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Abstract: When faced with nutritional deprivation, bacteria undergo a range of metabolic, regulatory,
and biosynthetic changes. Those adjustments, which can be specific or independent of the missing
nutrient, often alter bacterial tolerance to antibiotics. Here, using fluoroquinolones, we quantified
Escherichia coli persister levels in cultures experiencing starvation from a lack of carbon (C), nitrogen
(N), phosphorous (P), or magnesium (Mg2+). Interestingly, persister levels varied significantly based
on the type of starvation as well as fluoroquinolone used with N-starved populations exhibiting the
highest persistence to levofloxacin, and P-starved populations exhibiting the highest persistence to
moxifloxacin. However, regardless of the type of starvation or fluoroquinolone used, DNA repair
was required by persisters, with ∆recA and ∆recB uniformly exhibiting the lowest persistence of
the mutants assayed. These results suggest that while the type of starvation and fluoroquinolone
will modulate the level of persistence, the importance of homologous recombination is consistently
observed, which provides further support for efforts to target homologous recombination for anti-
persister purposes.

Keywords: nutrient deprivation; persisters; levofloxacin; moxifloxacin; heterotolerance

1. Introduction

Nutrient limitation is a stress that bacteria can experience in a host [1–3]. For example,
in the urinary tract, which is a common site of infections [4], urine constitutes a poor growth
medium, since it lacks glucose, contains high concentrations of urea, and low levels of
peptides and amino acids [1,5]. Throughout the body, phagocytes use nutrient deprivation
as part of their antibacterial strategy for internalized pathogens [2,6,7]. Phagosomes have
shown to be deficient in carbon, amino acids, nucleotides, and vitamins [2,7]. Further,
when bacteria reside in biofilms or multicellular aggregates, nutrient gradients can arise
depending on the chemical composition of the surroundings and metabolic activities of cells,
which can produce starvation in some resident bacteria [8,9]. Importantly, the antibiotic
tolerances of starved bacteria often exceed those of their growing counterparts, which
contributes to the difficulties in treating nutrient-deprived bacteria effectively [10–13].

Although starvation, regardless of the type, has the common end-point of growth inhi-
bition, the physiology of bacteria in growth arrest will depend on the limiting nutrient or nu-
trients [14–17]. For example, during glucose starvation the levels of regulatory metabolites
cyclic AMP (cAMP) [18], guanosine 3′, 5′-bisphyrophosphate (ppGpp) [19], and phospho-
enolpyruvate (PEP) increase, whereas fructose 1,6-biphospate (FBP) levels decrease [15,16];
and each regulates a different suite of activities [14]. During nitrogen (N) starvation, while
an increase in ppGpp has been observed, cAMP and FBP levels appear unaffected, and PEP
levels decline [15]. Heat production, CO2 generation, and O2 consumption differ between
carbon (C)-, N-, and phosphate (P)-starved cultures [20], whereas glucose consumption
varies between N-, P-, and Mg2+-starved populations, with Mg2+-starved cultures catab-
olizing glucose at the highest rate [16]. With such metabolic and regulatory differences,
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it is not surprising that the antibiotic susceptibilities of nutrient-depleted bacteria will
depend on the missing nutrient. For example, with the aminoglycoside gentamicin, N- and
P-starved cultures showed a notable level of susceptibility, whereas C-starved cultures were
extremely tolerant [21]. In a study with nitrofurantoin, when stationary-phase bacteria
were resuspended in saline, only C-supplied bacteria became sensitive to the antibiotic,
whereas N-, P-, and Mg2+-supplied bacteria remained completely tolerant [22]. Collectively,
these studies suggest that while growth inhibition in general increases the tolerances of
bacteria to antibiotics, it may not do so in a uniform fashion.

Here, we examine how fluoroquinolone (FQ) persistence varies in growth-inhibited
populations based on the identity of the missing nutrient. While most antibiotics are
ineffective against non-growing bacteria, FQs, which target type II topoisomerases (DNA
gyrase and topoisomerase IV), retain bactericidal activity [23–25]. During its catalytic
cycle, topoisomerases produce transient breaks in DNA to modulate supercoiling, and
consume two equivalents of ATP along the way [26–29]. Conceivably, differences in
ATP could alter the activities of DNA gyrase and topoisomerase IV, which could impact
sensitivity to FQs. Inspired by the physiological differences that have been observed
between bacteria starved for different nutrients [14–19], we hypothesized that persistence
to FQ will depend on the missing nutrient. Persistence is an extreme form of antibiotic
tolerance that is exhibited by subpopulations in a bacterial culture [30–32], and most studies
that have investigated FQ persistence in growth-inhibited populations have done so with
stationary-phase cultures, which typically experience growth arrest due to exhaustion of
carbon [23–25,33–40]. Here, we measured FQ persistence of Escherichia coli under long-term
C-, N-, P-, or Mg2+-starvation, and examined the extent to which different DNA repair
systems are used by FQ persisters while starving for different nutrients [23,24,34,35,37].
Specifically, we investigated recA, which is involved in homologous recombination (HR)
and SOS induction [41]; recB, which is also involved in HR [42]; lexA, which represses the
SOS response until its auto-cleavage is facilitated by RecA filaments that form on single-
stranded DNA [43]; uvrD, which is involved in nucleotide excision repair and methyl-
directed mismatch repair [44–46]; ruvA, which is involved in the resolution of Holliday
junctions [47]; recF, which participates in recombinational repair of single-stranded DNA
gaps left by the replisome [37]; and recN, which is involved in HR through its ability to
facilitate contact between sister chromatids [48]. Interestingly, we found that persister
levels vary based on both the type of starvation and FQ used, whereas the impacts of a
variety of DNA repair systems on FQ persistence were largely invariant, with ∆recA and
∆recB constituting the most deleterious mutations. Collectively, these data illustrate that
while the degree of persistence will depend on the nutritional environment and FQ used,
the DNA repair systems used by persisters to survive FQ treatments are well-conserved.

2. Materials and Methods
2.1. Bacterial Strains and Plasmids

Strains used in this study are derived from E. coli MG1655 and summarized in Sup-
plementary Table S1. ∆recA, ∆recB, ∆uvrD, ∆ruvA, ∆recF, and ∆recN mutations were
transduced from the Keio collection [49] to E. coli MG1655 with the P1 phage method [50].
Kanamycin (KAN) resistance markers were removed using FLP recombinase expressed
from pCP20. To construct the lexA3 mutant, which is an uncleavable version of lexA [51], a
∆malK strain was first generated by P1 phage transduction from the Keio collection [49].
malK is located near lexA on the E. coli chromosome, and ∆malK cannot utilize maltose as
a sole carbon source [52]. lexA3 was transduced by P1 phage from CGSC 6550 [53] into
E. coli MG1655 ∆malK, and colonies were selected on minimal maltose media plates. To
verify the deletion of genes, PCR was run using external and internal primers listed in
Supplementary Table S2. To verify the lexA3 incorporation, the locus was amplified and
sequencing was performed (Genewiz, South Plainfield, NJ, USA).
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2.2. Chemicals and Media

All chemicals were obtained from Fisher Scientific (Pittsburgh, PA, USA) or Sigma
Aldrich (Milwaukee, WI, USA). All media were made with distilled water purified with
a Millipore Milli-Q lab water system (Burlington, MA) to a resistivity of 18.2 MΩ.cm. LB
media used for pre-growth was made of 10 g/L tryptone, 5 g/L yeast extract, and 10 g/L
NaCl dissolved in Milli-Q water, which was then sterilized by autoclaving. M9 minimal
glucose media was used as the “complete media” in this study, from which C-starved,
N-starved, P-starved, and Mg2+-starved versions were derived. The compositions of the
different media are provided in Supplementary Table S3.

LB-agar plates were made with 25 g/L pre-mixed LB Miller broth and 15 g/L agar,
which was autoclaved. For mutant selection, 50 µg/mL KAN was used. For lexA3 mutant
selection M9 minimal agar plates made with 6.78 g/L Na2HPO4, 3 g/L KH2PO4, 1 g/L
NH4Cl, 0.5 g/L NaCl, 0.011 g/L CaCl2, 0.24 g/L MgSO4, and 10 mM maltose as the sole
carbon source were used. For all wash steps, phosphate buffered saline (PBS) was prepared
from autoclaved Milli-Q water and a 10X stock, followed by sterile-filtering (0.22 µM pore
size). The 10X stock contained 98.9 g of powder (81% NaCl, 14% Na2HPO4, 3% KH2PO4,
and 2% KCl by weight) in 1 L of Milli-Q water.

2.3. Culture Conditions

Cultures were first inoculated from−80 ◦C, 25% glycerol stocks into 2 mL of LB media
in test tubes and incubated for 4 h at 37 ◦C with shaking (250 r.p.m.). After 4 h, those
pre-growth cultures were diluted 100-fold in M9 media with 10 mM glucose and incubated
at 37 ◦C with shaking (250 r.p.m.) overnight for 16 h. The 16 h overnight cultures were then
diluted to an OD600 of 0.01 in 25 mL of M9 media with 10 mM glucose in 250 mL baffled
flasks and grown to an OD600 of 0.2 at 37 ◦C. At OD600 of 0.2, 500 µL of the exponential-
phase cultures was washed in the respective starvation media by centrifuging samples at
21,130 r.c.f. for 3 min, removing 450 µL of the supernatant, and then resuspending the
cell pellet in 450 µL of the starvation media. This wash step was repeated two more times
(total of three washes). For the growth assays, the samples were then diluted 10-fold to
an OD600 of 0.02 into 25 mL of starvation media or M9 media. For the persister assays,
the starvation samples were diluted 10-fold to an OD600 of 0.02 into 25 mL of starvation
media and incubated for 16 h, whereas the M9 control samples were diluted 100,000-fold
and incubated for 16 h to achieve an OD600 of ~0.02. Supplementary Figure S1 provides a
schematic of the culturing conditions used in this study.

2.4. Growth Assay

Once cultures were inoculated into starvation media, OD600 was measured hourly
with a Synergy H1 Hybrid Multi-Mode Microplate Reader (Agilent Technologies, Santa
Clara, CA, USA) using 300 µL samples in flat-bottom 96-well plates. When necessary,
cultures were diluted with similar media to ensure that OD600 readings were in the linear
range of the spectrophotometer (0.01 to 0.4). To assess whether single-nutrient starvation
conditions had been achieved, after 16 h of incubation in nutrient-starved media, missing
nutrients or autoclaved water (control) were added to starved cultures and incubated for
an additional 16 h, at which point OD600 measurements were taken.

2.5. Minimum Inhibitory Concentration Assay

Cultures were prepared by inoculating 25% glycerol stocks in 2 mL of LB media.
After 16 h of incubation at 37 ◦C with shaking (250 r.p.m.), cultures were diluted to 105

CFU/mL in 10 mL of Mueller–Hilton Broth (MHB). Antibiotic stock solutions (2 µg/mL)
were prepared for both levofloxacin (LEVO) and moxifloxacin (MOXI), and 2-fold serial
dilutions were performed in 75 µL of MHB in flat-bottom 96-well plates. Each well was then
inoculated with 75 µL of diluted culture. An antibiotic-free well and an MHB-only well
served as controls, respectively. Plates were covered with Breathe-Easy sealing membranes
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and incubated at 37 ◦C without shaking. After 20 h of incubation, OD600 were measured
and when necessary samples were diluted 10-fold in MHB.

2.6. Persister Assay

After 16 h of incubation in starvation media, cultures were treated with 5 µg/mL
of MOXI, LEVO or autoclaved Milli-Q water (MOXI MIC: 0.125 µg/mL, LEVO MIC:
0.0625 µg/mL, Supplementary Figure S2). Before addition of the antibiotic (t = 0) and at 1,
3 and 5 h, after the addition of the antibiotic, 500 µL samples were removed. Those samples
were washed three times with PBS by centrifugation at 21,130 r.c.f. for 3 min, removal of
450 µL of the supernatant, and then resuspending the cell pellet in 450 µL of PBS. After
three washes, the samples were then centrifuged again, followed by removal of 400 µL of
supernatant, and resuspension of the cell pellet in the remaining 100 µL of PBS. That 5-fold
concentrated sample was then serially diluted in PBS, plated on LB-agar, and incubated at
37 ◦C for 16 h, after which CFUs were enumerated.

2.7. Statistical Analysis

Data points indicate the average of at least three biological replicates. The error bars
indicate the standard errors of the means. Where indicated, t-tests with unequal variances
or one-way ANOVA with post-hoc Tukey tests were conducted to assess significance among
the different treatment conditions.

3. Results
3.1. Establishing Single-Nutrient Starved Culturing Conditions with Complete Media Controls

We sought to establish conditions where starvation occurred due to individual nu-
trients for a period of time equivalent to overnight, 16 h, along with a complete media
control that was growing throughout that time. To accomplish that, we made variations of
M9 media where specific components containing the nutrients of interest (C, N, P, Mg2+)
were omitted, and for those usually provided as salts (N, P, Mg2+), their counter ions were
provided as alternative salts (e.g., NaCl in place of NH4Cl) (Supplementary Table S3). As
depicted in Figure 1A, all starvation media produced growth arrest. Cognizant that contin-
ued non-growing metabolism could render single-nutrient limited conditions deprived of
additional nutrients, we assayed whether supplementation of individual missing nutrients
could restore growth. As illustrated in Figure 1B, after 16 h of exposure to starvation
media, supplementation with missing nutrients generated significant growth in all sam-
ples, whereas continued starvation extended growth arrest (Figure 1C). We note that the
OD600 of the Mg2+-starved cultures supplemented with water increased slightly at 32 h
compared to 16 h (Figure 1C), which we speculate reflects a modest difference in reductive
division compared to other starvation scenarios. These data demonstrate that the cultures
used here were starved for a single nutrient in all cases, even after 16 h incubation under
starvation conditions.
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Figure 1. Establishment of culturing conditions for overnight starvation to individual nutrients.
(A) Exponentially-growing wild-type (WT) cultures were inoculated into complete media or media
deprived of carbon (C), nitrogen (N), phosphate (P), or magnesium (Mg2+) at an optical density at
600 nm (OD600) of 0.02. After inoculation, OD600 was measured at indicated time points, and all
cultures in the nutrient-starved conditions exhibited growth inhibition. (B) After 16 h in nutrient-
starved environments (0–16 h), the missing nutrients were supplied to cultures and incubated for
an additional 16 h (16–32 h). Addition of the missing nutrient resulted in growth of all cultures,
demonstrating single-nutrient limited growth. (C) Controls where autoclaved water was added
in place of the missing nutrient and growth was monitored for an additional 16 h (16–32 h). Data
points indicate the means of three biological replicates, and the error bars indicate the standard errors
of the means. A schematic of the culturing procedure with respect to different assays is provided
in Supplementary Figure S1. (A) One-way ANOVA with post-hoc Tukey tests were conducted to
assess significance among the different treatment conditions. * Indicates significance with p < 0.05
with respect to the other treatment conditions at the same time point. (B,C) t-tests were conducted
for significance analysis. * Indicates significance with p < 0.05 with respect to t = 0 h for the same
treatment condition.

3.2. FQ Persistence Levels Depend on the Type of Starvation and FQ Used

Persistence assays were conducted with LEVO or MOXI on cultures incubated in
starvation media for 16 h and a growing M9 control with the same approximate OD600
at the time of treatment. LEVO is the active isomer of ofloxacin (OFL), which is widely
used in persistence studies [54]; and MOXI is a more recent FQ that has been identified as
a more potent inhibitor of topoisomerase IV [55]. For both LEVO and MOXI, all nutrient-
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starved cultures exhibited significantly higher persister levels compared to cultures that
were exponentially growing in M9 media (Figure 2). Under LEVO treatment, N-starved
cultures exhibited the highest level of persistence with survival approaching 50%, which
was significantly higher than C- and Mg2+-starved persister levels (Figure 2A). With MOXI,
P-starvation exhibited the highest level of persistence with survival approaching 25%,
which was significantly higher than C-, N-, and Mg2+-starved persister levels (Figure 2B).
Under both FQ treatments, Mg2+ and C starvation gave similar levels of persistence. The
observed differences in persistence among differently starved cultures suggest that persister
levels depend on not just the type of starvation, but also the FQ used. Nutrient-starved
cultures treated with water instead of FQ exhibited complete survival over the course of
the experiments (Supplementary Figure S3).
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Figure 2. Fluoroquinolone (FQ) persistence levels depend on the type of nutrient starvation and
antibiotic used. E. coli cultures that underwent 16 h of starvation for C, N, P, or Mg2+ and an
exponentially-growing control in complete media (M9) were treated with 5 µg/mL levofloxacin
(LEVO) (A) or 5 µg/mL moxifloxacin (MOXI) (B) for 5 h and survival was monitored. Before antibiotic
treatment (at 0 h) and at 1, 3 and 5 h after antibiotic treatment, samples were obtained, washed in
phosphate buffered saline (PBS) three times, and plated on LB-agar to enumerate colony forming
units per milliliter (CFUs/mL). Data points indicate the means of five biological replicates, whereas
error bars indicate the standard errors of those means. One-way ANOVA with post-hoc Tukey
tests were conducted for each drug treatment to assess significance. (A) Complete media samples
exhibited a significant difference with starvation samples at 1, 3, and 5 h time points. N-starved
samples exhibited a significantly higher rate of survival from C-, P-, and Mg2+-starved samples at 3
and 5 h. (B) Complete media samples exhibited a significant difference with all starvation samples at
1, 3 and 5 h time points. P-starved samples exhibited a significantly higher rate of survival from C-,
N-, and Mg2+-starved samples at 1, 3, and 5 h. N-starved samples exhibited a significantly higher
rate of survival from C- and Mg2+-starved samples at 3 and 5 h time points. * Indicates a significance
of p < 0.05.

3.3. FQ Persisters Depend on Similar DNA Repair Systems When Deprived of Different Nutrients

Previous studies have demonstrated the importance of different DNA repair enzymes
to FQ persistence in non-growing cultures [23,24,34,35,37]. Given that the abundances of
FQ persisters varied as a function of deprived nutrient and drug used, we assessed to what
extent the DNA repair systems used by persisters in the different cultures were shared or
distinct.

Over the eight different combinations of starvation and FQ, we observed a similar
ranking of importance of DNA repair systems for FQ persistence (Figures 3 and 4, Supple-
mentary Figures S4 and S5). Consistently, the mutants ∆recA, ∆recB, lexA3, ∆uvrD, ∆ruvA,
and ∆recN were significantly lower than wild-type (WT), whereas ∆recF for some samples
was significantly higher. We note that ∆recF has been shown before to increase persister
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levels in some conditions and that the effect depended on RecA, which suggested that
the ability of RecF to load RecA onto ssDNA could be detrimental to survival following
FQ treatment [37]. Deletions of recA and recB resulted in the largest declines in persister
levels (typically ~1,000-fold reduction), followed by ∆uvrD mutants and an uncleavable
lexA mutant (lexA3) (typically ~100-fold reduction), though for some scenarios these four
mutants were indistinguishable (Figure 4C). Deletions of ruvA and recN constituted the
next grouping, which yielded ~10-fold fewer persisters than WT; however, in environments
devoid of Mg2+ their impacts were negligible (Figures 3D and 4D). Interestingly, even for
nutrient-deprived cultures with extremely high survival (N- and LEVO, P- and MOXI),
DNA repair systems remained important, which suggested that even under conditions
where FQs appear to largely lose their bactericidal activities, DNA damage occurs from
treatment.
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Figure 3. Importance of DNA repair machinery to LEVO persistence is largely invariant in non-
growing populations starved for different nutrients. Persister levels in populations of ∆recA, ∆recB,
lexA3, ∆uvrD, ∆ruvA, ∆recF, ∆recN and WT under the indicated starvation conditions were assessed
with LEVO. Data points indicate the means of three biological replicates, whereas the error bars
indicate the standard errors of those means. One-way ANOVA with post-hoc Tukey test were
conducted for each starvation condition to assess significance. (A) Under C-starvation ∆recF exhibited
significantly higher survival compared to WT at 1, 3, and 5 h. All other strains had significantly lower
survival rates than WT at these time points. (B,C) Under N and P starvation all strains except ∆recF
exhibited lower survival rates when compared to WT at 1, 3 and 5 h time points. (D) ∆recA, ∆recB,
lexA3, ∆uvrD strains had a significantly lower survival rate compared to WT under Mg2+-starvation
at 1, 3 and 5 h. Significance was identified as * p < 0.05.
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Figure 4. Importance of DNA repair machinery to MOXI persistence is largely invariant in non-
growing populations starved for different nutrients. Persister levels in populations of ∆recA, ∆recB,
lexA3, ∆uvrD, ∆ruvA, ∆recF, ∆recN and WT under the indicated starvation conditions were assessed
with MOXI. Data points indicate the means of three biological replicates, whereas the error bars
indicate the standard errors of those means. One-way ANOVA with post-hoc Tukey tests were
conducted for each starvation conditions to assess significance. (A,B) Under C and N starvation
∆recF exhibited significantly higher survival compared to WT at 1, 3, and 5 h. All other strains had
significantly lower survival rates than WT at these time points. (C) Under P starvation all strains
except ∆recF exhibited significantly lower survival rates when compared to WT at 1, 3, and 5 h time
points. (D) ∆recA, ∆recB, lexA3, ∆uvrD strains had a significantly lower survival rate compared to
WT for Mg2+ starvation at 1, 3, and 5 h. Significance was identified as * p < 0.05.

4. Discussion

FQs are some of the few antibiotics that retain activity against non-growing bacte-
ria [10,23,24], and their bactericidal activity derives from their binding to type II topoiso-
merases (DNA gyrase and topoisomerase IV in E. coli), which allows DNA cleavage but
prevents ligation [26,56]. DNA gyrase is involved in replication and transcription by intro-
ducing negative supercoils in front of the replication fork and RNA polymerase [27,57,58].
Topoisomerase IV is involved in decatenating chromosomes at the end of replication, re-
solving DNA knots during recombination, and alleviating the over-winding of the double
helix [26,59]. While nutrient starvation is known to stall DNA replication, transcription
still continues at reduced rates [14,20,60,61], which suggests that the targets of FQs remain
corruptible in nutrient-starved populations. Indeed, it has been observed that 90% or more
stationary-phase E. coli can be killed by treatment with FQs [23–25,34–37].

Previous studies have investigated FQ persistence in stationary-phase E.coli popula-
tions [23–25,33,34,36–39], and though not explicitly characterized, most were likely growth
inhibited due to lack of C [40]. However, many nutrients, when missing, produce growth
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arrest, and importantly, the physiology of growth-arrested bacteria will depend on the
deprived nutrient [15,16,20,62]. Brown investigated persistence to ciprofloxacin (CIP) in E.
coli populations having been starved of N for 20 min compared to N-replete controls [62].
Incipient N starvation increased CIP persistence compared to growing controls and roles
for RelA and NtrC were identified; however, the role of DNA repair machinery was not
examined [62]. Pontes and Groisman investigated tolerance to CIP in Salmonella enterica
populations before and after exhaustion of limited supplies of Mg2+ [13]. One hour after
Mg2+ exhaustion, CIP tolerance was observed to increase, and while the roles of (p)ppGpp
and ATP in the phenomenon were evaluated, the importance of DNA repair was not
assessed [13]. Studying persistence to a panel of antibiotics, including LEVO, Xu and
colleagues found that 30 min after resuspension in saline, the tolerance of Staphylococcus
aureus cultures increased dramatically [63]. Intriguingly, supplementation of saline with
Mg2+ reduced the enhancement in LEVO tolerance through a pathway that involved ATP,
whereas the role of DNA repair was not evaluated [63]. Wang and colleagues also used
saline to examine antibiotic tolerance in starved cultures, where they observed a role for
proton motive force in β-lactam susceptibility that was absent when cultures were treated
with CIP [64]. In addition, Fung and colleagues conducted an expansive examination of
nutrient availability and antibiotic tolerance that included OFL and C-, N-, and P-starved
cultures [12]. Using 0.75 µg/mL of OFL on cultures that had been starved for 2 h, C
starvation produced the highest enhancement in tolerance, although all three starvation
conditions exhibited increased survival compared to a complete media control [12]. Im-
portantly, RecA was found to be critical to OFL tolerance of cultures in growth-supporting
media, after an overnight incubation, as well as those that were resuspended in MOPS
base, which reflected a role for HR that was independent of the pre-growth and treatment
environments [12].

In this study, we aimed to investigate longer periods of starvation (16 h) and compare
a variety of types of nutrient limitation for their persistence phenotype and dependence on
DNA repair (Tables 1 and 2). Results indicated that regardless of the missing nutrient (C, N,
P, or Mg2+) persistence increased in comparison to growing cultures, which was expected.
We also observed that persister levels in growth-inhibited populations differed based on
both the type of starvation and specific FQ used, which was unexpected and suggested
that the environmental context even for non-growing bacteria matters for persistence
to FQs. Here, we did not investigate the mechanisms of why different starvation types
and FQs yielded quantitatively different persister levels, although those differences do
represent an interesting area of study. Rather, inspired by previous studies that had
shown that persistence to FQs in non-growing bacteria depended on the SOS response
and DNA repair enzymes, we assayed several mutants defective in DNA repair and SOS
induction [23,24,34,35,37,65]. Those genes included recA, which is a master mediator of
HR and SOS induction [41,66]; lexA, which regulates the SOS response [43]; recB, which
is involved in HR [42]; ruvA, which is involved in the final steps of recombination [47];
uvrD, which is involved in nucleotide excision repair [44,45]; recF, which helps load RecA
onto single-stranded DNA [37]; and recN, which stimulates strand invasion by RecA in the
repair of DSBs [48]. Previously, the impacts of those genes on persistence in non-growing
populations were largely investigated in C-starved conditions [23,24,34,35,37,65] so we set
out to assess their roles under deprivation of different nutrients: N, P, and Mg2+ in addition
to C. Our results show that regardless of the type of starvation or the FQ used, the relative
importance of DNA repair machinery and the SOS response remained largely invariant. We
also observed that even in cultures that did not die appreciably from treatment, N-deprived
cultures in the case of LEVO and P-deprived cultures in the case of MOXI, DNA repair was
critical for persister survival.

The results presented here demonstrate that while the survival levels among different
DNA repair mutants vary based on FQ and the starvation environment, the repair systems
needed for FQ persistence in non-growing cultures are largely invariant. When this knowl-
edge is combined with that from previous works where the importance of DNA repair
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machinery, such as recA, recB, recG, lexA, ruvA, ruvB, and uvrD, were established for FQ
persistence in exponentially-growing cultures [37,67,68], it is straightforward to suggest
that such systems can serve as universal targets for potentiation of FQs.

Table 1. Survival fractions after 5 h of treatment with LEVO *.

Strain Glucose (−) NH4
+ (-) PO4 3− (−) Mg 2+ (−) M9

WT 9.26 × 10−2

(+/− 3.09 × 10−2)
5.58 × 10−1

(+/− 8.82 × 10−2)
2.02 × 10−1

(+/− 1.36 × 10−1)
8.28 × 10−2

(+/− 2.77 × 10−2)
2.50 × 10−4

(+/− 7.10 × 10−5)

∆recA 5.75 × 10−5

(+/− 1.63 × 10−5)
6.23 × 10−5

(+/− 2.61 × 10−5)
3.25 × 10−4

(+/− 1.69 × 10−4)
1.22 × 10−4

(+/− 2.74 × 10−5)

∆recB 1.16 × 10−4

(+/− 2.84 × 10−5)
1.13 × 10−4

(+/− 1.75 × 10−5)
3.08 × 10−4

(+/− 2.00 × 10−4)
1.44 × 10−4

(+/− 8.21 × 10−5)

lexA3 2.00 × 10−4

(+/− 2.92 × 10−5)
1.48 × 10−3

(+/− 6.00 × 10−4)
9.35 × 10−4

(+/− 3.45 × 10−4)
4.71 × 10−3

(+/− 2.41 × 10−3)

∆uvrD 3.53 × 10−4

(+/− 9.52 × 10−5)
2.86 × 10−4

(+/− 8.02 × 10−5)
5.48 × 10−4

(+/− 1.37 × 10−4)
2.14 × 10−3

(+/− 1.04 × 10−3)

∆ruvA 2.85 × 10−3

(+/− 7.19 × 10−4)
8.99 × 10−2

(+/− 3.30 × 10−2)
9.77 × 10−3

(+/− 2.37 × 10−3)
4.17 × 10−2

(+/− 3.03 × 10−2)

∆recF 1.81 × 10−1

(+/− 4.20 × 10−2)
5.42 × 10−1

(+/− 2.22 × 10−1)
2.81 × 10−1

(+/− 6.08 × 10−2)
6.36 × 10−2

(+/− 1.65 × 10−2)

∆recN 2.16 × 10−3

(+/− 1.04 × 10−3)
2.54 × 10−2

(+/− 1.46 × 10−2)
3.92 × 10−3

(+/− 1.42 × 10−3)
3.82 × 10−2

(+/− 2.18 × 10−2)

* Mean (+/− standard error of the mean).

Table 2. Survival fractions after 5 h of treatment with MOXI *.

Strain Glucose (−) NH4
+ (−) PO4 3− (−) Mg 2+ (−) M9

WT 4.76 × 10−3

(+/− 2.98 × 10−3)
1.19 × 10−2

(+/− 3.11 × 10−3)
3.07 × 10−1

(+/− 2.47 × 10−1)
4.28 × 10−3

(+/− 2.49 × 10−3)
5.00 × 10−7

(+/− 2.51 × 10−7)

∆recA 3.71 × 10−6

(+/− 1.56 × 10−6)
1.73 × 10−5

(+/− 6.92 × 10−6)
6.46 × 10−4

(+/− 3.72 × 10−4)
1.03 × 10−4

(+/− 9.00 × 10−5)

∆recB 3.48 × 10−6

(+/− 1.05 × 10−6)
2.75 × 10−5

(+/− 9.98 × 10−6)
3.70 × 10−4

(+/− 1.63 × 10−4)
5.54 × 10−5

(+/− 1.93 × 10−5)

lexA3 3.20 × 10−5

(+/− 1.03 × 10−5)
8.09 × 10−5

(+/− 1.43 × 10−5)
5.65 × 10−4

(+/− 2.92 × 10−4)
2.19 × 10−4

(+/− 1.53 × 10−4)

∆uvrD 3.42 × 10−5

(+/− 1.65 × 10−5)
3.14 × 10−5

(+/− 6.45 × 10−6)
8.72 × 10−4

(+/− 3.99 × 10−4)
3.80 × 10−4

(+/− 1.47 × 10−4)

∆ruvA 4.54 × 10−4

(+/− 3.24 × 10−4)
7.89 × 10−4

(+/−1.53 × 10−4)
6.55 × 10−3

(+/− 2.60 × 10−3)
2.74 × 10−3

(+/− 1.04 × 10−3)

∆recF 3.46 × 10−2

(+/− 1.96 × 10−2)
5.96 × 10−2

(+/− 2.02 × 10−2)
2.82 × 10−1

(+/− 1.14 × 10−1)
8.47 × 10−3

(+/− 2.20 × 10−3)

∆recN 1.83 × 10−4

(+/− 2.94 × 10−5)
1.03 × 10−3

(+/− 4.66 × 10−4)
7.57 × 10−3

(+/− 3.02 × 10−3)
1.84 × 10−3

(+/− 9.36 × 10−4)

* Mean (+/− standard error of the mean).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10020286/s1. Figure S1: Schematic of culturing
used with different assays. * dilution for M9 (complete media) samples was 100,000-fold for persister
assays; however, it was 10-fold for growth assays so growth would be observable by OD600 measure-
ments, Figure S2: MICs were determined using the microdilution protocol described in the Methods
section with either (A) LEVO or (B) MOXI. Data points indicate the means of three biological replicates
and the error bars indicate the standard errors of the means, Figure S3: Water-treated controls for FQ

https://www.mdpi.com/article/10.3390/microorganisms10020286/s1
https://www.mdpi.com/article/10.3390/microorganisms10020286/s1
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persister assays. (A) Survival fraction and (B) raw CFU/mL data depicting water-treated controls
after 16 h starvation for C-, N-, P- and Mg2+-starved samples and a 16 h growing control in M9.
Results show that the M9 growing control continued to grow, whereas starved samples did not. Data
points indicate the means of three biological replicates and the error bars indicate the standard errors
of the means, Figure S4: CFU/mL under LEVO treatment. Raw CFU/mL data for Figure 3. Data
points indicate the means of three biological replicates and the error bars indicate the standard errors
of the means, Figure S5: CFU/mL under MOXI treatment. Raw CFU/mL data for Figure 4. Data
points indicate the means of three biological replicates and the error bars indicate the standard errors
of the means, Table S1: Bacterial strains and Plasmids, Table S2: DNA oligonucleotides, Table S3.
Composition of M9 and different starvation media.
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