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Erzhi pill (EZP), a classical traditional Chinese medicine prescription, exerts a potent hepatoprotective effect against metabolic
dysfunction-associated fatty liver disease (MAFLD), previously known as nonalcoholic fatty liver disease (NAFLD). However,
the mechanism and bioactive compounds underlying the hepatoprotective effect of EZP have not been fully elucidated. In this
study, a systematic analytical platform was built to explore the mechanism and bioactive compounds of EZP against MAFLD.
This was carried out through target prediction, protein-protein interaction (PPI) network construction, gene ontology, KEGG
pathway enrichment, and molecular docking. According to the topological parameters of the PPI network, compound-target-
pathway network, 9 targets, and 11 bioactive compounds were identified as core targets and bioactive compounds for molecular
docking. The results showed that EZP exerts anti-MAFLD effects through a multicomponent, multitarget, multipathway
manner, and luteolin and linarin may be the bioactive compounds of EZP. This study provides further research insights and
helps explore the hepatoprotective mechanism of EZP.

1. Introduction

Metabolic dysfunction-associated fatty liver disease
(MAFLD), previously known as nonalcoholic fatty liver dis-
ease (NAFLD) [1, 2], is defined as the presence of liver cells
with steatosis exceeding 5% and the lack of secondary causes
of liver fat accumulation, such as drinking of alcohol [3].
With dramatic lifestyle modifications, the MAFLD has devel-
oped into a global health concern over the past decades [4].
Moreover, studies have increasingly shown the multisystem
disease nature of MAFLD which affects several organs and
increases the risk of type 2 diabetes and cardiovascular, car-
diac, and chronic kidney diseases [5, 6]. Significant weight
loss and change of dietary habits will have a salutary effect
on MAFLD; however, new treatment strategies are urgently
needed [7]. The reason is that with the changing dietary
habits and lifestyle, MAFLD is one of the most important
causes of liver disease worldwide. More importantly, MAFLD

may eventually become the primary cause of end-stage liver
disease [4]. Therefore, there is an urgent need for safe and
effective drugs against MAFLD.

Previous studies have shown that some traditional
Chinese medicine (TCM) formulaes, such as Dachaihu
decoction, have good efficacy against MAFLD [8]. Erzhi pill
(EZP) is a TCM used for liver disease in the past centuries.
EZP consists of Ligustri Lucidi Fructus (LLF) and Ecliptae
Herba (EH) at a ratio of 1 : 1 and functions as a liver and kid-
ney tonic in traditional Chinese medicine theory. A previous
study showed the hepatoprotective effect of EZP by the anti-
oxidative defense system enhancement and the inflammatory
response through the TSC/mTOR signaling pathway [9].
EZP has also been used to treat diabetes and metabolic syn-
drome. However, studies on the mechanism of EZP against
MAFLD are still lacking.

The network pharmacology presented in 2008 [10] has
holistic and systematic research methods and characteristics
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of focusing on the interaction between drugs and the body
system. This is consistent with the characteristics of multiple
targets and multiple pathways in TCM [11], becoming an
efficient tool to systematically analyse the multiple targets
and multiple pathway mechanisms of TCM. Several studies
that employed network pharmacology to investigate the
mechanism of TCM have been successful [12, 13]. In addition,
the interaction of compounds, targets, and pathways can be
established with network pharmacology, which helps identify
potential bioactive compounds and pathways of TCM.

In this study, a systematic analytical platform for pre-
dicting potential bioactive compounds, targets, and molecu-
lar mechanisms of EZP against MAFLD was built. Detailed
methods included potential bioactive compound collection,
EZP- and MAFLD-related target prediction, protein-protein
interaction (PPI) network construction, gene ontology and
pathway enrichment, and molecular docking. This study
provides a further research direction for the exploration of
the hepatoprotective mechanism of EZP.

2. Materials and Methods

2.1. Extraction of Bioactive Components of EZP. The date for
EZP compounds were mainly obtained from the Traditional
Chinese Medicine Systems Pharmacology Database
(TCMSP, http://lsp.nwu.edu.cn/tcmsp.php, Version 2.3), a
pharmacology platform that provides information on drugs,
targets, and diseases, by retrieving Fructus Ligustri Lucidi
and Ecliptae Herba. Twelve absorption, distribution, metabo-
lism, and excretion- (ADME-) related parameters of herbal
ingredients were also extraction from the TCMSP [14]. Con-
sidering that oral administration of EZP, OB [15], and DL
[16] was used for identifying bioactive compounds of EZP,
the components with OB ≥ 30% and DL ≥ 0:18 were identi-
fied as potential bioactive compounds.

2.2. Collection of Potential Targets of the Bioactive
Compounds of EZP. Bioactive compound-related targets
were obtained from PharmMapper (http://lilab-ecust.cn/
pharmmapper/, Version 2017), TargetNet (http://targetnet
.scbdd.com/home/index/), and Swiss Target Prediction
(http://www.swisstargetprediction.ch/, 2019 version) [17–22].
These platforms achieved compound-related targets by adopt-
ing various prediction algorithms. First, information on the
bioactive compounds was collected from PubChem (https://
pubchem.ncbi.nlm.nih.gov/) and TCMSP, including molecu-
lar structures in mol2 format and canonical smiles. To predict
targets of compounds, molecular structures in mol2 were
uploaded to PharmMapper with limitation to “Homo sapiens”
and a normal fit score ≥ 0:6. In addition, canonical smiles
were uploaded to Swiss Target Prediction and TargetNet
with limitation to “Homo sapiens” (in Swiss Target Pre-
diction), AUC ≥ 0:7 (in TargetNet), and probability ≥ 0:6.
Finally, all the targets were transferred to UniProtKB
(https://www.uniprot.org/) to avoid mix-up across the
databases and platforms.

2.3. Construction of the MAFLD Target Database. Consider-
ing the different advantages and characteristics of each

database, four databases were used to collect the MAFLD-
related targets. By retrieving “nonalcoholic fatty liver disease”
in GeneCards (https://www.genecards.org/), DrugBank
(https://www.drugbank.ca/, version 5.1.5), Online Mendelian
Inheritance in Man (OMIM, http://omim.org/, updated on
Jan. 15, 2019), and National Centre for Biotechnology Infor-
mation Gene (NCBI Gene, https://www.ncbi.nlm.nih.gov/
gene/) MAFLD-related targets were retrieved. All the four
databases are freely accessible platforms that contain com-
prehensive molecular information about drugs, targets, tar-
gets related to disease, gene function, etc. and can be used
to collect targets related to the disease [23–26]. To maintain
the reliability of the target collection, only the targets
approved by the FDA in DrugBank, norm fit scores higher
than 20 in GeneCards or the species limited to “Homo sapi-
ens” in the NCBI Gene were identified as MAFLD-related
targets. Finally, the target names were standardized to the
UniProtKB form and duplicates were removed.

2.4. Construction of Protein-Protein Interaction (PPI)
Network. A PPI network was built and analyzed by Search
Tool for the Retrieval of Interacting Genes (STRING,
https://string-db.org/), which can be employed for the
system-wide understanding of cellular function between the
expressed proteins [27]. After removing the overlap section
and standardizing target names, the intersection of bioactive
compound-related targets and MAFLD-related targets were
uploaded to STRING with limitations to “Homo sapiens”
and a confidence score > 0:9. The PPI network was con-
structed and visualized using Cytoscape 3.7.1, a software that
is used for analyzing and visualizing biomolecular interaction
networks [28].

2.5. Enrichment Analysis and Network Construction. Data-
base for Annotation, Visualization, and Integrated Discovery
(DAVID, https://david.nicifcrf.gov/, version 6.8) was used
for enrichment analysis with the screening criteria of P ≤
0:05 using Bonferroni correction [29]. Furthermore, KEGG
Mapper (https://www.genome.jp/kegg/mapper.html) was
employed for the analyses of upstream and downstream
genes of the key signaling pathway [30, 31]. Thereafter,
pathways with the top 20 protein numbers were used for
the establishment of the compound-target-pathway network
by Cytoscape.

2.6. Molecular Docking. Molecular docking was performed
with AutoDock Tools [32] (version 1.5.6 http://mgltools
.scripps.edu/). The 3D molecular structures of the bioactive
compounds were collected from TCMSP in mol2 format
and transformed into PDPQT format with AutoDock Tools.
Protein Data Bank (PDB, http://www.rcsb.org/) was utilised
for the collection of crystal structures of the core targets.
AutoDock Tools were further used for removal of water
and addition of hydrogen atoms to the crystal structures of
core targets and saved as PDPQT format. Molecular docking
between the bioactive compounds and core targets was per-
formed with AutoDock. Finally, the binding pattern with
the lowest binding energy was selected for further analysis.
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Table 1: A list of bioactive compounds of EZP for network analysis.

Mol ID Molecule name MW OB (%) DL Pubchem ID Herb

MOL000006 Luteolin 286.25 36.16 0.25 5280445 LLF/EH

MOL000098 Quercetin 302.25 46.43 0.28 5280343 LLF/EH

MOL000263 Oleanolic acid 456.78 29.02 0.76 10494 LLF

MOL000358 Beta-sitosterol 414.79 36.91 0.75 222284 LLF

MOL000422 Kaempferol 286.25 41.88 0.24 5280863 LLF

MOL002929 Salidroside 300.34 7.01 0.20 159278 LLF

MOL004576 Taxifolin 304.27 57.84 0.27 439533 LLF

MOL005146 Lucidumoside D 568.63 48.87 0.71 10531060 LLF

MOL005147 Lucidumoside D_qt 406.47 54.41 0.47 — LLF

MOL005169 (20S)-24-ene-3β,20-diol-3-acetate 486.86 40.23 0.82 185500 LLF

MOL005188 Specnuezhenide 686.73 19.30 0.50 91895359 LLF

MOL005190 Eriodictyol 288.27 71.79 0.24 440735 LLF

MOL005195 Syringaresinol diglucoside_qt 450.48 83.12 0.8 21603207 LLF

MOL005209 Lucidusculine 401.6 30.11 0.75 101286217 LLF

MOL005211 Olitoriside 696.87 65.45 0.23 94348 LLF

MOL005212 Olitoriside_qt 404.55 103.23 0.78 — LLF

MOL001689 Acacetin 284.28 34.97 0.24 5280442 EH

MOL001790 Linarin 592.6 39.84 0.71 5317025 EH

MOL002975 Butin 272.27 69.94 0.21 28125525 EH

MOL003389 3′-O-Methylorobol 300.28 57.41 0.27 5489605 EH

MOL003398 Pratensein 299.27 39.06 0.28 5319744 EH

MOL003402 Demethylwedelolactone 302.25 72.13 0.43 5281803 EH

MOL003404 Wedelolactone 314.26 49.6 0.48 5281813 EH
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Figure 1: Analysis of predicted genes of potential bioactive compounds of EZP from 3 databases. (a) Venn graph showing the number of the
overlapping genes from PharmMapper (yellow), TargetNet (red), and Swiss Target Prediction (blue). (b) The number of predicted genes from
each database.
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The interactions between the bioactive compounds and the
core targets were visualized as 3D diagrams using PyMol 1.8.

3. Result

3.1. Bioactive Compounds in EZP. There were 166 com-
pounds of EZP retrieved from TCMSP, including 47 in EH,
and 119 in LLF, and 5 overlapping compounds were
removed, resulting in 161 identified compounds. Finally, 20
bioactive compounds were identified after ADME screening
withOB ≥ 30% andDL ≥ 0:18, 13 in LLF and 9 in EH (2 were
duplicated and therefore removed). This is illustrated in
Table 1. Some compounds that were removed after ADME
screening have been identified as the main compounds of
EZP in previous studies [33, 34]. Therefore, oleanolic acid,

salidroside, and specnuezhenide were identified as bioactive
compounds.

3.2. Potential Target Prediction for Bioactive Compounds of
EZP. To identify potential targets of the 23 bioactive com-
pounds, Swiss Target Prediction, PharmMapper, and Target-
Net were used to predict the bioactive compounds’ targets.
There were 306 targets from PharmMapper (norm fit > 0:6),
156 targets from TargetNet (probability > 0:8), and 102 targets
from Swiss Target Prediction (probability > 0:8) as shown in
Figure 1(a). Finally, 30 targets were shared by all three data-
bases, 72 targets were shared with Swiss Target Prediction
and PharmMapper, and 18 targets were shared with Pharm-
Mapper and TargetNet (Figure 1(b)). After removal of dupli-
cates, 414 targets were identified as potential targets of EZP
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Figure 2: Analysis of predicted MAFLD genes. (a) Venn graph showing the numbers of overlapping genes from DrugBank (red), NCBI Gene
(brown), GeneCard (blue), OMIM (yellow), and EZP-related targets (green). (b) The number of predicted genes from each database.
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for subsequent analysis. Detailed information on EZP-related
targets is shown in Table S1.

3.3. Identification of Targets Related to MAFLD. DrugBank,
NCBI Gene, GeneCards, and OMIM were used to identify
targets related to MAFLD. There were 313 targets from
DrugBank, 161 targets from the NCBI Gene, 219 targets
from GeneCards, and 149 targets from OMIM. After
removal of duplicate targets, 691 targets were identified as
potential therapeutic targets of MAFLD (Figure 2(b)). When
overlapped with 414 targets of the EZP-related targets, 107
targets were found at the intersection of EZP-related targets
and MAFLD-related targets (Figure 2(a)). Detailed informa-
tion on MAFLD-related targets is presented in Table S2.

3.4. Protein-Protein Interaction Network. STRING and
Cytoscape were used to analyze the interaction between the
107 common targets. The common targets were uploaded
to STRING with limitation to “Homo sapiens” and a confi-
dence score > 0:9. Then, the PPI network was established
and visualized by Cytoscape 3.7.1 (Figure 3), which has 82

nodes and 247 edges. Network analyzer was used to calculate
topological parameters of the PPI network for identifying the
hub nodes and essential targets. In Figure 3, the size and color
of the node were used to describe the topological parameters
of the targets. The nodes with a larger degree were described
by a larger size, and the nodes with bigger between centrality
were described by a darker color. The overlap of the top 20
targets of degree, between centrality and closeness centrality,
LCK, MAPK8, AKT1, RXRA, PIK3R1, SRC, RELA, ESR1,
NOS2, and TNF were identified as hub nodes and essential
targets of the PPI network.

3.5. GO and KEGG Pathway Enrichment Analyses. DAVID
was used for analyzing GO and KEGG pathway enrichment
analyses to explore possible mechanisms of EZP against
MAFLD by submitting 107 common targets to the database.
The GO terms and KEGG pathways with P ≤ 0:05 were sig-
nificantly enriched. Biological process (BP), cell compound
(CC), and molecular function (MF) are the three compo-
nents of GO term enrichment analysis. The top 20 enriched
results were graphed using ImageGP (Figure 4). The results

Figure 3: Visualization of the protein-protein interaction (PPI) using STRING and Cytoscape.
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Figure 4: Continued.
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Figure 4: KEGG pathways and GO analyses. (a) KEGG pathway enrichment; (b) biological press (BP); (c) cellular component (c); (d)
molecular function (MF).
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showed that 107 targets were significantly enriched in 72 BPs,
38 CCs, 103 MFs, and 83 pathways. Detailed information on
GO and KEGG pathway enrichment analyses is presented in
Table S3.

3.6. Construction of Compound-Target-Pathway Network.
According to the GO and KEGG pathway enrichment
results, a compound-target-pathway network was established
by Cytoscape (Figure 5). The compound-target-pathway
network included 150 nodes and 1141 edges, circles represent
bioactive components from EZP, green circles represent
bioactive components from LLF, yellow circles represent
bioactive components from EH, red circles represent dupli-
cated components of EH and LLF, blue hexagons represent
putative targets, and orange V shapes represent the top 20
pathway. In the compound-target-pathway network, 11
compounds had a higher than average degree, which
showed that they played a pivotal role in the network.
The 11 core compounds were MOL005195, MOL000098,
MOL001790, MOL000006, MOL005146, MOL005211,
MOL005209, MOL005147, MOL005188, and MOL002929.
Targets are bridges between compounds and pathways.
The interaction of the top 20 targets of the PPI network
and the compound-target-pathway network was identified
as core targets, which means that they play an essential role
in both PPI network and compound-target-pathway net-
work. Finally, nine targets, MAPK8, EGFR, AKT1, SRC,
ESR1, RELA, RAC1, IGF1R, and PIK3R1 were identified
as core targets.

3.7. Molecular Docking. Docking studies were carried out
between 11 core compounds and 9 core targets to test the

reliability of the drug-target interaction. These targets were
chosen as core targets because they play an essential role in
the top 20 KEGG pathway, but they were also core targets
of the PPI network, which means that these targets may
be the center of the regulatory network of EZP against
MAFLD. The binding energy and grid box are shown in
Table 2. The results showed that there was a stronger inter-
action between MOL000006, MOL000098, MOL001790,
MOL005160, MOL005188, and MOL005209 and core tar-
gets. The binding energy of some docking pattern was even
lower than that of the original ligand, such as MOL000006
binding with MAPK8 and MOL001790 binding with EGFR
and MOL005209 binding with RELA. Figure 6 shows the
docking patterns of bioactive compounds interacting with
core targets in the lowest binding energy illustrated by
PyMol, and the hydrogen bond is showed by a yellow imag-
inary line. The results showed that MOL000006 and
MOL001790 have the lowest binding energy with 3 of the 9
core targets; MOL005169, MOL005188, and MOL005209
have the lowest binding energy with 1 of the 9 core targets,
which means that these five compounds may have more
important functions in the regulatory network of EZP against
MAFLD.

4. Discussion

In this study, the mechanism and bioactive compounds
were investigated using a bioinformatics method to investi-
gate the hepatoprotective effects of EZP. The results showed
that 83 pathways and 72 biological processes were involved.
According to the topological parameters of the compound-
target-pathway network and the PPI network, 11 bioactive

Figure 5: Compound-target-pathway network. Green circles represent bioactive components from LLF, yellow circles represent bioactive
components from EH, red circles represent duplicated components of EH and LLF, blue hexagons represent putative targets, and orange
V shapes represent the top 20 pathways.
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Figure 6: Continued.
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compounds and 9 core targets were identified. Finally,
molecular docking was used to test the reliability of the
drug-target interaction. The experimental flow is shown in
Figure 7. This study could provide a better understanding
of the hepatoprotective effect of EZP against MAFLD in a
multicomponent and multitarget manner, which provides
further insights for exploring the hepatoprotective mecha-
nism of EZP.

In clinical treatment, EZP is administered orally. Hence,
ADME-related paraments OB and DL were used for screen-
ing potential bioactive compounds of EZP. Then, the degree
of potentially bioactive compounds of the compound-target-
pathway network higher than average was used for a second
screening. Eleven bioactive compounds were identified from
EZP. To ensure the reliability of the target prediction, three
different target identification databases and three multiple
information sources were used to predict related targets.
The PPI network and compound-target-pathway network
were used to identify core targets of the regulatory network
of EZP against MAFLD. The interaction of the top 20 tar-
gets of the PPI network and compound-target-pathway
network was identified as a core target. Nodes with a high
degree often play an essential role in the network. Core
targets’ degrees were higher in the PPI network and the
compound-target-pathway network. This means that core
targets were essential in the regulatory network of EZP
against MAFLD.

The pathological mechanisms of MAFLD are compli-
cated [35]. At present, it is a widely accepted theory that
the capacity of the liver to handle the primary metabolic
energy is overwhelming leading to accumulation of toxic
lipid species that induce hepatocellular stress, injury, and
death [35–37]. When the liver cannot handle excessive fatty
acids, the excess may serve as substrates, leading to genera-
tion of lipotoxic species which would provoke ER stress and
hepatocellular injury [38]. Hence, regulating fatty acid
metabolism and declining hepatocellular stress, injury, and
death induced by toxic lipid species are two aspects of
MAFLD therapeutic strategies.

Nine core targets, MAPK8, EGFR, AKT1, SRC, ESR1
RELA, RAC1, IGF1R, and PIK3R1, were identified for molec-
ular docking with 11 bioactive compounds. The results
showed that the bioactive compounds of EZP have good
affinity for nine core targets. These core targets play essential
roles in the pathophysiology of MAFLD. The hsa04151:
PI3K-Akt signaling pathway, in which AKT1 plays a pivotal
role, was a significant result of KEGG pathway enrichment.
This pathway has been proved to be closely related to the
hepatoprotective effect of EZP via inhibition of hepatocyte
apoptosis [39]. MAPK8 also acts a pivotal part of the devel-
opment of MAFLD. During inflammation postreceptor
insulin signaling is significantly impaired by MAPK8, which
leads to the production of toxic lipid species and hepatocyte
injury [40].

Metabolic syndrome (MetS) is the strongest risk factor
for MAFLD. Among the MetS, diabetes is the clearest bio-
logical factor associated with MAFLD and 75% of patients
with type 2 diabetes have MAFLD [41]. Figure 4 shows the
16 targets involved in hsa04931: Insulin resistance. Insulin
resistance is a common feature of MAFLD and leads to
improper release of fatty acids further impairing insulin sig-
naling throughout the body [42]. Molecular docking also
showed that the binding energy of bioactive compounds of
EZP (except lucidusculine and olitoriside with IGF1R) was
lower than -5 kcal/mol, suggesting that the bioactive com-
pounds of EZP may exert anti-MAFLD effects by insulin
resistance. Figure 4 is a representation of 14 targets involved
in hsa04932: Nonalcoholic fatty liver disease, which shows a
stage-dependent progression of NAFLD. As shown in
Figure 8, all 14 targets, marked with stars, play important
roles in the progress of MAFLD, both in excess lipid accumu-
lation and production of reactive oxygen species (ROS). This
further leads to cytokine production, cell death promotion,
inflammation and fibrosis. There were 14 targets enriched
in hsa04932 including TNF, CASP3, MAPK, PPARA, RELA,
and AKT1. These targets all play important roles in promot-
ing cell death, inflammation, and fibrosis [43, 44], meaning
that EZP may exert anti-MAFLD by these targets.

(i)

Figure 6: Molecular models of binding of bioactive compounds to the core targets. (a) MOL000006 to MAPK8; (b) MOL001790 to EGFR; (c)
MOL005169 to AKT1; (d) MOL001790 to SRC; (e) MOL000006 to ESR1; (f) MOL005209 to RELA; (g) MOL005188 to RAC1; (h)
MOL000006 to IGF1R; (i) MOL001790 to PIK3R1.
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Figure 7: The experimental flow of this study.
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5. Conclusion

Overall, this study provides a theoretical basis for EZP exer-
tion of an anti-MAFLD effect through a multicomponent,
multitarget, and multipathway manner. In addition, we
screened the bioactive compounds of EZP and tested them
by molecular docking, providing a further understanding to
explore the hepatoprotective mechanisms of EZP.
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