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Abstract

Motivation: Detection of somatic mutations from tumor and matched normal sequencing data has

become among the most important analysis methods in cancer research. Some existing mutation

callers have focused on additional information, e.g. heterozygous single-nucleotide polymor-

phisms (SNPs) nearby mutation candidates or overlapping paired-end read information. However,

existing methods cannot take multiple information sources into account simultaneously. Existing

Bayesian hierarchical model-based methods construct two generative models, the tumor model

and error model, and limited information sources have been modeled.

Results: We proposed a Bayesian model integration framework named as partitioning-based model in-

tegration. In this framework, through introducing partitions for paired-end reads based on given infor-

mation sources, we integrate existing generative models and utilize multiple information sources. Based

on that, we constructed a novel Bayesian hierarchical model-based method named as OHVarfinDer. In

both the tumor model and error model, we introduced partitions for a set of paired-end reads that cover

a mutation candidate position, and applied a different generative model for each category of paired-end

reads. We demonstrated that our method can utilize both heterozygous SNP information and overlap-

ping paired-end read information effectively in simulation datasets and real datasets.

Availability and implementation: https://github.com/takumorizo/OHVarfinDer.

Contact: ruiy@ims.u-tokyo.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer is driven by genomic alterations. Acquired somatic muta-

tions, together with individual germ line variations, are important

factors in cancer evolution. Together with decreasing massively par-

allel sequencing costs, mutation calling from tumor and matched

normal sequence data has become fundamental analysis methods in

cancer research (Meyerson et al., 2010).

Previous statistical mutation callers can be mainly categorized into

two types. The first type of mutation caller does not assume

any probability distribution that is specific for sequence data (Koboldt

et al., 2012; Yoshida et al., 2011), and mutation calling is conducted

based on Fisher’s exact test (Fisher, 1925). For this type, the numbers

of reference supporting reads and variant supporting reads are counted

in tumor and normal samples, and a P-value is computed based on a

2�2 contingency table. These methods only consider differences in

variant allele frequencies between tumor and normal samples and ig-

nore the biases found in sequence errors and mapping errors.

The second type of mutation caller constructs generative models

that are specific for sequence data. This type of method first prepares

generative models for sequence data, and then computes statistical

scores based on techniques, e.g. maximum a posteriori inference of gen-

otypes (Roth et al., 2012) and Bayes factor-based model selection

(Cibulskis et al., 2013; Moriyama et al., 2017; Usuyama et al., 2014).
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The most important advantage of the second approach is that we can

construct generative models based on sequence data-specific informa-

tion sources, and then utilize the given information sources. Some

methods are known to perform well by using some characteristic infor-

mation of heterozygous single-nucleotide polymorphisms (SNPs) near-

by mutation candidates (Usuyama et al., 2014) or overlapping paired-

end reads (Moriyama et al., 2017).

Simultaneous usage of multiple characteristic information sour-

ces, e.g. heterozygous SNPs nearby mutation candidates and over-

lapping paired-end reads, is preferable for improving performance

for the second type of method. However, existing mutation

callers do not consider various information sources simultaneously.

To utilize multiple information sources, we proposed a Bayesian

model integration framework, named as partitioning-based model

integration, and then we developed a novel mutation calling method

named as OHVarfinDer based on the framework.

In Section 2, we explain the partitioning-based model integration

framework, and then describe details of OHVarfinDer.

In Section 3, we first show that our method can utilize both hetero-

zygous SNPs information and overlapping paired-end read information

effectively in simulation datasets. In this experiment, we demonstrate

the comparable performance of our method with other methods when

only one of the two information sources is available; we also demon-

strate the superior performance of our method compared to the other

methods when both information sources are available. Second, we

demonstrate the better performance of our method for real datasets.

In Section 4, we discuss the advantages and limitations of the

proposed method.

2 Materials and methods

In this section, we first explain multiple characteristic information sour-

ces for mutation calling. Second, we elucidate our proposed framework

of partitioning-based model integration in a general form. Third, we

describe how these multiple information sources are incorporated in

OHVarfinDer based on the partitioning-based model integration.

2.1 Characteristic information sources for mutation

calling
2.1.1 Heterozygous SNPs covered by paired-end reads

The first additional information source in somatic mutation calling is

heterozygous SNPs near somatic mutation candidates. The human gen-

ome is a diploid set of haplotypes, i.e. the maternal haplotype and pater-

nal haplotype. Each somatic mutation is known to occur typically only

on one side of the haplotypes, i.e. heterozygous mutation. Therefore,

variant supporting reads that cover heterozygous SNPs are generated

from only one side of the haplotypes as shown in the left side of

Figure 1a. However, when sequence errors occur on the mutation can-

didate position, variant supporting reads covering heterozygous SNPs

probably have both heterozygous SNPs as in the right side of Figure 1a.

This information source was used in HapMuC (Usuyama et al., 2014).

2.1.2 Overlaps of paired-end reads

The second additional information source is overlaps of paired-end

reads. Through Illumina’s sequencing, a pair of paired-end reads, i.e.

forward and reverse reads, is sequenced from both sides of the same

DNA fragment. If the DNA fragment is shorter than 2-fold the read

length, the pair of reads has an overlapping region where sequence pro-

cess is conducted twice from different directions independently.

If the both forward and reverse reads show the same alteration in

the overlapping region as in the left side of Figure 1b, it is likely that

the change is because of a mutation and not because of errors, as the

occurrence probability of two errors at the same site in the overlapping

region is expected to be very low, except for PCR errors in the sample

preparation phase (Chen-Harris et al., 2013). In contrast, an error case

is probable when only one of the reads contains an alteration in the

overlapping region as in the right side of Figure 1b. This information

source has been used in OVarCall (Moriyama et al., 2017).

2.1.3 Strand biases of paired-end reads

The third additional information source we considered is strand

biases in variant supporting reads that cover a mutation candidate.

If only forward (or reverse) reads contain a mutation candidate des-

pite sufficient numbers of both forward and reverse reads, this phe-

nomenon is known as strand bias as in the right side of Figure 1c. If

a true somatic mutation exists, strand bias rarely occurs, and the

proportion of variant supporting forward/reverse reads should be

ideally similar as in the left side of Figure 1c. This information

source is used for filtering in MuTect (Cibulskis et al., 2013).

2.1.4 Representative examples in real datasets

We show the examples from real datasets, in which we can find that given

mutation candidates are only errors. Figure 2 shows screenshots of IGV

(http://software.broadinstitute.org/software/igv/).

The first erroneous case shown in Figure 2a represents the variant

supporting reads with both heterozygous SNPs. In this case, variant sup-

porting reads have both heterozygous SNPs, as indicated by red and

blue circles. This case corresponds with the erroneous case in Figure 1a.

The second erroneous case shown in Figure 2b represents a

paired-end reads with inconsistent bases at a mutation candidate

position. In this case, reads in a paired-end reads that are highlighted

in red line have different bases at the mutation candidate position.

This case corresponds with the erroneous case in Figure 1b.

Simpler methods, e.g. a Fisher’s exact test-based method of

VarScan2, evaluate these two types of errors as somatic mutations.

In the case of Figure 2a, VarScan2 showed a low P-value of 0.043

and in Figure 2a, VarScan2 also showed a low P-value of 0.0050.

The main purpose of this paper is to construct a Bayesian method

which discriminates these errors from somatic mutations.

2.2 Bayes factor for finding mutations
We denote a dataset as X :¼ fxngd

n¼1, where xn is the n-th string

consisting of fA;T;G;Cg and d is the depth on the mutation candi-

date position. We denote tumor and error models as MT;ME, and

(a)

(b)

(c)

Fig. 1. (a) The typical pattern of reads when heterozygous SNPs near the mu-

tation candidate appear. (b) The typical pattern of paired-end reads when

overlapping paired-end reads cover the mutation candidate. (c) The typical

pattern of reads when both strand bias of variant supporting reads appear
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corresponding parameters as hT; hE. Next, the Bayes factor (Kass

and Raftery, 1995) is written as follows:

BF ¼ PrðXjMTÞ
PrðXjMEÞ

;

where PrðXjMSÞ ¼
Ð

PrðX; hSjMSÞPrðhSÞdhS; S 2 fT;Eg.

2.3 Partitioning-based model integration
First, we assume K 2 N models in each tumor and error model, and

denote these models as MT;k;ME;k, where k 2 f1; . . . ;Kg. We de-

note corresponding parameters as hT;k; hE;k, where k 2 f1; . . . ;Kg.
We also assume that we can observe indicator variable tn 2
f1;2; . . . ;Kg with each data xn. We assume that the original dataset

is partitioned into K subsets and tn indicates the subset of data to

which xn belongs. We also assume that the k-th subset of data is gen-

erated through the k-th model ofMT;k orME;k. We denote this aug-

mented dataset as Xaug :¼ fðxn; tnÞgd
n¼1.

We assume the graphical model of Figure 3 and that the distribu-

tion of each parameter hS;k is dependent on the k-th model ofMS;k.

xnjtn; hS;all;MS � PrðxnjhS;tn
;MS;tn

Þ; (1)

hS;kjMS � PrðhS;kjMS;kÞ: (2)

Our purpose here is to compute the following Bayes factor:

BF ¼ PrðXaugjMTÞ
PrðXaugjMEÞ

:

From the graphical model in Figure 3 and above assumptions of

Equations (1) and (2), the joint probability can be computed as

follows:

PrðXaug; hS;alljMSÞ
¼ PrðXaugjhS;all;MSÞPrðhS;alljMSÞ
¼
Y

n

Prðxn; tnjhS;all;MSÞ �
Y

k

PrðhS;kjMS;kÞ

¼
Y

n

Prðxnjtn; hS;all;MSÞPrðtnjMSÞ �
Y

k

PrðhS;kjMS;kÞ

¼
Y

n

PrðxnjhS;tn
;MS;tn

ÞPrðtnjMSÞ �
Y

k

PrðhS;kjMS;kÞ;

where S 2 fT;Eg;PrðtnjMSÞ > 0; hS;all :¼ fhS;1; ::; hS;Kg.

(a)

(b)

Fig. 2. Typical cases of error are shown in the IGV screenshot. (a) In this case, both heterozygous SNPs near the mutation candidate appear in the variant support-

ing reads. See the erroneous case in Figure 1a. (b) One corresponding paired-end read is highlighted in red line. In this case, inconsistent bases in a paired-end

read occur at a mutation candidate position. See the erroneous case in Figure 1b. Our method successfully evaluates these errors with low Bayes factor scores,

i.e. 0.000059 in (a) and 0.0000011 in (b)
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From this joint probability, the marginal likelihood can be com-

puted as follows:

PrðXaugjMSÞ ¼ AS �
Y

n

PrðtnjMSÞ
� �

;

where

AS :¼
Y

k

ð
PrðhS;kjMS;kÞ

Y
fnjtn¼kg

PrðxnjhS;k;MS;kÞ
� �

dhS;k:

If we can assume PrðtjMTÞ ¼ PrðtjMEÞ for any t 2 f1; . . . ;Kg,
we do not need to set PrðtjMTÞ;PrðtjMEÞ for computation of Bayes

factor, because

BF ¼ PrðXaugjMTÞ
PrðXaugjMEÞ

¼ AT �
Q

n PðtnjMTÞ
AE �

Q
n PðtnjMEÞ

¼ AT

AE
:

This manner of model integration requires two conditions. The

first condition is a partition rule on the dataset and we can construct

a corresponding generative model for each partitioned dataset.

The second condition is that partition probabilities should be the

same among the tumor and error model (PrðtjMTÞ ¼ PrðtjMEÞ).
The merit of this manner is that partition probabilities PrðtjMTÞ;
PrðtjMEÞ do not affect the Bayes factor and thus careful and explicit

settings of these probabilities are not necessary.

2.4 Notations in practical models of OHVarfinDer
The graphical model of OHVarfinder is shown in Figure 4a. rn is the

n-th paired-end read, i.e. tuple of two forward/reverse reads of

ðrn;þ; rn;�Þ, and each rn;þ; rn;� is a string sequence of fA;T;G;Cg. tn
is the n-th partition indicator variable. Hk is an set of template

paired-end reads and contains paired-end reads like Figure 1. zn (if

tn ¼ k; zn 2 f0; 1; . . . ; jHkj � 1g) is the n-th categorical latent vari-

able indicating the template paired-end read for the n-th paired-end

read rn. For the generation process of rn as a whole, we assume that

n-th paired-end read rn is generated from zn-th paired-end read of

Hk;zn
with sequence errors and mapping errors added randomly.

2.5 Partition rules for each paired-end read in

OHVarfinDer
In our method, we split paired-end reads into five types. tn 2
f0;1; 2; 3;4g is determined for each paired-end read rn;6 by the fol-

lowing partitioning rule.

2.5.1 O(1)H(2) category

A paired-end read in this category (tn¼0) is overlapping between the

forward read and reverse read at the mutation candidate position and

covers no heterozygous SNPs nearby the candidate position.

2.5.2 O(2)H(1) category

A paired-end read in this category (tn¼1) is not overlapping between

the forward read and reverse read at the mutation candidate position

and covers heterozygous SNPs nearby the candidate position.

Note that global haplotype phasing is not necessary and we only

conduct haplotype phasing locally around the mutation candidate

positions as previously conducted in (Usuyama et al., 2014). The

genotype A and B as in Figure 4b is determined from the number of

variant supporting reads for each SNP.

2.5.3 O(1)H(1) category

A paired-end read in this category (tn¼2) is overlapping between

the forward read and reverse read at the mutation candidate pos-

ition and covers heterozygous SNPs nearby the candidate position.

2.5.4 O(2)H(2)S(1) category

A paired-end read in this category (tn¼3) is not overlapping be-

tween the forward read and reverse read at the mutation candidate

position and covers no heterozygous SNPs nearby the candidate pos-

ition. The mutation candidate position is covered by the forward

read. (Forward/reverse is determined by the mapping direction com-

pared to the reference sequence.)

2.5.5 O(2)H(2)S(2) category

A paired-end read in this category (tn¼4) is not overlapping between

the forward read and reverse read at the mutation candidate position

and covers no heterozygous SNPs nearby the candidate position. The

mutation candidate position is covered by the reverse read.

2.5.6 Suitability of partition based integration

We should note that partitioning-based integration is suited for this

problem setting for two reasons. The first reason is that we can set

partition rules on paired-end reads and construct generative models

for each dataset by referring to existing methods. The second reason

is that partitioning probabilities PrðtjMTÞ;PrðtjMEÞ are thought to

be the same, e.g. the existence of a mutation does not affect whether

a paired-end read will cover a heterozygous SNP.

2.6 Details of tumor generative model for O(1)H(1)

type of paired-end read
Here, we only show the details of the tumor generative model for

O(þ)H(þ) type (tn¼3) due to the limitation of the space. See the

Supplementary Material A.1–A.8 for the details of our models. zn is the

one of eight expression vector indicating an idealized paired-end read.

For the parameters, we used �l; �b; pH (that is hT;3 :¼ ð�l; �b; pHÞ). �l 2
½0;1� is the error rate when the paired-end read is overlapping at the

mutation candidate position, �b 2 ½0; 1� is the strand bias rate. pH is a

3-dimensional non-negative simplex, indicating the proportion of

paired-end reads from a maternal haplotype, paternal haplotype and

haplotype with somatic mutation. Let al 2 R
2
þ; ab 2 R

2
þ; cH 2 R

3
þ the

hyperparameters for �l; �b; pH. The tumor generative model for the

O(þ)H(þ) type of paired-end read is defined as follows:

�ljal � Pbetað�ljalÞ;
�bjab � Pbetað�bjabÞ;
pH jcH � PdirðpH jcHÞ;
znj�l; �b;pH ; tn � Pmultðznjf T;tn

Þ;
rnjzn;Htn

;
�Palignðrn;þjHtn ;idxðznÞ;þÞPalignðrn;�jHtn ;idxðznÞ;�Þ:

where Pbetað�Þ;Pdirð�Þ;Pmultð�Þ are the probability density function of

beta, Dirichlet, and multinomial distributions respectively. Palignð�Þ

Fig. 3. Graphical model for partitioning-based integration of generative mod-

els. Where S 2 fT; Eg states the hypothesis
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is the alignment probability which is formulated by profile hidden

Markov model (HMM) (Albers et al., 2011; Usuyama et al., 2014).

f T;k is a non-negative simplex defined by hT;k. We only show the

case for f T;3; f E;3 in Figure 4b. idxð�Þ is a function that returns the

index where the value is 1 from a given one-hot encoding vector.

2.7 Bayes factor in OHVarfinDer
Here, we show the Bayes factor in OHVarfinDer and explain that

our method is truly based on the partitioning-based integration

and that setting of PrðtjMTÞ and PrðtjMEÞ are not necessary.

Let RNT :¼ frngd
n¼1 is the set of paired-end reads for both tumor

and normal sample data which cover a mutation candidate position,

and the marginal likelihoods can be computed as follows:

PrðRNT; ftngnjMSÞ

¼ f
Y

n

PrðtnjMSÞg �
Y4
k¼0

ð
FkdhS;k

Y
fnjtn¼kg

dzn;

where

Fk ¼ PrðhS;kjMS;kÞ
Y

fnjtn¼kg
PrðznjhS;kÞPrðrnjzn;Htn

Þ

ð¼ PrðRNTjMS; ftngnÞ:

Therefore, if PrðtjMTÞ ¼ PrðtjMEÞ, it is not necessary to set

these distributions in the Bayes factor of OHVarfinDer as shown in

the previous section.

2.8 Computation of marginal likelihoods
We applied the variational Bayes procedures for computing

PrðRNTjMSÞ. We can obtain a lower bound for lnPrðRNTjMS;

ftngnÞ from the convexity of log function (Jensen, 1906).

lnPrðRNTjMS; ftngnÞ � Eq ln
PrðRNT;ZS;NTjMS; ftngnÞ

qðZS;NTÞ

" #
; (3)

where we denote all latent variables and parameters of fzngn; fhS;kgk

as ZS;NT. qðZS;NTÞ is the variational distribution for ZS;NT which is

formulated in the independent form as follows:

qðZS;NTÞ :¼
Y

k

½qðZS;NT;kÞqðhS;kÞ�;qðZS;NT;kÞ :¼
Y

njtn¼k

qðznÞ:

In the above inequality of Equation (3), the equality holds true

when qðZS;NTÞ is equal to the posterior distribution of the

PrðZS;NTjRNT; ftngn;MSÞ. In the variational Bayes procedure (Beal,

2003), we maximize the lower bound for each variational distribu-

tion of qðhS;kÞ and qðZS;NT;kÞ iteratively until the updated lower

bound converges, and approximate the log marginal likelihood

using this maximized lower bound. We described the full procedures

for variational Bayes in the Supplementary Material A.9–A.16.

3 Results

3.1 Performance evaluation of OHVarfinDer using

simulation data
3.1.1 Simulation data generation procedure

We tested OHVarfinDer using simulation datasets. The simulation pro-

cedure is described as follows. In the following procedure, we prepared

two types of errors. The first type of errors are position-specific ones,

and known as error prone sites (Moriyama et al., 2017; Shiraishi et al.,

2013). The second type of errors are non-position-specific ones.

1. Generate a random reference DNA sequence.

2. Generate a heterozygous germ line variant in a random location,

as well as two haplotypes (h1 and h2)

3. Generate a somatic mutation randomly around a heterozygous

germ line variant, according to an empirical distribution of

whole genome data, as well as two haplotypes (h3 and h4)

4. Randomly generate paired-end reads around 900 somatic muta-

tions and 2100 error prone sites randomly.

a. Determine the number of paired-end reads covering the pos-

ition, by generating a random value d from a norm distribu-

tion of N(50, 2), and round d to the nearest integer value.

b. Randomly determine the haplotype of the original DNA frag-

ment. We set the frequency of haplotypes as h1: 50-v%, h2:

50%, h3: v%, h4: 0% if a somatic mutation truly exists. We

set the frequency of haplotypes as h1: 50%, h2: 50%, h3:

0%, h4: 0% otherwise.

c. For each paired-end read, determine the DNA fragment size

by generating a random value l from Nðll;rlÞ, and round l

to the nearest integer value.

d. Generate the 100-bp length read sequence on forward strand.

Each observed base flips with the sequence error probability

of perror. If the position of each observed base is the error

prone site, perror is generated from a beta distribution of

(a)

(b)

Fig. 4. (a) Graphical model of OHVarfinDer. (b) Ideal paired-end reads set in

H3 and corresponding proportion f T;3 and f E;3 for the tumor model and error

model. �le; �be and pHE are error rate for overlapping reads, strand bias rate

and haplotype frequency used in the error model of O(þ)H(þ). Characteristic

information of heterozygous SNPs, overlapping paired-end reads and strand

bias can be considered by setting the proportions f T;3 and f E;3. Occurrence

probabilities shown in black (red) letters are for f T;3 (f E;3). The black colored

formulations in the left hand side are based on the tumor model of O(þ)H(�)

category. The black colored formulations in the right hand side and all the red

colored formulations are based on the error model of O(þ)H(�), cf. the

Supplementary Material A.2 and A.4
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Beta(2, 30). If the position of each observed base is not the

error prone site, perror is generated from Beta(10, 1000).

e. Generate the read sequence on the reverse strand like (d).

3.1.2 Performance evaluation of OHVarfinDer using simulation

data

As a counterpart method, we prepared OVarCall, HapMuC, and a

simple Fisher’s exact test (Fisher, 1925) method, which uses a 2�2

contingency table of read counts, tumor and normal samples/variant

and reference alleles. We calculated the area under the curve (AUC)

values from the plotted receiver-operating characteristic curve (ROC)

(Bradley, 1997) for each simulation condition as shown in Table 1. We

described the filter conditions in the Supplementary Material B.1.

In the simulation dataset under the condition of B, only overlap-

ping paired-end read information was available. In this case, our

method performs comparable with OVarCall. In the simulation

dataset in the condition of C, only heterozygous SNP information

was available. In this case, our method performed comparably well

with HapMuC that can utilize this information source. In the simu-

lation dataset under the condition of A, neither of the above types of

information was available. In this case, our method performed com-

parably well with Fisher’s exact test. In the simulation dataset under

the condition of D, both overlapping paired-end read information

and heterozygous SNP information were available. In this case, our

method outperformed both OVarCall and HapMuC. We summar-

ized the ROC curves in the Supplementary Material B.10.1–B.10.3.

3.2 Performance evaluation of OHVarfinDer using real

data
3.2.1 SNVs in exome sequence dataset

We confirmed whether the performance of our method could be

improved by using overlapping information using real exome data-

sets, as shown in

Table 2 for the real datasets, we used exome sequence data from

renal clear-cell carcinoma, which has already been used for

performance evaluation of OVarCall (Moriyama et al., 2017). In

these datasets, �40% of paired-end reads overlapped, and thus the

use of overlapping paired-end reads is expected to affect the per-

formance. In this dataset, true somatic SNVs were validated by deep

sequencing (Shiraishi et al., 2013). In both the case of lower variant

allele frequency of 2–7% and the case of moderate variant allele fre-

quency above 7%, OHVarfinDer performed comparably well with

OVarCall and outperformed HapMuC. Furthermore, we observed

that our method returned low Bayes factor of 0.0000011 in the false

positive case in Figure 2b. Therefore, we confirmed that our method

can incorporate overlapping information and improve its perform-

ance. For the details of this experiment, see the Supplementary

Material B.2, B.8 and B.10.4.

3.2.2 SNVs and InDels in whole genome dataset

We examined whether we could improve the performance of our

method by using heterozygous SNP and strand bias information

using whole genome sequence data. The results are summarized in

Table 3 for the dataset, we used whole genome sequence datasets

from breast cancer cell lines, which are publicly available as a part

of The Cancer Genome Atlas (TCGA) Mutation Calling Benchmark

4 datasets (These datasets can be downloaded from https://gdc.cancer.

gov/resources-tcga-users/tcga-mutation-calling-benchmark-4-files) and

have been used for performance evaluation of HapMuC.

In these datasets, pure cell line sequence datasets of normal and

tumor cell line and computational mixtures of these sequence data-

sets are prepared, e.g. HCC1143_n40t60 represents that 40% of

pure normal and 60% of pure tumor sequence data are mixed. In

this experiment, we obtained answers of true mutations from these

pure cell line datasets, and we conducted performance evaluations

for tumor sequence datasets with several mixture rates, i.e. n20t80,

n40t60, n60t40, n80t20. For these datasets, the use of heterozygous

SNPs information and strand bias information is important for

improving performance because the average proportion of overlap-

ping paired-end reads was �3% within these datasets.

Table 1. Simulation results summary (AUC)

v (%) Heterozygous SNPs Overlap Distance to SNP ll rl OHVarfinDer OVarCall HapMuC Fisher #SNV #Error

A 5 � � 500–5000 300 30 0.828 0.750 0.828 0.810 341 822

10 � � 0.891 0.867 0.880 0.891 713 871

20 � � 0.967 0.978 0.950 0.983 896 872

B 5 � þ 500–5000 180 30 0.938 0.917 0.786 0.817 407 1394

10 � þ 0.958 0.954 0.843 0.899 763 1413

20 � þ 0.989 0.991 0.947 0.988 897 1411

C 5 þ � 1–100 300 30 0.880 0.765 0.882 0.825 301 851

10 þ � 0.916 0.877 0.907 0.886 733 871

20 þ � 0.986 0.984 0.977 0.983 896 925

D 5 þ þ 1–100 180 30 0.943 0.923 0.838 0.803 388 1356

10 þ þ 0.975 0.952 0.918 0.914 757 1398

20 þ þ 0.994 0.991 0.977 0.990 896 1354

The highest AUC values are written in italic letters.

Table 2. Exome datasets summary (AUC)

SNV/InDel VAF OVarCall OHVarfinDer HapMuC Strelka MuTect VarScan2 #SNV #Error

SNV 2–7% 0.982 0.990 0.965 0.933 0.875 0.625 52 2422

SNV �7% 0.991 0.988 0.955 0.995 0.994 0.900 184 1982

The highest AUC values are written in italic letters.

VAF, represents variant allele frequency; SNV, represents single nucleotide variant.
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For the performance of OHVarfinDer, OHVarfinDer performed

better than any other mutation caller, except for HCC1954_n80t20.

We also observed that our method returned low Bayes factor of

0.000059 in the false positive case in Figure 2a. Therefore, we con-

firmed that our method can incorporate heterozygous SNP and strand

bias information and improve its performance. For the details of this ex-

periment, see the Supplementary Material B.3, B.9 and B.10.5.

4 Discussion

Some mutation calling methods, e.g. HapMuC and OVarCall, can

incorporate a characteristic information source, e.g. heterozygous

SNPs and overlapped paired-end reads, in their mutation calling

process. However, no existing methods utilize multiple types of such

characteristic information sources simultaneously.

In this paper, we first introduced a framework for Bayesian

model integration named as partitioning-based model integration,

which differs from Bayesian model averaging (Hoeting et al., 1999).

In this framework, we first set a partitioning rule for data and aug-

mented the data with indicator variables which show the category of

partitioning. Second, we constructed a generative model for each

category of partitioned dataset. This framework requires two

assumptions. The first assumption is that we can set a partitioning

rule and construct corresponding generative models. The second as-

sumption is that partitioning probabilities are common among the

tumor model and error model. If the above assumptions hold true,

we can compute the Bayes factor without careful setting of prior

partitioning probabilities. In our problem setting of mutation call-

ing, the above two assumptions seem natural, and thus we con-

structed a Bayesian mutation calling method, OHVarfinDer, based

on this framework.

We conducted performance evaluations with simulation and real

datasets. In the simulation datasets, we showed that our method

could utilize multiple information sources, particularly overlapping

paired-end read information and heterozygous SNP information. If

only one information source was given, our method performed com-

parably well with other existing methods. If both information sour-

ces were given, our method performed better than other existing

methods. In the real datasets, e.g. TCGA Mutation Calling

Benchmark 4 datasets, we also demonstrated the better performance

of our method compared to other existing methods.

We have demonstrated how to integrate known multiple infor-

mation sources for mutation calling by our framework. We note

that mapping quality and base quality of reads are also used in our

method by incorporating the profile HMM modeling (Albers et al.,

2011; Usuyama et al., 2014). Although our framework is practically

useful for mutation calling, there is at least one limitation for this

framework, i.e. our framework does not assume inference over the

parameter distributions, e.g. prior distributions for the error param-

eters. Such inference is important if we consider using multiple se-

quence datasets simultaneously. For example, if we can use pooled

normal sequence datasets, we can infer the error distributions de-

pending on the genomic positions. For the future work, we plan to

extend our framework to infer the form of the parameter distribu-

tions, e.g. incorporating predictive distributions for the error

parameters.

Acknowledgements

The super-computing resource was provided by Human Genome Center, the

Institute of Medical Science, The University of Tokyo.

Funding

This work has been supported by the Grant-in-Aid for JSPS Research Fellow

(17J08884) and MEXT Grant (15H05912, hp180198, hp170227).

Conflict of Interest: none declared.

References

Albers,C.A. et al. (2011) Dindel: accurate indel calls from short-read data.

Genome Res., 21, 961–973.

Beal,M.J. (2003). Variational algorithms for approximate Bayesian inference.

PhD Thesis, The Gatsby Computational Neuroscience Unit, University

College London, London, UK.

Bradley,A.P. (1997) The use of the area under the ROC curve in the evaluation

of machine learning algorithms. Pattern Recognit., 30, 1145–1159.

Table 3. Real datasets summary whole genome (AUC)

Sample SNV/InDel OVarCall OHVarfinDer HapMuC Strelka MuTect VarScan2 #SNV/InDel #Error

HCC1143_n20t80 SNV 0.869 0.906 0.827 0.873 0.848 0.801 10 618 2327

HCC1143_n40t60 0.870 0.901 0.824 0.877 0.855 0.799 8517 2049

HCC1143_n60t40 0.884 0.912 0.843 0.901 0.876 0.814 5450 1684

HCC1143_n80t20 0.901 0.941 0.870 0.938 0.918 0.830 1874 1451

HCC1954_n20t80 0.882 0.934 0.852 0.903 0.869 0.862 10 653 2854

HCC1954_n40t60 0.893 0.941 0.852 0.917 0.880 0.858 7969 2327

HCC1954_n60t40 0.917 0.949 0.865 0.937 0.905 0.852 4638 1770

HCC1954_n80t20 0.941 0.970 0.880 0.972 0.942 0.848 1389 1404

Total 0.895 0.935 0.860 0.913 0.886 0.852 51 108 15 866

HCC1143_n20t80 InDel 0.707 0.796 0.678 0.713 — 0.722 926 4951

HCC1143_n40t60 0.733 0.814 0.700 0.755 — 0.748 617 4761

HCC1143_n60t40 0.760 0.834 0.723 0.784 — 0.778 328 4563

HCC1143_n80t20 0.809 0.855 0.770 0.816 — 0.800 94 4899

HCC1954_n20t80 0.800 0.860 0.771 0.822 — 0.825 1771 5219

HCC1954_n40t60 0.821 0.866 0.778 0.843 — 0.835 1172 5215

HCC1954_n60t40 0.819 0.863 0.770 0.848 — 0.831 607 5200

HCC1954_n80t20 0.815 0.887 0.777 0.864 — 0.823 159 5053

Total 0.777 0.838 0.774 0.794 — 0.792 5674 39 861

The highest AUC values are written in italic letters.

OHVarfinDer 4253

Deleted Text: positve
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz233#supplementary-data
Deleted Text:  
Deleted Text: ,
Deleted Text:  
Deleted Text: ,
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: ,
Deleted Text: The Cancer Genome Atlas (
Deleted Text: )
Deleted Text:  
Deleted Text: ,
Deleted Text:  
Deleted Text: ,
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: ,


Chen-Harris,H. et al. (2013) Ultra-deep mutant spectrum profiling: improving

sequencing accuracy using overlapping read pairs. BMC Genomics, 14, 96.

Cibulskis,K. et al. (2013) Sensitive detection of somatic point mutations in im-

pure and heterogeneous cancer samples. Nat. Biotechnol., 31, 213–219.

Fisher,R.A. (1925). Statistical Methods for Research Workers. Edinburgh,

Oliver and Boyd.

Hoeting,J.A. et al. (1999) Bayesian model averaging: a tutorial. Statist. Sci.,

14, 382–417.

Jensen,J.L.W.V. (1906) Sur les fonctions convexes et les inégalités entre les
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