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Abstract

Quantifying changes in functional community structure driven by disturbance is critical to antici-
pate potential shifts in ecosystem functioning. However, how marine heatwaves (MHWs) affect
the functional structure of temperate coral-dominated communities is poorly understood. Here,
we used five long-term (> 10 years) records of Mediterranean coralligenous assemblages in a mul-
ti-taxa, trait-based analysis to investigate MHW-driven changes in functional structure. We show
that, despite stability in functional richness (i.e. the range of species functional traits), MHW-im-
pacted assemblages experienced long-term directional changes in functional identity (i.e. their
dominant trait values). Declining traits included large sizes, long lifespans, arborescent morpholo-
gies, filter-feeding strategies or calcified skeletons. These traits, which were mostly supported by
few sensitive and irreplaceable species from a single functional group (habitat-forming octocorals),
disproportionally influence certain ecosystem functions (e.g. 3D-habitat provision). Hence, MHWs
are leading to assemblages that are deficient in key functional traits, with likely consequences for
the ecosystem functioning.
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INTRODUCTION

Marine life is increasingly threatened by anthropogenic cli-
mate change (Smale et al. 2019). Global impacts such as
ocean warming are altering the biology and ecology of many
organisms, populations and species (Scheffers et al. 2016). As
a consequence, community-level biodiversity changes are
emerging in the oceans, with potentially far-reaching conse-
quences for ecosystems’ functioning (e.g. Poloczanska et al.
2016; Ant~ao et al. 2020).
The natural processes (physical, chemical or biological)

determining the movement or storage of energy and materials
within an ecosystem or its self-maintenance over time are
called ecosystem functions (Paterson et al. 2012). The joint
effects of all individual functions determine the overall ecosys-
tem functioning (Reiss et al. 2009). Abiotic (e.g. light, temper-
ature, pH, nutrient) and biotic (e.g. biodiversity or species
interactions) factors influence ecosystem functioning in multi-
ple interconnected ways (Reiss et al. 2009). Yet, the role of
biodiversity has traditionally been considered as highly influ-
ential and thus has been the focus of much scientific research
(e.g. Hooper et al. 2005; Balvanera et al. 2006; Reiss et al.
2009). In recent decades, the emergence of trait-based
approaches is providing new opportunities to understand how

changes in community structure translate to changes in its
functioning. Specifically, these approaches are shifting from
the taxonomic perspective of traditional biodiversity–ecosys-
tem function research to a functional one, and in doing so,
proposing that changes in ecosystem function can be better
estimated when considering the functional roles among spe-
cies, as measured by their traits (e.g. McGill et al. 2006;
Mokany et al. 2008; Mouillot et al. 2013; Madin et al. 2016;
Hughes et al. 2018).
Two major complementary hypotheses link changes in trait

composition to alteration of ecosystem function: the diversity and
the mass ratio hypothesis. According to the diversity hypothesis
(Tilman et al. 1997), both the species and their associated func-
tional traits influence ecosystem processes through mechanisms
such as complementary resource use. Therefore, variation in the
range of functional traits in a given community (i.e. its functional
richness; Frich) affect its functioning (D�ıaz & Cabido, 2001; Til-
man, 2001). Alternatively, the mass-ratio hypothesis (Grime,
1998) states that the functional traits of the dominant species are
the primary drivers of ecosystem function. Therefore, changes in
community composition or species relative abundance may shift
the community dominant traits (i.e. its functional identity; FI)
and subsequently, its functioning (Mouillot et al. 2013; Weigel
et al. 2016). Determining how the richness and mass-ratio of
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functional traits respond to ecological disturbances is therefore
necessary to forecast their functional trajectories (Mouillot et al.
2011; Gagic et al. 2015). Furthermore, as some functions in the
ecosystems are more likely to be influenced by key taxa rather
than overall diversity patterns (e.g. bioerosion in oceanic reefs;
Bellwood et al. 2003), the vulnerability of species or species’
groups presenting key trait values needs to be also carefully con-
sidered (Bellwood et al. 2004; Bellwood et al., 2019a,b).
Increasingly frequent and intense marine heatwaves

(MHWs) have recently triggered devastating warming-induced
mass mortality events worldwide, affecting a wide range of
different species-rich benthic communities such as coral reefs,
seagrass meadows or kelp forests (Wernberg et al. 2013;
Hughes et al. 2017; Carlson et al. 2018; Smale et al. 2019). In
the Mediterranean, these extreme warming events have recur-
rently impacted the coralligenous assemblages, which are
endemic reefs home to approximately 10% of Mediterranean
species (Cerrano et al. 2000; Ballesteros, 2006; Garrabou et al.
2009, 2019). Therefore, MHWs are likely causing changes in
the structure and functioning of one of the most biodiverse
systems in the Mediterranean. However, field surveys (e.g.
Garrabou et al. 2009; Verdura et al. 2019) and aquaria ther-
motolerance experiments (e.g. Pag�es-Escol�a et al. 2018;
G�omez-Gras et al. 2019) have suggested contrasting vulnera-
bilities to warming among co-occurring coralligenous species,
in terms of tolerances to or regeneration after MHWs. This
phenomenon, called ’response diversity’ (Elmqvist et al. 2003),
can act to stabilise functioning if the more vulnerable species
are being replaced by functionally similar (i.e. ’redundant’),
but more resistant species (Yachi & Loreau, 1999). On coral
reefs, for example a mortality outbreak of the staghorn coral
Acropora cervicornis, which occurred in Belize during the
1980s due to disease and high temperature, was partially com-
pensated for by the previously uncommon, functionally simi-
lar and more thermally resistant lettuce coral, Agaricia
tenuifolia, that became the main reef builder (Nystr€om, 2006).
Further examples of this stabilising effect can be found in
other marine (Steneck et al., 2002; McLean et al. 2019) and
terrestrial ecosystems (e.g. Walker et al. 1999; Stavert et al.
2017). However, if vulnerable species are not replaced, or are
replaced by species that do not contribute similarly to a given
ecosystem process, important functions are likely to be com-
promised (e.g. provision of 3D habitats, surface stability or
benthic-pelagic coupling in the case of coral reefs), with
potential detrimental consequences for the associated ecosys-
tem services (Gili & Coma, 1998; Bellwood et al. 2003;
Nystr€om, 2006; Cardinale et al. 2012).
In this study, we combined long-term (10–15 years) ecologi-

cal data and in situ temperature data to examine MHW-in-
duced functional changes in Mediterranean coralligenous
assemblages. By quantifying multidimensional trait spaces, we
investigated: (1) whether MHWs have driven fine-scale
changes in their functional structure (i.e. Frich and FI), and
(2) whether some functional groups (i.e. clusters of coarsely
functionally redundant species sharing similar combinations
of traits) are more vulnerable than others to MHWs, which
may imply consequences for the maintenance of critical func-
tions in the ecosystem. Our results provide empirical insights
into MHW-driven functional changes in one of the most

species-rich communities in the Mediterranean. Accordingly,
this study takes us a step towards understanding the role of
climate change as a driver of functional change in coral-domi-
nated benthic assemblages in temperate regions.

MATERIALS AND METHODS

Monitoring sites

We used coralligenous assemblage data from five sites located
within two marine protected areas (MPAs) in the NW
Mediterranean Sea: the Port-Cros National Park and Scan-
dola Natural Reserve (Table S1 & Figure S1 in Supporting
Information). Three sites, one in Port-Cros (Gabin_par) and
two in Scandola (Pzzu_par and Pzzinu_par), are exposed ver-
tical walls dominated by the red gorgonian Paramuricea cla-
vata (Risso, 1826). These sites range in depth from the 18 m
of Pzzu_par to the 25 m of Gabin_par and Pzzinu_par. The
other two sites (Pzzu_cor and Passe_cor) are sheltered in a
marine cave at 18 and 29 m depth, respectively, in Scandola
and are dominated by the red coral Corallium rubrum (Lin-
naeus, 1758). The sites are part of coralligenous monitoring
programs and were selected for this study amongst all because
of meeting the three following essential criteria. They were;
(1) biologically monitored for at least a decade (i.e. Pzzu_cor;
2003–2018, Passe_cor; 2006–2018, Pzzinu_par; 2006–2016;
Pzzu_par; 2006–2018 and Gabin_par; 1999–2009), (2) located
within long-term established (> 40 years) and highly enforced
MPAs and (3) involved in a long-term seawater temperature
monitoring program, therefore allowing the characterisation
of thermal regimes and potential exposure to MHWs during
the study period.

Temperature data

The subsurface thermal environment of the two Mediter-
ranean MPAs has been monitored over the past two decades
as part of the T-MEDNet initiative (Bensoussan et al. 2019a;
www.t-mednet.org). The local seawater temperature condi-
tions were documented based on a standard protocol with
temperature samples (accuracy +/- 0.21 °C) collected every
hour at 5 m interval between the surface and 40 m depth. To
analyse the local climatology of the five monitored assem-
blages, all corresponding in-situ temperature data (� 1 m with
respect to biological surveys in every site except on those sites
at 18 m) available until 2018 (Port-Cros: 1999–2018, Scan-
dola: 2003–2018; see Fig. S2a–d), were retrieved from T-
MEDNet and averaged at daily time scales. Since significant
gradients of temperature (> 1 °C per metre) can be observed
during summer between the 15 and 20 m depths in Scandola,
and two of the monitored assemblages from this location were
located at 18 m (i.e. Pzzu_cor and Pzzu_par), a linear interpo-
lation from the 15 and 20 m data was used for these sites
(Fig. S2d and e). Following Hobday et al. (2016) MHW
detection method, we explored in situ exposure to MHW con-
ditions in every assemblage in terms of duration and intensity,
and over the entire biological surveying periods (i.e. Pzzu_cor;
2003–2018, Passe_cor; 2006–2018, Pzzinu_par; 2006–2016;
Pzzu_par; 2006–2018 and Gabin_par; 1999–2009). Specifically,
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MHWs were considered as discrete prolonged periods (at least
5 days) of anomalously warm seawater temperature (>90th
percentile of the in situ climatology), based on the definition
provided by Hobday et al. (2016). However, since organisms
living in coralligenous assemblages are able to tolerate the
normal seasonal temperature range characteristic of Mediter-
ranean waters (i.e. 10–23 �C) (Ballesteros, 2006), and we were
interested in exposure to extreme conditions, we only consid-
ered MHWs occurring during the warm period of the year
(June to November; JJASON). Exposure duration (proxy for
chronic thermal stress) was estimated as the cumulative num-
ber of consecutive MHW days registered in a given year,
whereas exposure intensity (proxy for acute thermal stress)
was calculated as the highest temperature reached during
MHWs (Bensoussan et al. 2019b).
Finally, since we were interested in detecting if the potential

occurred changes in functional structure were attributable to
MHWs, we classified sites into non-impacted or MHW-im-
pacted prior to conducting the functional analysis. To do so,
we plotted years exhibiting MHW conditions in each site
along the intensity/duration dimension against a thermotoler-
ance response curve. The thermotolerance response curve was
built according to the combined thermotolerance features (i.e.
days until the first signs of necrosis at different temperatures)
of P. clavata and C. rubrum (See Appendix S1 for methodol-
ogy & Fig. S3), which are among the most sensitive species to
heat stress in the coralligenous (Torrents et al. 2008; Crisci
et al. 2017). Thus, this procedure allowed us to classify sites
into MHW-impacted and non-impacted depending on how
likely they had suffered a heat stress strong enough to induce
mortality in local coralligenous assemblages (See Results
Fig. 1).

Sampling design of ecological data

After discriminating MHW-impacted and non-impacted sites,
photographs of the corresponding sites were analysed at three
different years or time points (T1, T2, T3) over the entire tem-
perature/biological monitoring periods (i.e. Pzzu_cor; 2003,
2011 and 2018, Passe_cor; 2006, 2011 and 2018, Pzzinu_par;
2006, 2011 and 2016; Pzzu_par; 2006, 2011 and 2018 and
Gabin_par; 1999, 2007 and 2009). To minimise any potential
effect of seasonality, only surveys occurring during the same
period of the year were considered for each site (end of sum-
mer vs. autumn for Port-Cros and Scandola respectively). A
total of 24 photographic quadrats of 25 9 25 cm (replicates)
were analysed for each site and temporal point resulting in
360 pictures in total. The sampling unit (625 cm2 per repli-
cate) was selected following Kipson et al. (2011) and Casas-
G€uell et al. (2015). The percent cover of the different macro-
benthic sessile species was calculated in each quadrat by over-
imposing 100 stratified random points and identifying the
underlying species to the lowest possible taxonomic level,
using Photoquad photoquadrat (Trygonis & Sini, 2012).

Building the coralligenous trait space

The multidimensional trait space for coralligenous assem-
blages was quantified using the same functional traits that
have been previously used to characterise changes in ecosys-
tem function across CO2 gradients in the same Mediterranean
communities (Teixid�o et al. 2018). Specifically, we used twelve
traits that are likely to influence ecosystem functions (sensu
Paterson et al. 2012), namely; morphology, growth rate, phys-
ical defence (calcification), maximum longevity, age at
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Figure 1 Yearly exposure to MHW conditions in the five study sites and over the monitored periods. Circles represent detected MHWs, and their position

represents the intensity and duration of the event. The dashed line is the same for all sites and represents a proxy thermotolerance response curve for

coralligenous assemblages. This curve was calculated by fitting the combined thermotolerance (i.e. days until the first signs of necrosis at different

temperatures) of P. clavata (5 temperature data points) and C. rubrum (2 temperature data points) into the single combined curve (see Methods section,

Appendix S1 and Fig. S3 for detailed information). Circles over the curve (in red) are years in which severe MHWs occurred, likely inducing mortality on

the subjacent coralligenous assemblages. Circles below the curve (in orange), indicate years in which mild MHWs occurred, not likely inducing mortality on

coralligenous species. Thus, only sites with circles over the line were classified as MHW-impacted. Circle sizes are merely illustrative and are proportional

to their standardised position with respect to x and y axis, thus increasing in size towards the upper right corner of the plot.
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reproductive maturity, coloniality, height, width, feeding strat-
egy, major photosynthetic pigment, epibiotic preference and
energetic resource (See Table 1 for details on their relation to
ecosystem function).
Trait values were selected as the most accurate average

description of species-specific traits (see Appendix S2 &
Table S5 for details). As some species show plasticity in the
expression of certain traits and we were interested in global
comparisons across species rather than on intraspecific varia-
tion, we applied a fuzzy coding procedure based on coarse
ranked and nominal categories (Cheven et al. 1994). By using
this semiquantitative procedure, we increased the amount of
intraspecific variability accounted for in our study, while facil-
itating the comparison across highly divergent benthic groups
(e.g. algae, corals, sponges, etc) and the infilling of data gaps
(Weigel et al. 2016; Teixid�o at al. 2018). Overall, 111 taxo-
nomic units were classified into 52 functional entities (FEs),
which are defined as groups of species with an identical com-
bination of categorised/ranked trait values (Teixid�o et al.
2018). Then, we performed a Principal Coordinate analysis
(PCoA) based on a Gower dissimilarity matrix to create mul-
ti-dimensional trait spaces in which FEs of each assemblage
and temporal point were positioned according to their differ-
ences in traits values. The Gower dissimilarity index was cho-
sen because it allows for mixed types of data (Lalibert�e &
Legendre, 2010). Four PCoA dimensions were retained in
order to balance the amount of explained variation (75%),
the computational times and a low mean squared-deviation
index values (mSD = 0.003).

Functional richness (Frich) and functional identity (FI)

The characterisation of temporal changes in the functional
structure of coralligenous assemblages at a fine level of trait-
based dissimilarity was conducted by quantifying Frich and FI
(Mouillot et al. 2013). Since temporal changes in these metrics
were quantified for each assemblage separately (and thus at
the same depth over time), our analyses allowed for testing if
MHWs significantly altered the functional structure regardless
of any potential confounding role of depth.
Frich was calculated as the 4D convex hull volume of the

multidimensional trait space previously generated for each
assemblage and temporal point (Cornwell et al. 2006). A null
model was then used to test whether the observed values of
Frich significantly differed from the null hypothesis that Frich
of each assemblage remained constant across time. In particu-
lar, we simulated 9999 random assemblages for each moni-
tored site and time point, while keeping the number of FEs
constant over time within each site’s pool (Teixid�o et al.
2018). The observed values of Frich were then compared with
the simulated random ones using a bilateral test, with a signif-
icant level (a) of 5%.
FI was calculated as the abundance-weighted centroid of

the community in the multidimensional trait space (Mouillot
et al. 2013). Specifically, the position of each FE in the
trait space was weighted by its abundance and then aver-
aged in the total assemblage pool. The resulting community
mean value of FI for each site could be then plotted in
function of time to show temporal trajectories across trait

space. Finally, to test whether the observed values of FI
significantly differed in each site from the null hypothesis
that the abundance-weighted centroid of the community
remained constant across time, we conducted nonparametric
analysis of variance PERMANOVA (permutational multi-
variate analysis of variance) for each site with time as a
fixed factor.

Broad clustering classification of functional groups (FGs)

The quantification of Frich and FI based on the computation
of FEs allowed us to explore changes in the functional com-
munity structure at a fine level of trait-based dissimilarity.
Yet, complementing the fine functional characterisation with
a broader classification analysis allows to further explore if
there are some FGs in which functional redundancy (FR)
and response diversity (RD) might be critically lacking
(McWilliam et al. 2020). That is, if some FGs (i.e. clusters
of coarsely functionally redundant species that share similar
combinations of traits and therefore are expected to con-
tribute similarly to the ecosystem functioning), could be
more vulnerable than others to warming. We conducted a
Partition Around Medoids (PAM) clustering analysis to
derive broader aggregations of species in trait space, and
selected the optimal number of clusters (k = 8) using the
average silhouette width criterion (Kaufman & Rousseeuw,
1990; see Fig. S5). Then, we explored the way in which FR
was distributed among clusters by calculating the number of
species packed within each cluster in each site and time
point (Lalibert�e et al. 2010). Clusters formed by many spe-
cies were considered as functionally redundant, as the loss of
some species could be functionally compensated by others.
By contrast, clusters formed by one species were considered
as highly vulnerable, as they are formed by key taxa that
are functionally irreplaceable. Eventually, changes in the per-
cent cover of clusters across time were calculated for each
monitoring site. Declining clusters following MHWs (func-
tional ‘losers’), were considered to have a lack of RD,
because their constitutive taxa declined with no alternate
responses by functionally similar species.

RESULTS

MHW-impacted vs. non-impacted sites

MHWs were detected in every site along the monitoring peri-
ods; a minimum of two times in Pzzinu_par and Gabin_par,
and a maximum of five times Pzzu_cor (Fig. 1a–e). However,
the event intensity in terms of duration and maximum temper-
ature, which drives the impact on the local biota, varied
greatly among sites. In particular, none of the MHWs regis-
tered in Passe_cor and Pzzinu_par exceeded the thermotoler-
ance curve used as a proxy for the coralligenous (Fig. 1a and
c). These sites should not have suffered major impacts of
warming along the monitoring periods and therefore were
considered as non-impacted. By contrast, Pzzu_cor, Pzzu_par
and Gabin_par suffered at least one intense MHW during
which assemblages were potentially affected, and therefore
were considered as MHW-impacted.
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Table 1 Description of the 12 traits used to generate the multi-dimensional trait space

Trait (Ranked/

Nominal) Categories Relation to ecosystem functions*

Morphology

(Nominal)

(a) Boring, (b) Encrusting,

(c) Filaments, (d) Stolonial,

(e) Foliose Erect, (f) Articulated, (g) Corymbose, (h) Cup-like,

(i) Mass.-Encr., (j) Mass.-Erect (k) Mass.-Hem. (l), Tree-like

- Determines structural complexity and 3D habitat provision,

which influences water flow circulation, food and sediment

retention, and the creation of micro-habitats for the

settlement and shelter of co-occurring species (Gili & Coma,

1998; Darling et al. 2017).

- Influences the ability to withstand disturbance (Loya et al.

2001).

- Influences the uptake/release of energy or organic matter

depending on surface/volume ratios, thus determining the

competitive ability for space, light and food, the benthic-

pelagic coupling (Zabala & Ballesteros, 1989).

Coloniality

(Ranked)

(1) Solitary,

(2) Colonial/Gregarious

- Influences mortality risk and competition for space.

Growing as a colony reduces whole colony mortality

chances by spreading risk among sub-units and by favouring

recovery of fragments (Jackson, 1977, 1979).

Maximum longevity

(Ranked)

(1) Very low (weeks),

(2) Low (months; < 12),

(3) Medium (1–3 years),

(4) High (3–20 years),

(5) Very High (>20 years)

- Proxy for investment in long-term maintenance and

survival, and therefore, carbon storage and assemblage

stability (K€orner, 2017; Craven et al. 2018).

- Proxy for provision of long-term biological habitats.

Maximum height

(Ranked)

(1) Very low (< 1 cm / 1cm),

(2) Low (2–5 cm),

(3) Medium (5–20 cm),

(4) High (20–50 cm),

(5) Very High (>50 cm)

- Proxy for habitat three-dimensionality and disruption of

water flow, what affects particle deposition and prey capture

(Gili & Coma, 1998).

- Influences competition for space and resources, predation

risk and energy demand. Larger colonies have a more

prominent role in benthic � pelagic coupling and in

biogeochemical cycles (Zabala & Ballesteros, 1989; Rossi

et al. 2016)

Maximum width

(Ranked)

(1) Very low (< 1 cm / 1cm),

(2) Low (2–5 cm),

(3) Medium (5–20 cm),

(4) High (20–50 cm),

(5) Very High (>50 cm)

- Proxy for competition for space and resources, predation

risk and energy demand. Larger colonies have a more

prominent role in benthic � pelagic coupling and in

biogeochemical cycles (Zabala & Ballesteros, 1989; Rossi

et al. 2016).

Epibiosis preference

(Ranked)

(1) Never,

(2) Facultative,

(3) Obligate

- Epibionts colonise living surfaces, substantially modifying

the basibiont-environment interactions (e.g. transference of

energy or matter). Thus, they may reduce their fitness, and

subsequently, the assemblage stability when structural

species are affected (Wahl, 2008).

Energetic resource

(Ranked)

(1) Autotroph,

(2) Auto-heterotroph,

(3) Heterotroph

- Determines primary production, trophic interactions,

benthic-pelagic coupling, nutrient cycling and the energy

transfer in food webs (Round, 1984; Gili & Coma, 1998).

Feeding strategy

(Nominal)

(a) Primary producer, (b) Active filter feeder w. cilia, (c) Active filter

feeder by pumping, (d) Passive filter feeder, (e) Mixture, (f)

Saprophytic

- Determines trophic interactions, benthic-pelagic coupling,

nutrient cycling and the energy transfer in food webs

(Round, 1984; Gili & Coma, 1998).

Major photosyn.

pigment

(Nominal)

(a) None, (b) Chl a/b (e.g. green algae), (c) Chl a/c, Fucoxanthin,

(e.g. brown algae), (d) Chl a, Phycocyanin, Phycoerythrin (e.g. red

algae), (e) Chl a, Phycocy-anin (Cyanobacteria), (f) Dinofla-

gellathed, (g) Mix. (e.g. turf)

- Determines light harvesting capability in relation to the light

availability, and therefore, the primary production of the

ecosystem (Round, 1984).

Age at reproductive

maturity

(Ranked)

(1) Very low (weeks),

(2) Low (months; < 12),

(3) Moderate (1–5 years),

(4) High (> 5 years)

- Proxy for investment in long-term maintenance and survival

during the first stages of the life cycle. By investing in long-

term survival, late-reproducers increase mean biomass

production relative to the standard deviation of biomass

over time, enhancing assemblage stability (Craven et al.

2018).

Growth rate (linear

extension in cm/

year�1)

(Ranked)

(1) Extreme slow (< 1cm* year�1)

(2) Slow (~ 1 cm * year �1),

(3) Moderate (1–5 cm * year �1),

(4) High (5–10 cm * year �1),

(5) Very High (> 10 cm * year �1)

- Fast-growers have less investment in maintenance (i.e.

energy and material storage) and defences. Thus, they

typically present lower mean biomass production relative to

the standard deviation of biomass over time, which reduces

assemblage long-term stability (Craven et al. 2018).

(continued)
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Trends of functional richness (Frich)

The Principal Coordinate Analysis (PCoA) of the corallige-
nous trait space based on 12 functional traits and 111 taxo-
nomic units detected across all sites (see Table S2 for detailed
information on species presence and cover) revealed up to a
75% of variation condensed in four dimensions, of which
54% (37 and 17%, respectively) were explained in the first
two. Considering this maximum possible coralligenous trait-
space (Frich = 1; grey polygon in Fig. 2a–o), the site-specific
relative values of Frich differed across sites but remained
remarkably stable through time (Fig. 2a–o). For instance up
to a 48% difference was observed between Gabin_par_2007
(Frich = 0.38) and Pzzu_Par_2018 (Frich = 0.86), reflecting a
wide range of functional heterogeneity among different coral-
ligenous assemblages. In contrast, the maximum observed
temporal difference was a 6% decay in the occupied trait
space occurred in Pzzinu_par between 2011 (Frich = 0.73) and
2018 (Frich = 0.67). Accordingly, no significant differences
through time for any of the monitored sites were observed
(Fig. 2p–t). Based on Frich, MHW-impacted sites remained as
stable over time as those not impacted by MHWs.

Trends in functional identity (FI)

The FI of all assemblages at T1 presented a similar abun-
dance-weighted centroid of the community in the trait-space
(represented as red crosses in Fig. 3a–e), indicating that, in
stable conditions, dominant species driving ecosystem function
in coralligenous assemblages present similar traits; high long-
evity, big size, coloniality, slow growth, heterotrophic filter-
feeding mechanisms or complex morphologies (e.g. arbores-
cent or massive) typical of habitat-forming macro-inverte-
brates (Fig. 3h–l). When exploring temporal trends, a long-
term significant progressive shift in the FI across the trait-
space (PERMANOVA, P < 0.05; see Table S3) occurred in
all the MHW-impacted assemblages (Fig. 3b, d–e) but not in
the non-impacted ones (Fig. 3a and c), which remained
remarkably stable over the entire monitored periods (PER-
MANOVA, P > 0.05; see Table S3). In the case of the
impacted C. rubrum-dominated assemblage Pzzu_cor (Fig. 3a
and b), the FI shifted along the PCoA axis 2 from a domi-
nance of long-lived, tall, width or slow-growing taxa such as
some habitat-forming sponges and octocorals to short-lived
taxa with small size, epibiotic strategies and fast growth such

as some hydrozoans, polychaetes or encrusting bryozoans
(Fig. 3f). In contrast, in the MHW-impacted P. clavata-domi-
nated assemblages (Fig. 3c–e), the FI shifted along the PCoA
axis 1 from colonial, heterotroph, physically resistant and
slow-growing taxa with arborescent, massive or corymbose
morphologies typical of sessile habitat-forming macro-inverte-
brates to faster growing, individual, soft and autotroph taxa
with foliose, filamentous or articulated morphologies typical
of weedy macroalgae (Fig. 3g).

Functional groups (FGs) in coralligenous assemblages

The broad clustering characterisation of the coralligenous
assemblages resulted in 8 optimum functional clusters dis-
tributed along the trait-space (Fig. 4a and Table S4). Each of
them represents a FG constituted by different organisms that
present similar combinations of functional traits and therefore
are assumed to influence ecosystem functioning similarly.
Cluster 1 is mainly formed by colonial, massive, long-lived
and heterotroph species that grow at a moderate rate and
pump water as the main feeding strategy. Cluster 2 present
traits that are ubiquitous in many Mediterranean bryozoans
but also in some polychaetes, such as relatively small sizes,
heterotrophy, active ciliated feeding or the presence of contin-
uous carbonated skeleton. Cluster 3 is mainly constituted by
encrusting red calcareous algae that form the basal layer that
cements the coralligenous assemblages. Cluster 4 includes a
mixture of taxa that are mostly colonial, heterotroph, with
low or very low height, such as some encrusting bryozoan,
ascidians and hydrozoans. Clusters 5 and 6 refer to auto-
trophs primary producers that grow and reproduce moder-
ately fast and present foliose, stolonifera or filamentous
morphologies typical of macroalgae. Cluster 7 groups mostly
solitary corals with hard continuous carbonated skeletons,
small sizes, slow growths and passive filter feeding strategies.
Cluster 8 includes taxa with high longevity and height,
arborescent morphologies, late reproduction, heterotrophy or
high mechanical resistance based on semi-rigid skeletons
formed by calcareous sclerites.
The clustering characterisation of the coralligenous assem-

blages also revealed a disequilibrium in the way functional
redundancy (FR) is packed within the eight functional clus-
ters. While some are highly redundant and involved many dif-
ferent organisms (up to 24) in all sites (e.g. Clusters 1 or 2),
others such as the Cluster 8 are only represented by one or

Table 1 (continued)

Trait (Ranked/

Nominal) Categories Relation to ecosystem functions*

Physical defenses

(Nominal)

(a) Non-calcifier, (b) Non-calc. spicules, (c) Calc. spicules and

sclerites, (d) Carbonate w. discontinuities, (f) Continuous

Carbonate, (g) Mixture

- Proxy for carbonate production

- Influence ecosystem stability by playing a primary role in

defence against predation and in the provision of structural

strength, which determines the formation of long-term 3D

habitats (Zabala & Ballesteros, 1989; Gili & Coma, 1998).

The categories (ranked/nominal) used for each trait are shown, as well as their ecological relevance for the functioning of coralligenous assemblages.

Ecosystem functions are considered here as the natural processes determining the movement or stockage of energy and materials within an ecosystem or its

relative stability over time; Paterson et al. 2012). Table adapted from Teixid�o et al. 2018.
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two species, which make them especially vulnerable (Fig. 4b–f).
Regarding the temporal trends, the number of species within
each cluster remained relatively constant over time in all
assemblages, with an overall variation of 1 � 2 and 2 � 2
(mean � SD) species per cluster in non-impacted and MHW-
impacted assemblages respectively (Fig. 4g–k). Finally, when
looking at temporal changes in % cover of each functional
clusters in each site, cluster 8 was the only one which was sys-
tematically reduced in all MHW-impacted assemblages, with a
minimum reduction of 65% and a maximum of 93% (Fig. 4l–p
and Fig. S7).

DISCUSSION

MHWs linked to climate change have recurrently impacted
Mediterranean temperate reefs in recent decades, leading to
mass mortality events and changes in patterns of biodiversity
(Cerrano et al. 2000; Garrabou et al. 2009, 2019; Verdura
et al. 2019). Here, we show that MHWs have also induced
marked changes in functional trait composition that are likely
to impact ecosystem functioning.
We examined abundance distributions of functional entities

(species sharing identical combinations of traits) across the
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Figure 2 (A) Temporal changes in the % of trait space occupied (Frich; represented as coloured polygons) in non-impacted (a, f, k; c, h, m) versus MHW-

impacted sites (b, g, l; d, i, n; e, j, o) for both C. rubrum and P. clavata dominated assemblages. The global trait space for all species found in this study is
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trait space and found that, whereas non-impacted corallige-
nous assemblages maintained their functional richness (range
of traits values) and functional identity (dominant trait values)
through time, MHW-impacted assemblages exhibited shifts in
their functional identity. In particular, MHWs decreased the

abundances of taxa with large sizes, arborescent and massive
morphologies, coloniality, high physical defences, slow-grow-
ing and long-lived life histories or heterotrophic filter-feeding
strategies. For benthic systems such as tropical and temperate
reefs, these are traits that confer important ecosystem
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functions, including the provision of habitat structure, nutri-
ent cycling, carbon storage or benthic pelagic coupling (Gili &
Coma, 1998; Loya et al. 2001; Graham & Nash, 2013; Darling

et al. 2017; Paoli et al. 2017; Coppari et al. 2019). Thus, their
decline in MHW-impacted assemblages in benefit of other
traits (e.g. small sizes, fast-growing and reproduction,

MHW-Impacted AffectedNot impacted

−0.2 0.0 0.2 0.4

−
0.

3
−

0.
1

0.
1

0.
3

Passe_cor

P
C

oA
2

−0.2 0.0 0.2 0.4

Pzzu_cor

−0.2 0.0 0.2 0.4

Pzzinu_par

−0.2 0.0 0.2 0.4

Pzzu_par

−0.2 0.0 0.2 0.4

Gabin_par

PCoA1PCoA1PCoA1PCoA1PCoA1

P
C

oA
2

0

25

50

75

100

1 2 3

A
bu

nd
an

ce
 (

%
)

1 2 3

0

25

50

75

100

1 2 3

A
bu

nd
an

ce
 (

%
)

1 2 3 1 2 3
Time

−
0.

3
−

0.
1

0.
1

0.
3

TimeTimeTimeTime

−0.2 0.0 0.2 0.4
−

0.
3

−
0.

1
0.

1
0.

3

Functional clusters

P
C

oA
2

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7
Cluster 8

Not impacted

(a)

(b)

MHW-Impacted

PCoA1

0
2
4
6
8

10
12
14
16
18
20
22
24

1 2 3
Time

N
 o

f S
p 

w
ith

in
 e

ac
h 

cl
us

te
r 

1 2 3
Time

0
2
4
6
8

10
12
14
16
18
20
22
24

1 2 3
Time

N
 o

f S
p 

w
ith

in
 e

ac
h 

cl
us

te
r

1 2 3
Time

1 2 3
Time

(c) (d) (e) (f)

(g) (h)
(i)

(j) (k)

(l) (m) (n) (o) (p)

Figure 4 (a) Results from the PAM clustering analysis of the total pool of coralligenous species. The clusters (functional groups) found in each site are
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Patterns of cluster 8 can be seen in more detail in Fig. S7.
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epibiotic strategies, less complex encrusting and foliose mor-
phologies, less calcification or autotrophic photosynthetic
strategies) may likely lead to changes in the ecosystem func-
tioning (Figure 5). For instance a decrease of large, colonial,
calcifying, morphologically complex, or slow-growing, long-
lived organisms that have a high investment in long-term
maintenance (e.g. arborescent corals, massive sponges or erect
bryozoans) is likely to lead to reductions in the creation of
three-dimensional, long-term, biogenic habitats that could also
store carbon for decades (Darling et al. 2017; Coppari et al.
2019). In benthic ecosystems, the three-dimensionality of
organisms plays a fundamental role in the organisation, func-
tion and resilience. It has been associated to positive effects
on biodiversity (e.g. by ameliorating physical and biological
stresses for the associated species), productivity, invasion
resistance or stability over time (Angelini et al. 2011; Ponti

et al. 2014, 2018; Darling et al. 2017; Verdura et al. 2019; De
la Torriente et al. 2020). Moreover, since structural complex-
ity determines water flow disruption, its reduction in MHW-
impacted assemblages may minimise the time that suspended
particles remain close to the benthos, depleting prey capture
chances, larval settlement probabilities and sedimentation,
and thus also the benthic-pelagic coupling and nutrient
cycling (Gili & Coma, 1998). Similarly, since heterotrophic fil-
ter feeders significantly interact with the water column by
depleting food particles and sediments and by transferring
energy and nutrients from the water column to the benthos,
their decrease in some impacted assemblages may also reduce
the benthic-pelagic coupling, the nutrient cycling, the carbon
storage, the energy transfer through the food webs or the
lithification processes that contribute to the building up of the
coralligenous structure (Cloern 1982; Officer et al. 1982;
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Marshall, 1983; Kimmerer et al. 1994; Gili & Coma, 1998).
The increased abundance of epibiotic organisms in some
impacted assemblages may also hinder the assemblage resili-
ence, since it may lead to the reduction of the resistance and
recovery capacity of structural species. In particular, an
increase in epibiosis may reduce the fitness of the overgrown
organisms by disrupting the energy and material fluxes
between their surfaces and the environment (Wahl, 2008).
Likewise, the observed increase in ruderal organisms with fast
life-history strategies (e.g. algal turfs or weedy macroalgae)
may contribute to a rapid colonisation of free spaces after
MHWs, thus potentially hindering the recruitment and recov-
ery of the previously dominant macro-invertebrates and the
overall assemblage resilience (Kuffner et al. 2006; Linares
et al. 2012).
Overall, the observed MHW-driven changes in functional

identity suggest that environmental filtering is taking place
with particular functions being gradually reduced (losers), in
detriment of others (winners). This indicates a limited capacity
for response diversity and functional redundancy for main-
taining the functioning in MHW-impacted coralligenous
assemblages (McWilliam et al. 2020). Interestingly, our clus-
tering analysis suggests that the observed changes in func-
tional identity could be mostly the consequence of the lack of
both functional redundancy and response diversity in a single
functional group (FG); the Cluster 8 grouping the habitat-
forming octocorals. In fact, whereas most FGs were highly
redundant and were represented by many species (up to 24 in
some cases), Cluster 8 was no redundant and only consisted
of one species in most sites. Such lack of redundancy in an
abundant cluster indicates that the constitutive species may
present unique traits that may contribute disproportionally to
the ecosystem functioning and stability (Ellison et al. 2005).
Therefore, if the species are also highly vulnerable and get
their abundance reduced, no functional compensation will
occur and serious detrimental consequences for the overall
ecosystem functioning may unfold (Bellwood et al. 2003;
Nystr€om, 2006). Unfortunately, Cluster 8 was not only low in
redundancy, but low resistant as well. This FG exhibited col-
lapsing trajectories in coverage (from 65 to 93% reductions)
in all MHW-impacted assemblages (Fig. 4l-p & Fig. S7). Con-
sequently, although all the other FGs and their underlying
ecosystem functions count on certain degree of insurance
against MHWs, the quality of those functions that are dispro-
portionately influenced by Cluster 8 (e.g., provision of long-
term 3D habitats, the benthic-pelagic coupling, the nutrient
cycling, the resilience, or the long-term carbon storage) might
be highly compromised. For instance, although the increas-
ingly dominant erect macroalgae could provide three-dimen-
sionality in some MHW-impacted assemblages, the function
will presumably be of less quality and less durability than
when the larger, calcified and longer-lived species from Cluster
8 used to dominate. Similarly, the emergent encrusting
sponges or bryozoans may partially replace the filtering role
of the collapsing habitat-forming octocorals. Yet, not only the
type of captured prey would be different, but the overall asso-
ciated lesser structural complexity would likely reduce their
capturing rates as well, affecting the amount of energy and
matter transferred from the water column.

Overall, our analyses at different levels of trait-based dis-
similarity show MHW-induced changes in community struc-
ture to assemblages that are now deficient in key functional
traits. Similarly to what has been observed in tropical coral
reefs (e.g. Hughes et al. 2018), our results indicate that
MHWs are likely inducing severe changes in the ecosystem
functioning of Mediterranean temperate reefs. Given the pre-
dicted increase in the frequency and intensity of MHWs (Oli-
ver et al. 2019), identifying and preserving the mechanisms of
reef stability that maintain essential functions and services is
critical (Bellwood et al. ,b2004, 2019a; Hughes et al. 2018).
Here, we have shown that the functional stability (considered
here as the maintenance of functional structure over time in
terms of both functional richness and identity, and thus of
what functions are in the system and how they are performed)
of Mediterranean coralligenous assemblages can be highly
compromised by the decline of just few pivotal species with
unique trait values. Thus, if we aim to preserve these temper-
ate reefs in a way in which their essential ecological functions
are maintained, further efforts will be needed to; i) globally
reduce CO2 emissions and ii) further investigate the effective-
ness of ocean-based solutions that could promote the resili-
ence of their key habitat-forming species to MHWs (e.g. the
operationalisation of a climate-responsive design and manage-
ment of a fully protected network of MPAs in the Mediter-
ranean; Gattuso et al. 2018; Bates et al. 2019).
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