Cowan, Hospital São Vicente, Australia and by Dr. Kim Janda, Scripps

Research Institute, United States, and are bred and maintained in the vivarium of the Federal

University of Minas Gerais, Department of Parasitology. Under appropriate conditions of tem-

perature and humidity, the mice were housed in 30.3 x 19.3 x 12.6 cm polypropylene boxes

with 3–5 mice each, with controlled 12-hour light-dark cycles, receiving commercial feed spe-

cific to the species (Presence/Archer Daniels Midland Company) and water ad libitum.

Parasites. Trypomastigote forms of the Y and Colombian strains of T. cruzi were kept in

the T. cruzi Biology Laboratory, Federal University of Minas Gerais. The Y strain of T. cruzi—
DTU TcII ([77], Zingales et al., 2009) was isolated from a patient in the acute phase of Chagas

disease by Pereira de Freitas, in 1950, in Marı́lia, São Paulo and later studied and described by

Silva and Nussenzweig [85]. The Colombian strain of T. cruzi—DTU TcI [77] was isolated

from a patient in Colombia and later studied and described by Federici, et al [86]. Parasites

were kept in mice and recovered for challenges.

Parasitemia. The parasitic load was estimated from the parasite count in 5 μL blood sam-

ples collected from the caudal vein of the mouse, made under an optical microscope at 40X

using the Brener method. [87] The number of mobile blood trypomastigotes was counted in

50 fields at random distributed throughout the slide area. The data were demonstrated as the

number of trypomastigotes per mL of blood [87].

ELISA. Blood samples were obtained by submandibular collection before the first immuni-

zation and five days after the mice received the final (first or second) dose. Blood samples were

also collected by cardiac puncture at the time of euthanasia. All samples were stored in tubes

without anticoagulant. Serum aliquots were obtained by centrifugation at 3000 x g for 15 min-

utes at 25˚C and stored at -20˚C until the time of use. To perform the immunoenzymatic assay,

polystyrene microplates with 96 wells (NUNC MaxiSorp/Thermo Fisher Scientific) were treated

with 50 μL of the selected particle (Qβ-αGal, Qβ-WT) at 0.4 μg/mL in 100 mM carbonate/

sodium bicarbonate buffer, pH 9.6, for 18 hours at 2–8˚C. The wells were then blocked with

200 μL of PBS1X solution containing 1% bovine serum albumin (PBS1X - BSA 1%), for 50 min-

utes at 37˚C. After blocking, 50 μL of diluted serum (1:100) were added in triplicate in PBS1X -

BSA 1% solution, and the microplates were incubated for 90 minutes at 37˚C. Wells were then

washed three times with 200 μL of PBS1X containing 0.05% Tween-20 (PBS1X –T 0.05%) per

well. Anti-mouse IgG antibody conjugated with biotin (GE Healthcare) diluted 1:5,000 in

PBS1X - BSA 1% solution (50 μL) was added, and the microplates were incubated for 50 min-

utes at 37˚C. After washing three times, 50 μL of streptavidin-conjugated horseradish peroxi-

dase (GE Healthcare) diluted 1:3,000 in 1% PBS1X - BSA solution was added and incubated for

50 minutes at 37˚C. The plate was washed three times, each well was treated with substrate solu-

tion (100 μL), and incubated for 30 minutes in the dark, followed by reading on a microplate

reader at 490 nm. The substrate solution consisted of 2 mg OPD (o-phenylenediamine dihy-

drochloride) and 4 μL of 30–32% hydrogen peroxide in 10 mL of a solution containing 30 mM

citric acid, 50 mM disodium phosphate (pH 5), diluted in 1 mL of distilled water.

Cytokines. Immediately after collection from euthanized mice, a sample (~1g) of cardiac

tissue was subjected to maceration in 1 mL of extraction buffer containing protease inhibitor.

The resulting homogenate was centrifuged for 10 minutes at 10,000 rpm at 4˚C, and the super-

natant was collected and stored at -80˚C for cytokine determination using the BD OptEIA Set

Mouse kits (BD Biosciences) to determine IL-12 p40 and IFN-γ levels using the capture ELISA

assay. The observed detection limits were 15.6 pg/mL for IL-12p40 and 3.1 pg/mL for IFN-γ.

Histopathological analysis of inflammation, degenerative changes, hypertrophy, and

amastigote nests. Groups of mice, six per group, were euthanized, a fragment of each excised
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heart was fixed in 10% buffered formaldehyde for 7 days. Then it was dehydrated in increasing

alcoholic dilutions, diaphanized in xylol, infiltrated and included in paraffin for block making

and subsequent microtomy, gluing, and mounting the blades. The blocks were cut into sec-

tions of 4 μm in diameter for staining with hematoxylin and eosin (H&E). After making the

slides, quantitative and semi-quantitative histopathological analyses were performed by optical

microscopy. The lesions displayed in the myocardium were assessed regarding inflammatory

infiltrate, degenerative changes, and hypertrophy. The presence of amastigote nests quantified

parasitism in cardiac tissues. For semi-quantitative analyzes, the slides were examined in a

bright field optical microscope coupled with a digital image capture system (Motic 2.0). For

the score of myocardial inflammation, ten random images were captured per fragment with a

20X magnification. The rating was based on four degrees of myocardial inflammation: grade 0

(absent) = absence of inflammatory cells around the cardiomyocytes; grade 1 (discrete) =

some cardiomyocytes had a small number of inflammatory cells; grade 2 (moderate) = some

cardiomyocytes had significant inflammation; grade 3 (marked) = some cardiomyocytes had

an intense inflammatory infiltrate. A four-point scoring system was also adopted for degenera-

tive changes represented by tissue necrosis, autolysis, or cardiomyocyte degeneration: grade 0

(absent) = absence of histopathological changes; grade 1 (slight) = some cardiomyocytes

showed slight degeneration; grade 2 (moderate) = some cardiomyocytes had a degenerative

aspect, and others were in autolysis; grade 3 (marked) = numerous cardiomyocytes had a

degenerative aspect, autolysis. For the semi-quantitative analysis of cardiomyocyte hypertro-

phy, a four-point intensity scale was used: grade 0 (absent) = no cardiomyocyte hypertrophy

observed; grade 1 (discreet) = few cardiomyocytes were hypertrophied; grade 2 (moderate) = a

significant number of cardiomyocytes were observed to have hypertrophy; grade 3 (marked) =

large numbers of cardiomyocytes were hypertrophied. To count the amastigote nests present

in the histological cuts in the cardiac muscle tissue, a complete scan of the heart sections of the

mice was performed with a 20X magnification.

TLR2 (-/-) and TLR4 (-/-) murine peritoneal macrophages. ��TLR2(-/-) and TLR4(-/-)

knockout strains of C57BL/6 mice were obtained from Oswaldo Cruz Institute, Fiocruz. Thio-

glycolate (2 mL) was injected in the mouse peritoneum and macrophages were extracted by

peritoneal washing with ice-cold RPMI, and enriched by plastic adherence (1 h, 37˚C, 5%

CO2). Cells (3 x 105 cells/well) were washed with fresh RPMI then cultured in RPMI contain-

ing 2 mM glutamine, 50 U/mL of penicillin, and 50 μg/mL streptomycin supplemented with

10% FBS in 96-well culture plates (37˚C, 5% CO2). Cells were primed with interferon-gamma

(IFN-γ, 3 IU/mL) for 18 h before incubation with LPS, Qβ-gal, Qβ-control (10 μg/mL), or only

medium. Nitrite concentrations were determinate by the Griess reaction (Griess Reagent Sys-

tem, 2009).

Statistical analyses. GraphPad Prism software (San Diego, USA, version 7.0) was used for

statistical analysis. The bidirectional analysis of variance test (ANOVA), followed by the Bon-

ferroni post-test, was used to compare the values presented by the parasitemia and weight vari-

ation curves. The Log Rank test was used to compare the survival rate of mice after infection

with T. cruzi. Fisher’s test was used to compare the different proportions of mice that survived

the infection. Statistical analyses were also used to compare maximum levels of parasites

detected in peripheral blood, dosages of total IgG antibodies, the intensity of inflammation,

degenerative changes, hypertrophy, parasitic load, and cytokine profile in cardiac tissues. For

this, the Student’s T-test parametric data and the Mann Whitney test for non-parametric data

were used in comparative analyses between two groups. For the comparative analysis between

three or more groups, the one-way ANOVA test was used, followed by the Tukey post-test, for

parametric data, and the Kruskal-Wallis test, followed by the Dunns post-test for non-

parametric data. To check whether the data presented Gaussian distribution, the D’Agostino &
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Pearson normality test was used. Differences between groups were considered significant

when the p-value <0.05.
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