STAR Protocols

¢? CellPress

OPEN ACCESS

Protocol for live cell image segmentation to
profile cellular morphodynamics using MARS-

Net

Data Organization

Installing MARS-Net
() —

Live Cell Movie

‘0001:.png
> — L
~$ Install MARS-Net

Step 1
Labeling Images

Training MARS-Net

Supervision

Segmented
Raw Image 4® Cell Body

‘Im Step 3

°
°
Evaluation of the Segmentation :
X
E@E O) Velocity
> || . +
P N P -
Matching Boundary ° E
Ground Truth (] = T . 0
® 8 - -
°

Quantitative studies of cellular morphodynamics rely on accurate cell segmentation in live cell
images. However, fluorescence and phase contrast imaging hinder accurate edge localization.
To address this challenge, we developed MARS-Net, a deep learning model integrating
ImageNet-pretrained VGG 19 encoder and U-Net decoder trained on the datasets from multiple
types of microscopy images. Here, we provide the protocol for installing MARS-Net, labeling
images, training MARS-Net for edge localization, evaluating the trained models’ performance,
and performing the quantitative profiling of cellular morphodynamics.

Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional
guidelines for laboratory safety and ethics.

Junbong Jang,
Caleb Hallinan,
Kwonmoo Lee

junbongjang@kaist.ac.kr
(J.J.)
kwonmoo.lee@childrens.
harvard.edu (K.L.)

Highlights

Deep learning-based
segmentation
pipeline for live cell
movies

Semi-automatic
labeling tool for
ground truth masks

Train segmentation
models and evaluate
their segmentation
accuracy

Quantification of
cellular
morphodynamics
from detected cell
edges

Jang et al., STAR Protocols 3,
101469

September 16, 2022 © 2022
The Author(s).
https://doi.org/10.1016/
j-xpro.2022.101469

Gheck for
Updaies

mailto:junbongjang@kaist.ac.kr
mailto:kwonmoo.lee@childrens.harvard.edu
mailto:kwonmoo.lee@childrens.harvard.edu
https://doi.org/10.1016/j.xpro.2022.101469
https://doi.org/10.1016/j.xpro.2022.101469
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2022.101469&domain=pdf

STAR Protocols @ CelPress

OPEN ACCESS

Protocol for live cell image segmentation to profile
cellular morphodynamics using MARS-Net

Junbong Jang,'** Caleb Hallinan,” and Kwonmoo Lee’?%*

"Wascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
?Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
3Technical contact

4Lead contact

*Correspondence: junbongjang@kaist.ac.kr (J.J.), kwonmoo.lee@childrens.harvard.edu (K.L.)
https://doi.org/10.1016/j.xpro.2022.101469

SUMMARY

Quantitative studies of cellular morphodynamics rely on accurate cell segmenta-
tioninlive cellimages. However, fluorescence and phase contrast imaging hinder
accurate edge localization. To address this challenge, we developed MARS-Net,
a deep learning model integrating ImageNet-pretrained VGG19 encoder and
U-Net decoder trained on the datasets from multiple types of microscopy im-
ages. Here, we provide the protocol for installing MARS-Net, labeling images,
training MARS-Net for edge localization, evaluating the trained models’ perfor-
mance, and performing the quantitative profiling of cellular morphodynamics.
For complete details on the use and execution of this protocol, please refer to
Jang et al. (2021).

BEFORE YOU BEGIN

Data collection

MARS-Net was developed to leverage the datasets from multiple types of microscopy images for the
most accurate segmentation results. The protocol below describes the specific steps for training on
our multiple-microscopy-type datasets from phase contrast, spinning disk confocal, and total inter-
nal reflection fluorescence microscopes. However, this protocol can be used for single-microscopy

datasets.

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MARS-Net This paper https://github.com/kleelab-bch/MARS-Net
ImageJ Schneider et al. (2012) https://imagej.nih.gov/ij/

MATLAB 2019b-2021b MathWorks https://www.mathworks.com/products/matlab.html
Python 3.6.8 Python Software Foundation https://www.python.org/

Anaconda v4.5.11 Anaconda https://www.anaconda.com/

CUDA v10.1 NVIDIA https://developer.nvidia.com/cuda-toolkit
cuDNN v7.6.5 NVIDIA https://developer.nvidia.com/rdp/cudnn-archive

Extended Berkeley David Stutz

Segmentation Benchmark
Windowing and Protrusion Package Gaudenz Danuser Lab
npy-matlab Kwik Team

TensorFlow v2.3 TensorFlow

https://github.com/davidstutz/
extended-berkeley-segmentation-benchmark

https://github.com/DanuserLab/Windowing-Protrusion
https://github.com/kwikteam/npy-matlab
https://www.tensorflow.org/

(Continued on next page)

STAR Protocols 3, 101469, September 16, 2022 © 2022 The Author(s). 1

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:junbongjang@kaist.ac.kr
mailto:kwonmoo.lee@childrens.harvard.edu
https://doi.org/10.1016/j.xpro.2022.101469
https://github.com/kleelab-bch/MARS-Net
https://imagej.nih.gov/ij/
https://www.mathworks.com/products/matlab.html
https://www.python.org/
https://www.anaconda.com/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/rdp/cudnn-archive
https://github.com/davidstutz/extended-berkeley-segmentation-benchmark
https://github.com/davidstutz/extended-berkeley-segmentation-benchmark
https://github.com/DanuserLab/Windowing-Protrusion
https://github.com/kwikteam/npy-matlab
https://www.tensorflow.org/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2022.101469&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

¢? CellPress

OPEN ACCESS

STAR Protocols

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Matplotlib v3.3.4 Matplotlib https://matplotlib.org/

NumPy v1.18.5 NumPy https://numpy.org/

Absl-py (v0.12.0) Abseil Python https://github.com/abseil/abseil-py
Common Libraries

Grpcio (v1.37.0) The gRPC Authors https://pypi.org/project/grpcio/

H5py (v2.10.0)

Imageio (v2.9.0)
Importlib-metadata (v3.10.0)
Joblib (v1.0.1)
Keras-preprocessing (v1.1.2)
Numba (v0.53.1)
OpenCV-contrib-python (v4.5.1.48)
OpenCV-python (v4.5.1.48)
Pillow (v8.2.0)

Psutil (v5.8.0)

Scikit-image (v0.17.2)
Scikit-learn (v0.24.1)

Scipy (v1.4.1)

Tgdm (v4.60.0)

Umap-learn (v0.5.1)

Andrew Collette
and contributors

Imageio

Python

Joblib

TensorFlow
Numba

OpenCV

OpenCV

Tidelift
Giampaolo Rodola
scikit-image
scikit-learn

SciPy

Casper da Costa-Luis
Leland Mclnnes

https://www.h5py.org/

https://imageio.readthedocs.io/en/stable/
https://docs.python.org/3/library/importlib.metadata.html
https://joblib.readthedocs.io/en/latest/
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing
https://numba.pydata.org/
https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html
https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html
https://github.com/python-pillow/Pillow
https://github.com/giampaolo/psutil
https://scikit-image.org/

https://scikit-learn.org/stable/

https://scipy.org/

https://github.com/tqdm/tgdm
https://umap-learn.readthedocs.io/en/latest/

Other
CPU (1 required) any core N/A
RAM Memory N/A 16 GB or greater recommended
GPU NVIDIA GTX 1080Ti, N/A
2080Ti or Titan RTX
oS Ubuntu v16.04, v18.04, N/A

or Windows 10

MATERIALS AND EQUIPMENT

e Microscopy images from either phase contrast, spinning disk confocal or total internal reflection

fluorescence microscopes. Other microscopy images have not been tested.

Python Software and required packages. The required packages will be automatically installed when

users run the installation using Anaconda with environment.yml, which is explained later. While

different versions of the Python software and associated packages may work correctly with MARS-

Net, the authors use Python v3.6.8 and the following packages at the indicated versions when

writing this protocol. When new versions become available, our software will be updated accord-

ingly. The aforementioned software and packages are listed above in the key resources table.

STEP-BY-STEP METHOD DETAILS

Part 1. Installing MARS-Net

O Timing: 45 min

Full installation of MARS-Net includes downloading the MARS-Net package from GitHub and

installing its software requirements.

1. Setup the Anaconda environment by running the following commands.
a. In the command prompt in Windows 10/11:

>conda env create —name marsnet —-file environment_windows.yml

2 STAR Protocols 3, 101469, September 16, 2022

https://matplotlib.org/
https://numpy.org/
https://github.com/abseil/abseil-py
https://pypi.org/project/grpcio/
https://www.h5py.org/
https://imageio.readthedocs.io/en/stable/
https://docs.python.org/3/library/importlib.metadata.html
https://joblib.readthedocs.io/en/latest/
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing
https://numba.pydata.org/
https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html
https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html
https://github.com/python-pillow/Pillow
https://github.com/giampaolo/psutil
https://scikit-image.org/
https://scikit-learn.org/stable/
https://scipy.org/
https://github.com/tqdm/tqdm
https://umap-learn.readthedocs.io/en/latest/

STAR Protocols ¢? CellP’ress

OPEN ACCESS

b. In the Linux Terminal in Ubuntu:

>conda env create —name marsnet —file environment_linux.yml

>conda activate marsnet

2. To download the MARS-Net pipeline from GitHub Repository, click the link and navigate to the
green “Code” button on the page. Click this, and then select “Download ZIP". Be sure to also
install the requirements listed in the key resources table above (also located on the MARS-Net
pipeline GitHub page).

3. Unzip the downloaded zip file from the GitHub and open the unzipped folder.

4. Open "UserParams.py” file with a text editor or IDE such as PyCharm.

Note: UserParams.py is a file that contains all the configurations necessary for running Mars-
Net.

5. Editthe following parameters inside __init__() function within UserParams class. These specify the
type of the deep learning model to use, location of datasets, and training configurations. The pa-
rameters for training step and prediction step are independent and must be set separately. For
example, if statement block from line 62 to 81 specify parameters for training the ‘multi_micro’
model and the if statement block from line 422 to 441 specify parameters for segmenting live
cell movies using the trained ‘multi_micro’ model.

a. “strategy_type".
i. Set as the type of deep learning model to use (ex. VGG19_dropout, unet).

Note: We recommend users to always use the VGG19_dropout model since we experimen-
tally showed that the VGG19_dropout model segmented all live cell movies in our dataset
with the highest accuracy. Other options are U-Net and plain VGG 19 which are the baseline
models.

b. "dataset_folders”.
i. Set as the location where your images and masks are stored (ex. ["..\assets\", "..\assets\se-
cond_dataset\"].

Note: The sample images and labels are in the “.\assets\040119_PtK1_
S01_01_phase_ROI2\" directory so that users can practice the written procedures.

c. "img_type".
i. Set as the type of file your image is (ex. “.png").
d. “img_folders".

i. Set as a list of folders where images are located (ex. ["/img/","/img/"]).
e. "mask_folders".
i. Set as a list of folders where masks are located (ex. ["/mask/"," mask"]).

Note: These are the folders for ground truth masks of the images.

f. "frame_list".
i. Set as a list of the number of images to train the model (ex. [1,2,6,10]).

Note: [1,2,6,10] means that the first model will be trained on one of the randomly selected

images in the dataset folder. Then the second model will be trained on two images, and
so on. Model can train on as few as just one image and its corresponding ground truth

STAR Protocols 3, 101469, September 16, 2022 3

¢? CellPress STAR Protocols

OPEN ACCESS

mask or as many frames as possible from the live cell movie but more training frames require
more labeling efforts.

g. “dataset_names”.
i. Set as a list of the dataset names, which will be parent folders containing img and mask
folders. (ex. ["dataset1"," dataset2"]).

Note: For training, more than one dataset name should be specified in the list because our
pipeline performs a leave-one-movie-out cross validation. For instance, given the list of data-
setsm1, m2, m3 and m4, first three datasets (m1, m2 and m3) will be used for training and m4
will be used as a test set for evaluating the segmentation accuracy. Then, other combination
of three datasets such as (m1, m3, m4) will be used for training and m2 will be used as a test
set for evaluating the segmentation accuracy. For prediction, only one dataset can be spec-
ified in the list, which would segment one live cell movie using a trained model. See part 4.
Training MARS-Net and segmenting movies for more details.

h. “model_names”.
i. Set as a list of the model names, these names can be any distinguishing characters (ex.
["A" " B")).

Note: As described in the note in step g, each model name in the list represents a different
model trained during the leave-one-movie-out cross validation. These models use the same
deep learning architecture specified in the “strategy_type” but are trained on different com-
binations of datasets.

“REPEAT_MAX".
i. Set as the number of times to repeat cross validation (ex. 1 or 5).

Note: Repeating the cross validation is for evaluating the deep learning model robustly. The
same deep learning model trained with different “random seed” can yield slightly different
performances. Therefore, in each repetition, we vary the random seed and train the same
model repetitively to see the variance of our models’ performance. 5 is preferred for robust
evaluation of the model but it also takes five times longer to train and evaluate. So, in prac-
tice, itis setto 1.

Note: Make sure the list length is equal for “model_names”, “img_folders”, “mask_folders”,
“dataset_folders”, and “dataset_names".

Part 2. Data organization
O® Timing: 3 min per movie

Organizing the data with the correct labels, in the correct folders, etc. is a key component in insuring
MARS-Net is run effectively.
6. Create a folder with a unique name, and inside that folder, create subfolders with names “img"”

and "mask”.

7. If the dataset is a movie, separate the movie into images (we used PNG format) with ImageJ.
a. Open ImageJ, load in the movie, click “File”, “Save As” then “Image Sequence”.

8. Make sure that the images are generated in order with filenames having the four-digit frame id
with leading zeros at the end, starting with ‘0001".

4 STAR Protocols 3, 101469, September 16, 2022

STAR Protocols ¢? CellP’ress

OPEN ACCESS

a. For example, given a movie with 200 frames, the first frame’s filename is cell_0001.png, the
second frame’s filename is cell_0002.png, and the last frame's filename is cell_0200.png.
9. Putimages into the “img” folder and leave the mask folder empty. The mask folder will be filled
with labeled images later.
10. Repeat previous steps for each additional movie.

Part 3. Labeling images
® Timing: 3 min per image

The labeling tool (Figure 1) facilitates labeling raw images semi-automatically for training MARS-
Net. Gaussian, bilateral, and guided blurring operations denoise the raw images, followed by the
Canny edge detector (Canny, 1986) extracting edges from three blurred images. And then, they
are combined into one preliminary edge image. Human annotators should fix any errors of the pre-
liminary edges manually (Figure 2). All files for labeling tools are found in the “label_tool” folder. The
timing is from labeling the image of size 392 x 474 by an expert.

Note: This Part can be skipped if no movie needs to be labeled for training and evaluation and
a user just wants to use our pretrained model to segment live cell movies. If a user chooses to
label a dataset, we recommend labeling about 1% of the data for training. For a robust eval-
uation of the trained model, we recommend labeling about 10% of the data. Throughout this

Part, itis recommended to use a similar naming scheme for folders and images as the example
in MARS-Net Github.

1

—_

. Specify the location of image files to the label in the “user_params.py":
a. Setvariable "a_dataset” to the name of the folder with original images.
b. Set variable "img_root_path” to the path where original images are located.
c. Save "user_params.py”.

Note: “user_params.py” is not the same as “UserParams.py” used in previous steps. The
"user_params.py"” file is specifically for the labeling tool.

12. Determine the optimal hysteresis thresholding for canny detector and kernel size for blurring
(parameters located in “user_params.py”):
a. Run the following code:

>python explore_edge_extraction_user_params.py

b. When “explore_edge_extraction_user_params.py” completes all edge extractions, results
will be located in the “generated_explore_edge” folder.
i. Select each generated image and determine which parameter values are best for opti-

mizing hysteresis thresholding.

c. Set the selected best thresholding values in “user_params.py” for “canny_std_multiplier”
and "“denoise_kernel_size” parameters located at around line 11 and 12.

d. Save "user_params.py”.

13. Extract edges with optimized parameters:
a. Run the following code:

>python extract_edge.py

STAR Protocols 3, 101469, September 16, 2022 5

¢ CellPress STAR Protocols

OPEN ACCESS

b. When “extract_edge.py"” completes all generated edge images, results will be located in the
“generated_edge" folder.

14. Manually fix the generated edge images:

a. The image edges will not always be correctly connected, even with the optimized parame-
ters. Hence, it is important to manually connect any fragmented edges and remove the
wrong edges in the image. Download ImageJ or GIMP to manually fix after overlaying the
edge on the original image*

b. Replace any generated edge images in the “generated_edge” folder with manually fixed
edge images.

Note: *When using ImageJ for manual edge fixing, use the freehand tool to obtain the true
edges of the cells. When using GIMP, overlay the image with a mask that is 50% transparent.
From here, draw the true edges of the cell with the paintbrush tool.

15. Post-process the edge images to fill the edge images:
a. Run the following code:

>python segment_edge.py

i. The “segment_edge.py” will ask for how many backgrounds to fill in your image, and one
pair of (x, y) coordinates in each background. The total number of backgrounds will be
determined based on the image of the cell. Once you locate all backgrounds in the image,
provide any (x, y) coordinates in each respective background.

b. When “segment_edge.py” completes all segmentations, results will be located in the “gen-
erated_segmentation” folder.
c. Move these labeled images to the "assets” folder to begin training the model.

16. Repeat previous steps in this Part on all cell movies before moving to the next Part. All movies
are labeled for training multiple models for cross-validation in the evaluation Part. Labeling all
live cell movies is only necessary for training multiple models and evaluating them by leave-one-
movie-out cross validation.

Part 4. Training MARS-Net and segmenting movies
O Timing: 4 h

MARS-Net (Jang et al., 2021) takes a transfer learning approach (Bertasius et al., 2015; Iglovikov et
al., 2018; Kim et al., 2018; Long et al., 2015; Vaidyanathan et al., 2021) by integrating ImageNet-
pretrained VGG19 encoder and U-Net decoder with additional dropout layers (Deng et al., 2009;
Ronneberger et al., 2015; Simonyan and Zisserman, 2015; Srivastavanitish et al., 2014), trained on
the datasets from multiple types of microscopy. MARS-Net accepts the segmented images gener-
ated in Part 3 of this protocol. The code described in the following steps crops each image of the
dataset into 200 of 128 x 128 patches, trains the deep learning model, and predicts the segmen-
tation of the images in the test set, which is defined in UserParams.py in Part 1. The cropping code
samples 60% of the patches from the cell edges, 20% of the patches from the cell interior and the
other 20% from the background outside the cell. Titan RTX took about 4 h, but training time can
vary based on which GPU is used.

17. In the terminal, navigate to the “crop” folder and run the “crop_augment_split.py” file to begin
cropping patches for training:

6 STAR Protocols 3, 101469, September 16, 2022

STAR Protocols ¢? CellP’ress

OPEN ACCESS

18. When “crop_augment_split.py” finishes cropping the images, navigate to the “models” folder

>cd ‘‘location of crop folder’ "

>python crop_augment_split.py

in the terminal and run the following code to begin training MARS-Net:

>cd ‘‘location of model folder’’

>python train_mars.py

19. During training which might take a few hours, the terminal will show the training loss and dice
coefficient on the training set and the validation loss and dice coefficient on the validation set
for each epoch. For metrics on both training and validation sets, usually high dice coefficient
at around 0.98 and low loss at around 0.01 indicates the successful training.

20. While the model is training, set up parameters for prediction in UserParams.py as described in
the step 5 in Part 1 to specify which live cell movie to segment.

21. When "train_mars.py" finishes training the model, navigate to the “models” folder and run the
following code to segment the live cell movies:

>python predict.py

22. The segmented live cell movie will be generated in the “models/results/predict_wholeframe_r-
ound1_*"directory where * represents the model name specified in the “strategy_type” param-
eter.

Note: Please remember this directory of segmented result since it will be used in Part 6 for
quantification of morphodynamics.

A CRITICAL: MARS-Net will over-write previous cropped files, trained models and predicted
results saved with the same “strategy_type"”, so please use a unique "“strategy_type” in
UserParams.py before cropping, training and prediction.

Note: A user can predict segmentation of our sample live cell movie with pretrained U-Net
and VGG 19D models without going through the cropping and training steps above. Follow
the instructions below if you want to use our pretrained model without cropping and training.
Also, follow the instructions below if you don’t want to perform leave-one-movie-out cross
validation but segment a live cell movie using one of the trained models. The instructions
below are a more user-friendly way to use our pipeline that only requires four parameters
from the user, without the need to specify any parameters in UserParams.py:

23. To use our pretrained U-Net or VGG19D models, download them from the following google
drive as a zip file: https://drive.google.com/drive/folders/1FLPOD-Y9-DHOmMhC-LBZChdU
Seb6W5zyPw?usp=sharing.

Note: The sample images and labels are in the “.\assets\040119_PtK1_
S01_01_phase_ROI2\" directory so that users can practice the written procedures.

24. Create the new folder named “results” under the “models” folder.

STAR Protocols 3, 101469, September 16, 2022

7

https://drive.google.com/drive/folders/1FLP0D-Y9-DHQmhC-LBZChdUSe6W5zyPw?usp=sharing
https://drive.google.com/drive/folders/1FLP0D-Y9-DHQmhC-LBZChdUSe6W5zyPw?usp=sharing

¢ CellPress STAR Protocols

OPEN ACCESS

25. Move the downloaded zip file from the google drive into the “results” folder and unzip it. Then,
there should be "model_round1_Multi_VGG19D" folder “model_round1_Single_Unet” folder
inside the “results” folder.

26. Navigate to the “models” folder in the terminal and run the following code to segment the live
cell movie. Please specify trained_model_path, live_cell_images_path, save_path, and img_for-
mat as input arguments in the command line as follows:

>pythonpredict_simple.py --trained_model_path ./results/model_roundl_ Multi_VGG19D/mod-
el frame2_ D_repeat0.hdf5 --live_cell_images_path ../assets/040119_PtK1l_S01_01_pha-
se_2_DMSO_nd_02/img_all/ --save_path ./results/ -img_format .png

27. To use one of the trained models from leave-one-movie-out cross validation scheme above,
navigate to the folder in the directory “models/results/model_round1_*/" where * stands for
the name of the model specified in the “strategy_type” parameter. Inside that folder, there
should be one or more trained models with the name “model_*_repeat0.hdf5". Choose one
of those models for prediction in step 26 based on the evaluation of each cross validation in
Part 5.

Part 5. Evaluation of the segmentation results
O® Timing: 30 min

Now that MARS-Net model training and prediction are complete, we can evaluate and visualize the
segmentation results. Segmentation results are evaluated by Precision, Recall, and F1 score (Arbe-
laez et al., 2010). To briefly explain these criteria; precision measures how well the model identified
only the real cell boundaries compared to non-cell boundaries, recall measures if the model found all
the real cell boundaries and F1 measures a harmonic mean of precision and recall. For comparison of
the model against other models, the evaluated results from multiple models are shown togetherin a
bar graph, edge evolution diagram, violin plot, line graph, and bubble plot. All evaluations follow
the leave-one-movie-out cross-validation scheme, which means that given ‘'n’ number of movies,
‘n-1" movies are used for training the model, and one movie is segmented, and segmentation results
are evaluated. Cross validation repeats such training and evaluation until each movie is used for vali-
dation once. The visualization codes in this Part show the cross-validation results by averaging the
evaluation results from the segmentation of each movie. For more details on what each plot de-
scribes, refer to the MARS-Net (Jang et al., 2021).

A CRITICAL: Correspondence Algorithm(Arbelaez et al., 2010) necessary for calculating F1,
precision and recall is only supported in Linux. Windows 10 user still can perform steps 35,
36 and 40 in this Part or go to the Part 6.

28. Navigate to the “evaluation” folder in the MARS-Net folder and open the “GlobalConfig.m” file
in MATLAB.

29. Edit the following parameters that specify the location of the segmentation results,
name of the deep learning architecture to evaluate, the number of training frames used to
train the model, the location to save the evaluated results and the location of the input
images.:

a. "prediction_path_list”.
i. Set as folder path to a newly made file in “results” folder called “predict_wholeframe_
round{#}_{project name}".
b. “display_names”.
i. Set as the project name, or a name that is to be displayed on results.

8 STAR Protocols 3, 101469, September 16, 2022

STAR Protocols

c. "frame_list".
i. Set as the number of frames that was used to train the model.

Note: This is the list of the number of training frames used in the training dataset. Since we
train multiple models with different number of training frames, we specify which models to
evaluate here. This is useful to see the how the segmentation accuracy changes as the size
of training dataset increases.

d. “root_path”.
i. Set as a folder path to the “evaluation” folder.

Note: This is a location to save the evaluation results.

e. "img_root_path”.
i. Set as a folder path to the “assets” folder.

Note: This is a location of input images which are necessary for overlaying segmentation re-
sults on top of input images.

Note: Below is the example parameters for comparing the segmentation results from
Single_Unet and Multi_VGG19D models in the location described in step 22 in Part 4. User
can copy parameters below and paste to line 244 in GlobalConfig.m to set the parameters
for evaluation. Instead of using the example parameters below as is, please change the part
‘C:\Users\JunbongJang\PycharmProjects’ to a folder path where MARS-Net is installed in
the user’s computer.

prediction_path_list = {’C:\Users\JunbongJang\PycharmProjects\MARS-Net\models\results\
predict_wholeframe_roundl_ Single_Unet\’; ’C:\Users\JunbongJang\PycharmProjects\MARS-
Net\models\results\predict_wholeframe_roundl_Multi_VGG19D\'’};

display names = {‘Single Unet’; 'Multi VGG19D’};
frame_list = [2;2];

root_path = 'C:\Users\JunbongJang\PycharmProjects\MARS-Net\evaluation\’;

img_root_path = 'C:\Users\JunbongJang\PycharmProjects\MARS-Net\assets\’;

30. Optionally in GlobalConfig.m, update_config function can be edited to process a new result
with the user’s project name. Currently, update_config function handles results from phase
contrast, spinning disk confocal, total internal reflection fluorescence (TIRF), single-microscopy,
and multi-microscopy models.

a. Forinstance, add another else if statement at around line 308 in GlobalConfig.m and specify
parameters such as: img_root_path, mask_type, img_type, dataset_list, and fold_name_list.
They are similar to the parameters specified in UserParams.py in Part 1.

31. Download NPC Reader and Correspondence Algorithm (Arbelaez et al., 2010). Add the NPC
Reader folder to the “evaluation” folder, and add the Correspondence Algorithm folder to
the “evaluation_f1" folder located in the “evaluation” folder.

32. Calculate F1, precision and recall from the segmented movies by running the following code in
the Terminal after going to the “evalutation_f1" folder:

>cd ‘‘location of evaluation_f1 folder’’

>matlab -nodisplay -nosplash -nodesktop -r ‘‘run(‘run_overlap_mask_prediction.m’);exit; '’

¢? CellPress

OPEN ACCESS

STAR Protocols 3, 101469, September 16, 2022 9

¢ CellPress STAR Protocols

OPEN ACCESS

a. Alternatively, this can be run in the MATLAB command window by typing “run_overlap_-
mask_prediction”.
33. Open the generated MATLAB data files with the following name “Recall_Precision_F_score_fra-
me#.mat"” located in the “results” folder. # in the name can be any number.

34. Draw the violin plot of F1, precision, and recall of the opened MATLAB data file by running the
following code in the terminal:

>cd ‘‘evalutation_f1l folder’’

>matlab -nodisplay -nosplash -nodesktop -r ‘‘run(‘'visualize_a_model.m’) ;exit; '’

a. Alternatively, this can be run in MATLAB by typing “visualize_a_model".

00 Pause point: Instructions below are for comparing the multiple models’ segmentation re-
sults against the ground truth segmentation labeled in Part 3, so make sure to train and predict
segmentation of movies and run run_overlap_mask_prediction.m’ for each model before
comparing them. Some of the models can be our VGG19_dropout (VGG19D) or U-Net for
instance and other new models that users developed.

35. Draw the learning curves by running the following code located in the “evaluation” folder:

>cd ‘‘location of evaluation folder’’

>python draw_learning_curve.py

36. Draw bubble plots by running the following code located in the “evaluation” folder:

>cd ‘‘location of evaluation folder’’

>python bubble_training curve.ipynb

37. Draw bar graphs and line graphs across different training frames by running the following code
in the terminal located in the “evalutation_f1" folder:

>cd ‘‘location of evaluation_f1 folder’’

>matlab -nodisplay -nosplash -nodesktop -r ‘‘run(‘'visualize_across_frames_datasets.m’);
exit; "’

38. Draw edge evolution by running the following code in the terminal located in the “evaluta-
tion_f1" folder:

>cd ‘‘location of evaluation_f1 folder’’

>matlab -nodisplay -nosplash -nodesktop -r ‘‘run(‘run_overlap_compare.m’) ;exit; '’

39. Draw violin plots by running the following code in the terminal located in the “evaluation” folder:

10 STAR Protocols 3, 101469, September 16, 2022

STAR Protocols ¢? CellP’ress

OPEN ACCESS

>cd ‘‘location of evaluation folder’’

>matlab -nodisplay -nosplash -nodesktop -r ‘‘run(‘run_violin_compare.m');exit; '’

40. Independent to above MATLAB evaluation codes for segmentation accuracy, trained models’
weights can be visualized by drawing activation maps on each live cell image using SEG-
GRAD-CAM (Vinogradova et al., 2020). Visualizing trained model’s weights is helpful for under-
standing how each layer in the model uses the information of the cell images to segment the cell
in the image. Run the following code in the terminal:

>python SegGradCAM/main.py

41. View evaluation results in the “results” or “generated” folder located in the directory where the
corresponding code was run.

Part 6. Quantification of morphodynamics of the single cell
® Timing: 1 h

This Part can be performed right after Part 4, but we recommend first evaluating the segmentation
results in Part 5. This Part uses the segmentation results in the location described in step 22 in Part 4.
By verifying the accuracy of the segmentation results, quantification of morphodynamics is more reli-
able. Window and Protrusion package is developed by Danuser Lab at UT Southwestern (Machacek
and Danuser, 2006; Machacek et al., 2009) to quantify morphodynamics of the single cell (Lee et al.,
2015; Machacek etal., 2009; Wang et al., 2018). The quantified morphodynamics can be further pro-
cessed to discover morphodynamics phenotypes (Choi et al., 2021; Ma et al., 2018; Wang et al.,
2018, 2021) and causal relationships without molecular perturbations (Noh et al., 2021). For more
details on Window and Protrusion package, refer to its GitHub page.

42. For single cell cropping the segmented movie, navigate to the “img_proc” folder and run the
following code in the terminal:

>cd ‘‘location of img_proc folder’’

>python rotate_crop_img.py

43. Download the Window and Protrusion package and in MATLAB, add the downloaded pack-
age's folder as a directory, including its subdirectories.
44. Type the following code in the command window in MATLAB:

>movieSelectorGUI

45. When the movieSelectorGUI pops up, click the button “New” to add segmented images as a
movie and specify the dataset’s details.
a. We specified details of our live cell movies as follows: pixel size is 72 mm, time interval is 5 s,
numerical aperture is 1.4, and camera bit depth is 16.
46. Afterclicking “Save” button to save the movie's information, select the radio button next to Win-
dowing and click “continue”.

STAR Protocols 3, 101469, September 16,2022 11

¢? CellPress STAR Protocols

OPEN ACCESS

Manual
Edge Extraction Correction

Set parameters in the Run extract_edge.py Connect fragmented
user_params.py i in the Terminal or i edgesandremove |
i command prompt i incorrect edges i

by ImagedJ or GIMP

Figure 1. Labeling procedure

Post
Processing

Run segment_edge.py
in the Terminal or
command prompt

Simplified diagram of four steps involved in semi-automatically labeling live cell movie. In the first step, prepare the raw image and set the parameters of
the label tool. In the second step, extract the edge from the raw image. It is inaccurate since edge extraction is performed by a traditional algorithm.
Therefore, in the third step, a user needs to fix extracted edge image by connecting fragmented edges or removing incorrect edges. A manually

corrected image is shown as an example. Then in the fourth step, a simple flood fill algorithm can segment the cell b
edge image. Scale Bar: 32.5 um.

47. Run the following operations in order: Thresholding, Mask Refinement, Protrusion, Windowing,

Protrusion Sampling, Window Sampling.

a. Thresholding: choose “External Segmentation” among segmentation methods and specify
the location of the folder described in step 22 in Part 4 to load the segmented images.

b. Mask Refinement: Use the default settings which are 10 pixels for minimum size, 3 pixels for
closure radius, 1 object number, and check marks for fill holes and fill boundary holes.

c. Protrusion: Choose Mask Refinement for mask process, 50 for down sampling parameter and
30 for spline tolerance value.

d. Windowing: Use the default settings, which are 10 for minimum size of objects to window, 7
pixels for window size parallel and perpendicular to the mask edge, constant number for the
number of windows, and 2 for StartContour number.

e. Protrusion Sampling: There are no parameters to set.

f. Window Sampling: Choose raw images with 1 channel for images to sample.

EXPECTED OUTCOMES

Segmented images

MARS-Net is designed to have segmented images inputted for training and prediction. Figure 3
shows an example of what a single segmented image of a cell should look like after following the
Part 3, “Labeling Images”. Note the cell is the white part of the image, and the background is the
black part of the image.

Edge progression

The example output from running “run_overlap_compare.m" in step 38 in Part 5 is shown in Figure 4.
This figure shows the progression of cell edges segmented by the deep learning model overlaid on
the first frame of the movie. The legend was made separately and is not part of the output.

Evaluation of segmentation

The evaluation results in Recall_Precision_F_score_frame#.mat files contain four variables: image_
list, model_F_score, model_precision, and model_recall (Figure 5). Image_list is a list of inputimage
names, and each row of image_list corresponds to the evaluated image name. model_F_score,

12 STAR Protocols 3, 101469, September 16, 2022

ody region in the fully connected

STAR Protocols

Fragmented edge image with Corrected edge image with
60% opacity overlaid on the 60% opacity overlaid on the
original image in GIMP original image in GIMP

Figure 2. Manual correction of labels

The image on the left contains fragmented edges or isolated edges that are extracted due to noise. The red circles are
used to indicate some of those regions. The image on the right shows the result after all fragmented or isolated edges
that are corrected manually in GIMP. Scale bars: 32.5 pm.

model_precision, and model_recall contain F1-score, Precision, and Recall values, respectively,
from comparing ground truth mask and predicted segmentation mask of the live cell movie. F1-
score, precision and recall at around 0.92 on average yields a good enough segmentation but higher
is preferred. The F1 score, precision, and recall have the number of columns equal the number of
evaluated segmentation masks. The evaluation results are visualized as shown in Figure é by running
“visualize_a_model.m".

Morphodynamical quantification

Successful Quantification of Morphodynamics should yield a result similar to Figure 7. The maximum
time on the x-axis, the maximum number of windows on the y-axis, and the range of velocity in the
heatmap can be different based on the input movie. If you want the colormap or range of velocity in
the heatmap, you can change its colormap or scale velocity and threshold outliers in MATLAB.

LIMITATIONS

MARS-Net segments the entire cluster of cells together as one body and was not tested to identify
cell-to-cell boundaries. The quantification of the morphodynamics of a single cell is possible only
when the cell does not move outside the cropping box throughout the movie.

TROUBLESHOOTING

Problem 1

MARS-Net cannot find input data located in the folder paths specified in UserParams.py. (In step 5 in
part 1. Installing MARS-Net).

Potential solution

Double check that your folders and folder paths are written correctly. File separators in the path are
different based on the user’s operating system (\ for Windows, / for Linux). Also, check to see what
type ofimage file yourimages are, and make sure the “img_format” in the “UserParams.py” file is the
same. MARS-Net works with .png, .jpg and .tiff.

¢? CellPress

OPEN ACCESS

STAR Protocols 3, 101469, September 16, 2022 13

¢? CellPress STAR Protocols

OPEN ACCESS

Figure 3. Segmented image example
(A) Original phase contrast image from the dataset being analyzed.
(B) Segmented phase contrast image from the dataset being analyzed. Scale Bar: 32.5 um.

Problem 2
Failure in running crop.py script for cropping input dataset. (In step 17 in part 4. Training MARS-Net
and segmenting movies).

Potential solution
Make sure that the assets folder contains the same number of masks and images. For instance, the
error occurs when the image folder has 100 images, and the mask folder has 101 masks.

Also, try converting images and masks to 8-bit grayscale.

Problem 3
CUDA & cuDNN are notinstalled or incorrect versions are installed in the user’s computer. (In step 18
in part 4. Training MARS-Net and segmenting movies).

When running train.py or predict.py in the command line, the following warning message is shown:

W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library
‘cudart64_101.dll"; dlerror: cudart64_101.dll not found.

| tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not
have a GPU set up on your machine.

Or the following error message is shown:

tensorflow.python.framework.errors_impl.InvalidArgumentError: Default MaxPoolingOp only sup-
ports NHWC on device type CPU.

[[node functional_1/block1_pool/MaxPool (defined at train_mars.py:209) 1l
[Op:__inference_train_function_3474].

Potential solution
Make sure that the correct CUDA version is installed in a user's computer for the corresponding
TensorFlow version. For instance, TensorFlow v2.3 requires CUDA 10.1 and TensorFlow v1.15

14 STAR Protocols 3, 101469, September 16, 2022

STAR Protocols ¢? CellP’ress

OPEN ACCESS

1000s

500s

swiL

Os

Figure 4. Edge progression image example
Edge progression overlaid on the original phase contrast image. Note that the dark blue color indicates initial
progression at t=0 s while the dark red indicates the end of the progression at t=1000 s. Scale Bar: 32.5 um.

requires CUDA 10.0. The authors downloaded CUDA 10.1 and cuDNN v7.6.5 from the following
websites: (https://developer.nvidia.com/cuda-10.1-download-archive-base), (https://developer.
nvidia.com/rdp/cudnn-archive).

Installation of CUDA is just as simple as running the .exe file in Windows 10. To install cuDNN, please
refer to its installation guides for more details (https://docs.nvidia.com/deeplearning/cudnn/
install-guide/index.html).

Problem 4
Not enough GPU memory to train the model. (In step 18 in part 4. Training MARS-Net and segment-
ing movies).

When running train_mars.py, the following error message is shown:
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor
with shape[64,128,128,128] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allo-
cator GPU_0_bfc.

Potential solution
Ideally, use a GPU with more memory or train with multiple GPUs.

% Variables - model_F_score ® X Workspace ®
\' image_list \ model_F_score \ model_precision \ model_recall ¢ | Name ~ Value
B_:i 1x41 double [image._list 41x45 char
1 D, 3 4 5 6 7 8 9 10 1 12 model_F_score 1x41 double
1 09321 0.9323 08993 0.9345 09433 08927 09070 09148 08889 09459 09129 0.9232 model_precision lxdlidounle
2 Imodel_recall | 1x41 double

Figure 5. Evaluation results viewed in MATLAB

The main window on the left shows the list of values of one variable opened by the user’s double click. There are only 12 values shown in the window, but
the user can scroll right to view more values. The workspace on the right shows four variables stored in the .mat file and the size of each variable. The row
index of image_list corresponds to the column index of model_F_score, model_precision, and model_recall. There are 41 evaluated images in this
example.

STAR Protocols 3, 101469, September 16, 2022 15

https://developer.nvidia.com/cuda-10.1-download-archive-base
https://developer.nvidia.com/rdp/cudnn-archive
https://developer.nvidia.com/rdp/cudnn-archive
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html

¢ CellPress STAR Protocols

OPEN ACCESS

T T T Figure 6. Violin plot of evaluation results
17 1 The distribution of F1 score, precision, and recall are
shown in the violin plot. There is a boxplot in black
098t i within the violin plot with a median indicated by the
’ white circle. Individual evaluated results from 41
frames are plotted as small dots within the violin plot.
0.96 1 This model has high precision and low recall, but the
performance is good overall, with a median F1-score
higher than 0.97.
0.94 | 1
0.92 T
097 1

F1 Precision Recall

Otherwise, reduce the batch size in UserParams.py. For instance, set train_batch_size = 8 in the ge-
t_args(self) function at around line 793. Originally, the authors used 64 as the batch size. Please note
that decreasing the batch size might affect the segmentation accuracy since smaller batch size in-
crease the variance during stochastic gradient descent.

Problem 5
Error when running the MATLAB code in the terminal: "-bash: syntax error near unexpected token
‘("" (In step 32 in part 5. Evaluation of the segmentation results).

Potential solution

This error most commonly occurs when you copy and paste the code to run any MATLAB file. To
potentially overcome this error, delete and replace each double quotation mark (i.e., “”) and each
single quotation mark (i.e.,”) in the code. Alternatively, type the command without copying and
pasting.

10

(3

Window Number
o
Velocity (um/min)

Time (s)

Figure 7. Protrusion velocity map example

The heatmap is colored to represent the cell edge velocity ranging from -10 pm/min to +10 pm/min. The red-colored
region indicates a portion of the protruding cell edge, and the blue colored region indicates a portion of the
retracting cell edge. In cellular dynamics of morphology, protrusion means the cell edge is moving away from the cell
body and retraction means the cell edge is moving toward the cell body. The horizontal axis represents the duration of
the movie for which the cell was observed, and the vertical axis represents window id or fragments of cell edge. Given
a cell edge with two endpoints, the window id 1 represents one endpoint, and the window id 140 represents the other
endpoint.

16 STAR Protocols 3, 101469, September 16, 2022

STAR Protocols

Problem 6

¢? CellPress

OPEN ACCESS

Failure in running MATLAB evaluation codes. (In step 29 in part 5. Evaluation of the segmentation

results).

Potential solution

Verify that the paths specified in GlobalConfig.m are correct.

Also, “prediction_path_list”, “display_names"”, “frame_list” are matrices that should have the same num-
ber of rows. In MATLAB's matrix, semi-colon indicates a new row, and comma indicates a new column.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Kwonmoo Lee (kwonmoo.lee@childrens.harvard.edu).

Materials availability

The authors did not generate any unique reagents in this study.

Data and code availability

The sample dataset and the code for our deep learning-based segmentation pipeline are available
at GitHub (https://github.com/kleelab-bch/MARS-Net) and Zenodo (https://doi.org/10.5281/

zenodo.6558761).

ACKNOWLEDGMENTS

This work was supported by NIH, United States (grant R15GM122012 and R35GM133725).

AUTHOR CONTRIBUTIONS

Writing, J.J., C.H., K.L.; development, J.J.; funding acquisition, K.L.

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

Arbelaez, P., Maire, M., Fowlkes, C., and Malik, J.
(2010). Contour detection and hierarchical image
segmentation. |[EEE Trans. Pattern Anal. Mach.
Intell. 33,898-916. https://doi.org/10.1109/TPAMI.
2010.161.

Bertasius, G., Shi, J., and Torresani, L. (2015).
Deepedge: a multi-scale bifurcated deep network
for top-down contour detection. Proceedings of
the IEEE Conference on Computer Vision and
Pattern Recognition. https://doi.org/10.1109/
CVPR.2015.7299067.

Canny, J. (1986). A computational approach to edge
detection. IEEE Trans. Pattern Anal. Mach. Intell. 8,
679-698. https://doi.org/10.1109/tpami.1986.
4767851.

Choi, H.J., Wang, C., Pan, X,, Jang, J., Cao, M.,
Brazzo, J.A., 3rd, Bae, Y., and Lee, K. (2021).
Emerging machine learing approaches to
phenotyping cellular motility and
morphodynamics. Phys. Biol. 18, 041001. https://
doi.org/10.1088/1478-3975/abffoe.

Deng, J., Dong, W., Socher, R., Li, L.-J., Kai, L., and
Li, F.-F. (2009). ImageNet: A Large-Scale
Hierarchical Image Database (IEEE).

Iglovikov, V., Seferbekov, S.S., Buslaev, A., and
Shvets, A. (2018). TernausNetV2: fully convolutional
network for instance segmentation. Proceedings of
the IEEE Conference on Computer Vision and
Pattern Recognition Workshops. https://doi.org/
10.1109/CVPRW.2018.00042.

Jang, J., Wang, C., Zhang, X., Choi, H.J., Pan, X.,
Lin, B., Yu, Y., Whittle, C., Ryan, M., Chen, Y., and
Lee, K. (2021). A deep learning-based
segmentation pipeline for profiling cellular
morphodynamics using multiple types of live cell
microscopy. Cell Rep. Methods 1, 100105. https://
doi.org/10.1016/j.crmeth.2021.100105.

Kim, S.J., Wang, C., Zhao, B., Im, H., Min, J., Choi,
H.J., Tadros, J., Choi, N.R., Castro, C.M.,
Weissleder, R., et al. (2018). Deep transfer learning-
based hologram classification for molecular
diagnostics. Sci. Rep. 8, 17003. https://doi.org/10.
1038/541598-018-35274-x.

Lee, K., Elliott, H.L., Oak, Y., Zee, C.T., Groisman,
A., Tytell, J.D., and Danuser, G. (2015). Functional
hierarchy of redundant actin assembly factors
revealed by fine-grained registration of intrinsic
image fluctuations. Cell Syst. 1, 37-50. https://doi.
org/10.1016/j.cels.2015.07.001.

Long, J., Shelhamer, E., and Darrell, T. (2015). Fully
convolutional networks for semantic
segmentation. Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition. https://doi.org/10.1109/CVPR.2015.
7298965.

Ma, X., Dagliyan, O., Hahn, K.M., and Danuser, G.
(2018). Profiling cellular morphodynamics by
spatiotemporal spectrum decomposition. PLoS
Comput. Biol. 14, €1006321. https://doi.org/10.
1371/journal.pcbi.1006321.

Machacek, M., and Danuser, G. (2006).
Morphodynamic profiling of protrusion
phenotypes. Biophys. J. 90, 1439-1452. https://doi.
org/10.1529/biophysj.105.070383.

Machacek, M., Hodgson, L., Welch, C., Elliott, H.,
Pertz, O., Nalbant, P., Abell, A., Johnson, G.L.,
Hahn, K.M., and Danuser, G. (2009). Coordination
of Rho GTPase activities during cell protrusion.
Nature 461, 99-103. https://doi.org/10.1038/
nature08242.

Noh, J., Isogai, T., Chi, J., Bhatt, K., and
Danuser, G. (2021). Inference of Granger-
causal relations in molecular systems — a
case study of the functional hierarchy among

STAR Protocols 3, 101469, September 16, 2022 17

mailto:kwonmoo.lee@childrens.harvard.edu
https://github.com/kleelab-bch/MARS-Net
https://doi.org/10.5281/zenodo.6558761
https://doi.org/10.5281/zenodo.6558761
https://doi.org/10.1109/TPAMI.2010.161
https://doi.org/10.1109/TPAMI.2010.161
https://doi.org/10.1109/CVPR.2015.7299067
https://doi.org/10.1109/CVPR.2015.7299067
https://doi.org/10.1109/tpami.1986.4767851
https://doi.org/10.1109/tpami.1986.4767851
https://doi.org/10.1088/1478-3975/abffbe
https://doi.org/10.1088/1478-3975/abffbe
http://refhub.elsevier.com/S2666-1667(22)00349-5/sref5
http://refhub.elsevier.com/S2666-1667(22)00349-5/sref5
http://refhub.elsevier.com/S2666-1667(22)00349-5/sref5
https://doi.org/10.1109/CVPRW.2018.00042
https://doi.org/10.1109/CVPRW.2018.00042
https://doi.org/10.1016/j.crmeth.2021.100105
https://doi.org/10.1016/j.crmeth.2021.100105
https://doi.org/10.1038/s41598-018-35274-x
https://doi.org/10.1038/s41598-018-35274-x
https://doi.org/10.1016/j.cels.2015.07.001
https://doi.org/10.1016/j.cels.2015.07.001
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1371/journal.pcbi.1006321
https://doi.org/10.1371/journal.pcbi.1006321
https://doi.org/10.1529/biophysj.105.070383
https://doi.org/10.1529/biophysj.105.070383
https://doi.org/10.1038/nature08242
https://doi.org/10.1038/nature08242

¢? CellPress

OPEN ACCESS

actin regulators in lamellipodia. Preprint at
bioRxiv. https://doi.org/10.1101/2021.05.21.
445144,

Ronneberger, O., Fischer, P., and Brox, T. (2015).
U-net: convolutional networks for biomedical
image segmentation. In International
Conference on Medical Image Computing and
Computer-Assisted Intervention, N. Navab, J.
Hornegger, W. Wells, and A. Frangi, eds.
(Springer, Cham), pp. 234-241.

Schneider, C., Rasband, W., and Eliceiri, K. (2012).
NIH Image to ImageJ: 25 years of image analysis.
Nat. Methods 9, 671-675.

Simonyan, K., and Zisserman, A. (2015). Very deep
convolutional networks for large-scale image
recognition. Preprint at arXiv. https://doi.org/10.
48550/arXiv.1409.1556.

Srivastavanitish, N., Hinton, G., Krizhevskykriz, A.,
Sutskeverilya, I., and Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res.
15, 1929-1958. https://doi.org/10.5555/2627435.
2670313.

Vaidyanathan, K., Wang, C., Krajnik, A., Yu, Y.,
Choi, M., Lin, B., Jang, J., Heo, S.J., Kolega, J.,
Lee, K., and Bae, Y. (2021). A machine learning
pipeline revealing heterogeneous responses to
drug perturbations on vascular smooth muscle
cell spheroid morphology and formation. Sci.
Rep. 11, 23285. https://doi.org/10.1038/s41598-
021-02683-4.

Vinogradova, K., Dibrov, A., and Myers, G. (2020).
Towards interpretable semantic segmentation via
gradient-weighted class activation mapping

18 STAR Protocols 3, 101469, September 16, 2022

STAR Protocols

(student abstract). Proc. AAAI Conf. Artif. Intell. 34,
13943-13944. https://doi.org/10.1609/aaai.v34i10.
7244.

Wang, C., Choi, H.J., Kim, S.J., Desai, A, Lee, N,
Kim, D., Bae, Y., and Lee, K. (2018).
Deconvolution of subcellular protrusion
heterogeneity and the underlying actin regulator
dynamics from live cell imaging. Nat. Commun.
9, 1688. https://doi.org/10.1038/s41467-018-
04030-0.

Wang, C., Choi, H.J., Woodbury, L., and
Lee, K. (2021). Deep learning-based
subcellular phenotyping of protrusion
dynamics reveals fine differential drug
responses at subcellular and single-cell
levels. Preprint at bioRxiv. https://doi.org/10.
1101/2021.05.25.445699.

https://doi.org/10.1101/2021.05.21.445144
https://doi.org/10.1101/2021.05.21.445144
http://refhub.elsevier.com/S2666-1667(22)00349-5/sref15
http://refhub.elsevier.com/S2666-1667(22)00349-5/sref15
http://refhub.elsevier.com/S2666-1667(22)00349-5/sref15
http://refhub.elsevier.com/S2666-1667(22)00349-5/sref15
http://refhub.elsevier.com/S2666-1667(22)00349-5/sref15
http://refhub.elsevier.com/S2666-1667(22)00349-5/sref15
http://refhub.elsevier.com/S2666-1667(22)00349-5/sref15
http://refhub.elsevier.com/S2666-1667(22)00349-5/sref22
http://refhub.elsevier.com/S2666-1667(22)00349-5/sref22
http://refhub.elsevier.com/S2666-1667(22)00349-5/sref22
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.1038/s41598-021-02683-4
https://doi.org/10.1038/s41598-021-02683-4
https://doi.org/10.1609/aaai.v34i10.7244
https://doi.org/10.1609/aaai.v34i10.7244
https://doi.org/10.1038/s41467-018-04030-0
https://doi.org/10.1038/s41467-018-04030-0
https://doi.org/10.1101/2021.05.25.445699
https://doi.org/10.1101/2021.05.25.445699

	XPRO101469_proof_v3i3.pdf
	Protocol for live cell image segmentation to profile cellular morphodynamics using MARS-Net
	Before you begin
	Data collection

	Key resources table
	Materials and equipment
	Step-by-step method details
	1. Installing MARS-Net
	2. Data organization
	3. Labeling images
	4. Training MARS-Net and segmenting movies
	5. Evaluation of the segmentation results
	6. Quantification of morphodynamics of the single cell

	Expected outcomes
	Segmented images
	Edge progression
	Evaluation of segmentation
	Morphodynamical quantification

	Limitations
	Troubleshooting
	Problem 1
	Potential solution
	Problem 2
	Potential solution
	Problem 3
	Potential solution
	Problem 4
	Potential solution
	Problem 5
	Potential solution
	Problem 6
	Potential solution

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	References

