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Control theory arises in most modern real-life applications, not least in biological and

medical applications. In particular, in biological and medical contexts, the role of control

theory began to take shape in the early 1980s when the first works appeared on the

application of control theory in models of pharmacokinetics and pharmacodynamics for

antitumor therapies. Forty years after those first works, the theory of control continues

to be considered a mathematical analysis tool of extreme importance and usefulness,

but the challenges it must overcome in order to manage the complexity of biological

processes are in fact not yet overcome. In this article, we introduce the reader to the

basic ideas of control theory, its aims and its mathematical formalization, and we review

its use in cell phase-specific models for cancer chemotherapy. We discuss strengths

and limitations of the control theory approach to the analysis pharmacokinetics and

pharmacodynamics models, and we will see that most of them are strongly related to

data availability and mathematical form of the model. We propose some future research

directions that could prove useful in overcoming the these limitations and we indicate

the crucial steps preliminary to a useful and informative application of control theory to

cancer chemotherapy modeling.

Keywords: optimal control theory, cancer chemotherapy, pharmacokinetics/pharmacodynamics models,

cell-phase specific chemotherapics, parameter sensitivity analysis and controls

1. INTRODUCTION

Control theory is concerned with establishing whether the evolution of a system is controllable,
i.e., whether the evolution can be influenced by some external agent, called control. Optimal
control theory deals with finding a control for the system over a period of time such that
a performance criterion is optimized. Control theory (and its dual, i.e., observability theory)
was applied to the analysis of deterministic models of biological and biochemical processes
(Lecca and Re, 2019; Thomas et al., 2019; Wu et al., 2019), and in particular to models of
cancer chemotherapy. Mathematically, cancer chemotherapy can be formulated as an optimal
control problem. This approach is more relevant than ever today, as testified by recent works
(Schättler and Ledzewicz, 2015a,b; Wang and Schättler, 2016; Angaroni et al., 2020; Jarrett
et al., 2020; Sweilam et al., 2020). In literature, applications of optimal control theory to
mathematical models of cancer biology and role of chemotherapy began to appear in the 1980s
and have appeared with regularity in the following years to the present day. The reader can
refer to some of these works, such as for example (Swan, 1980, 1988, 1990; Martin, 1992;
Swierniak et al., 1996; Kimmel and Swierniak, 2005; Pillis et al., 2008; Collins et al., 2010;
Batmani and Khaloozadeh, 2011; Ledzewicz et al., 2013; Ghaffari et al., 2014; Michor and
Beal, 2015; Wang and Schättler, 2016; Carrère, 2017; Irurzun-Arana et al., 2018). Indeed, a
tumor undergoing pharmacological treatment can be viewed as a control system with the state
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of the system, given by the number of cancer cells at time t, N(t),
and the control input at time t, u(t). Usually in these models u(t)
is the drug dosage or the effect the drugs have on normal and
cancer cells. Since chemotherapeutic agents affect both healthy
cells and cancer cells, the objective of the control problem is to
minimize the number of cancer cells keeping the toxicity to the
normal tissue at a safe level. The greater usefulness of the optimal
control model of cancer chemotherapy lies in the capacity of
determining drug schedules that most effectively reduce the size
of a tumor after a fixed period of treatment has elapsed (Martin,
1992; Ledzewicz and Schaettler, 2004).

Mathematical models for cancer chemotherapy are necessarily
cell-cycle specific, because most drugs are active in a specific
phase of the cell-cycle as reported in Ledzewicz and Schaettler
(2004), Schättler and Ledzewicz (2015a). The starting point of
cell cycle is a growth phase G1 after which the cell enters a
phase S where DNA synthesis occurs. Then a second growth
phase G2 takes place in which the cell prepares for mitosis
(phase M) during which cell division occurs. Each of the
two daughter cells can either re-enter phase G1 or for some
time may simply lie dormant (phase G0) until re-entering
G1, thus re-starting the entire process. The molecules of
the anticancer drug treatments can be cell-killing agents, but
also blocking and recruitment agents. Blocking agents slow
down the transitions of the cells through the cell cycle, i.e.,
they slow down the tumor growth; recruiting agents make
cancer cells leave the dormant stage G0 where they are not
susceptible to any chemotherapy (Ledzewicz and Schaettler,
2004; Schättler and Ledzewicz, 2015a,b). Usually, in these models
the phases of the cell cycle are clustered into compartments
with the state representing the average number of cells in
each compartment and the control representing the dosages
or effects of the various drugs. The number of compartments
depends on the number and types of chemotherapeutic agents
considered, since as we said a chemotherapeutic agents may
acts on one or more phases. The in- and out-flows between
the compartments in the presence of the control, determine
the system dynamics. We consider extremely important as a
future line of progress in this field, the construction of a
pharmacokinetic/pharmacodynamic model that is less abstract
than those usually used and which mainly considers two
variables, such as drug dosage and the number of cells exposed
to them. In particular, we are thinking of a model that describes
the interactions at the molecular level of the drug with the
biological networks that inside the cell are responsible for
its processing and with the molecular targets for which it
is designed.

2. THE OPTIMAL CONTROL PROBLEM

The formulation of an optimal control problem consists of (i)
a mathematical description of the problem to be controlled;
(ii) a statement of the physical constraints, and (iii) the
specification of a performance criterion (Kirk, 1970). We restrict
our focus to models of ordinary differential equations. Let
x1(t), x2(t), . . . , xn(t) be the state variables of the system at time

t, and let u1(t), u2(t), . . . , nm(t) the inputs to the systems at time
t. The system can be described by n differential equations

dx1

dt
= f1(x1(t), x2(t), . . . , xn(t), u1(t), u2(t), . . . , um(t))

dx2

dt
= f2(x1(t), x2(t), . . . , xn(t), u1(t), u2(t), . . . , um(t))

...

dxn

dt
= fn(x1(t), x2(t), . . . , xn(t), u1(t), u2(t), . . . , um(t))

where fi :R → R (i = 1, 2, . . . , n). In matrix form, we write

du

dt
= f(x(t), u(t), t) (1)

where

x(t) =











x1(t)
x2(t)
...

xn(t)











u(t) =











u1(t)
u2(t)
...

um(t)











f(t) =











f1(x(t), u(t), t)
f2(x(t), u(t), t)

...
fn(x(t), u(t), t)











.

The explicit presence of t in the right-hand side of Equation (1)
indicates that the system is time-variant. For a time-invariant
system instead we will write

du

dt
= f(x(t), u(t)). (2)

If a system is time-varying and linear its state equations are

dx

dt
= A(t)x(t)+ B(t)u(t) (3)

where A(t) and B(t) are, respectively, n × n and n × m matrices
with time-dependent elements. State equations for linear time-
invariant systems are instead of the form

dx

dt
= Ax(t)+ Bu(t) (4)

where A and B are time-independent matrices.
A history of the control input u(t) in the interval [t0, tf ] is

called a control history. A history of the state variables x(t) in the
interval [t0, tf ] is called a state trajectory. The physical constraints
are defined by the boundary conditions, i.e., the values of the state
variables and the control input at the initial time t0 and tf . A state
trajectory that satisfies the state variable constraints during the
entire time interval [t0, tf ] is called an admissible trajectory. A
control history that satisfies the control constraints during the
entire time interval [t0, tf ] is called an admissible control. The
admissibility is a useful property because it reduces the number of
values that can be assumed by the state variable and the controls.
Thanks to this property, instead of investigating all controls and
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trajectories histories to identify which is the optimal ones, we can
analyse only those controls and trajectories that are admissible
(Kirk, 1970).

The state variables that can bemeasured are called outputs. Let
y1(t), y2(t), . . . , yp(t) denote the outputs, then

y = g(x(t), u(t), t). (5)

If the outputs are related to the states and controls by a time-
varying relationship then

y = C(t)x(t)+D(t)u(t) (6)

where C and D are p × n and p × m time-dependent matrices.
If the systems is time-invariant then C and D are time-
independent matrices.

Once the model and the physical constraints are specified,
last step in the formulation of the optimal control problem is
the definition of a performance measure useful to quantitatively
assess the performance of the system. An optimal control is
defined as one that minimizes (or maximizes) the performance
measure. The optimal control problem consists in finding an
admissible control ua which causes the system described by
Equation (1) to follow an admissible trajectory xa that minimizes
the performance measure

J = h1(x(tf ), tf )+

∫ tf

t0

h2(x(t), u(t), t)dt (7)

where h1 and h2 are scalar functions. Starting from the initial state
x(t0) = x0 and applying a control u(t) for t ∈ [t0, tf ] causes the
systems to follow some trajectory. The performance measure J
assign a real number to each trajectory. We refer the reader to
Moore (2018), Lopes et al. (2009), Sargent (2000), and Alekseev
et al. (1987) for a review about necessary optimality conditions.

Two important notes are duty here: (i) before attempting to
determine the controls we have to make sure that the system is
controllable, since we may not know in advance if a system is
controllable and if an optimal control exists, and (ii) even if an
optimal control exists, it may not be unique. In the first case
we can resort to controllability theorems. In the second case,
non-unique optimal controls may complicate the computational
procedures, but they give the possibility of choosing among
different control configurations (Kirk, 1970).

The general solution of Equation (4) is

x(t) = eAt
[

x(t0)+

∫ t

t0

e−AτBu(τ )dτ

]

. (8)

Kalman (1960) has shown that a linear time-invariant system is
controllable if and only if the n× nmmatrix

E ≡
[

B
∣

∣AB
∣

∣A2B
∣

∣ · · ·
∣

∣An−1B
]

(9)

has rank n. This condition guarantees that there are a finite time
t1 ≥ t0, and a control u(t) (t ∈ [t0, tf ]) which moves the state
x0 = x(t0)) to time t1 (Kirk, 1970). In the following section, we
specialize these concepts to a general dynamic model of cell-cycle
specific antitumor treatments.

3. CELL-CYCLE SPECIFIC DYNAMIC
MODEL

We consider a multi-compartment and multi-drug model, that
according to Ledzewicz and Schättler (Schättler and Ledzewicz,
2015a) is described by a bilinear system of the form

dN

dt
= N

(

A+

m
∑

i=1

uiBi

)

, N0 = N(0) (10)

where N = N(t) is the number of cancer cell at time t, m is the
number of drugs, A and B are n × n matrices, n is the number
of compartments, and ui represent the dosages of various drugs.
The drugs performs a cytostatic action which kills both cancer
and healthy cells.

A model for the objective function is given by the
formalization of the aim therapeutic treatment, which is to kill
the cancer cells while keeping the toxicity to the health cells
acceptable. In literature there are many non-equivalent ways of
modeling the objective function (Swan, 1990; Swierniak et al.,
1996; Schättler and Ledzewicz, 2015b; Wang and Schättler, 2016;
Angaroni et al., 2020). A model that is largely adopted was
proposed by Świerniak (1995), Świerniak et al. (2016) with the
objective to minimize the number of cancer cells at the end of a
fixed therapy interval. In the context of this modeling, Ledzewiczs
and Scättler (Schättler and Ledzewicz, 2015b) proposed a linear
L1-type objective function of the form

J = pN(T)+

∫ T

0
(qN(t)+ bu(t))dt (11)

where p = (p1, p2, . . . , pn), q = (q1, q2, . . . , qm), and
b = (b1, b2, . . . , bm). are non-zero row vectors of non-negative
coefficients. The components of b corresponding to killing
chemotherapeutic agents are positive. The term pN(T) is a
weighted average of the total number of cancer cell at the end
of a fixed therapy interval [0,T]. The term qN(t) prevents that
the number of cancer cells rise to unacceptably high values at
intermediate times. In this scheme, the toxicity of the drugs is
only modeled indirectly through the term bu(t), i.e., the adverse
effect on the healthy cells are represented only indirectly by
minimizing the drug dosage u(t) in the objective function.

Usually the pharmacokinetics equation for the body/plasma
drug concentration c(t) if a first-order differential equation as
the following

dc

dt
= −(k1 + k2u(t))c(t)+ hu(t), c(0) = 0 (12)

where k1 and h are two positive constants, but k2 is arbitrary.
Finally, the equations of the dynamics is

dN

dt
= (A+ cB)N, N(0) = N0

dc

dt
= −

[

k1 + k2u(t)
]

c(t)+ hu(t), c(0) = 0.
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This model is still incomplete, and thus unrealistic, since it lacks
of the pharmacodynamics that takes into account the effect the
drug concentration c(t) has on the cancer cells.

Generally, the effect can be modeled by a function

s :[0,∞) −→ [0, 1].

Different models arise depending on the choice of the function
s. Two commonly used models in practice are the so-called Emax

model of the form

s1(c) = E0 +
Emaxc

EC50 + c
(13)

and the sigmoidal function

s2(c) = E0 +
Emaxc

k

ECk
50 + ck

(14)

where E0 is the baseline of the drug efficacy, Emax if the maximum
efficacy, EC50 is the potency and k is a positive integer greater
than 1 (Macdougall, 2006; Choe and Lee, 2017). In the Emax

model it is assumed that the drug becomes almost immediately
effective, but then saturates at high concentrations. In the
sigmoidal models the effectiveness at both lower and higher
concentrations are more accurately approximated.

Ultimately, we obtain the following equations for dynamics

dN

dt
=

[

A+ s(c)B
]

N, N(0) = N0 (15)

dc

dt
= −

[

k1 + k2u(t)
]

c(t)+ hu(t), c(0) = 0 (16)

and the objective function J remains the same as in Equation (11).

4. MODEL SIMULATION

We simulated the model given in Equations (15)–(16)
considering one compartment only (A and B are 1×1 matrices,
i.e., scalar variables) and by setting the following values of the
parameters expressed in arbitrary units: E0 = 0, Emax = 100,
k1 = 0.005, k2 = 0.0004, EC50 = 15, h = 0.001, k = 1,
A = 0.001, B = 0.001, and a time periodic function for the
drug dosage u(t) = 10 cos(0.1t) + 10, to simulate a periodic
administration of the drug. The values of Emax, and EC50 have
been taken as in Felmlee et al. (2012). The parameters q, b and p
in the Equation (11) for J have been set equal to 1. The R code
implementing the simulation of the models and the parameter
sensitivity analysis is reported in Tables 1 and 2, respectively for
the sake of results’ reproducibility. The numerical solution of
the equation systems if showed in Figure 1. The concentration
curve shows synchronous fluctuations to the boulders and the
minima of the u(t) curve and after a certain time interval it
assumes a constant trend as long as the drug continues to be
administered. In this model, if you stop administering the drug,
the concentration curve assumes a decreasing trend after a
certain time interval.

TABLE 1 | R script implementing the model described by the Equations (15)–(16).

# Upload libraries
equire(deSolve)
require(pracma)
require(FME)

# Initial and final time of simulation, and time step
t0= 0
tf =500
step=0.5

# Model parameters
pars <- list(E0 = 0,

Emax = 100,

k1 = 0.005,
k2 = 0.0004,
EC=15,
h=0.001,
k=1,
A=0.001,
B=0.001)

# The function u(t) is implemented as an external
# signal/input
# called by function ‘‘model’’
times <- seq(t0, tf, by = step)
signal <- data.frame(times = times, dosage = rep(0,

length(times)))
signal$dosage <- 10*cos(0.1*times) + 10
input <- approxfun(signal, rule = 2)

# The model
model <- function(pars, times=seq(0,500,by=0.5))

{
derivs <- function(t, state, pars)

{
## returns rate of change
with(as.list(c(state, pars)),

{
dosage <- input(t)
# function u(t)
dN = -(A + (E0 + Emax/(EC
^k + c^k))*B)*N
dc = -(k1 + k2*dosage)*c
+ h*dosage
return(list(c(dN, dc)))
})

}
state <- c(N =10000, c=0)
# ode solves the model by
# integration

return(ode(y = state, times
= times,

func = derivs, parms = pars))
}

# Integrate the equations
out <- model(pars, times=seq(t0,tf,by=step))

For the parameters A,B, k1, k2, and k we considered ranges
of values (see Table 3) and carried out global sensitivity analysis
of the model using the functions of the R library FME
(Soetaert and Petzoldt, 2010). Figure 2 shows the sensitivity
ranges of the concentration curve c(t) to the parameters
listed in Table 3. The analysis shows that the model is
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sensitive to k1, k2, and h, and not sensitive to k, A and B.
In Figure 3 sensitivity ranges of the concentration c(t) are
reported for the combination of parameters k1, k2 and h.

TABLE 2 | R functions implementing the sensitivity analysis of the model of

Equations (15)–(16).

# Global sensitivity analysis
# parameters to study are: k_1, k_2, h, k, A and B
parRanges <-
data.frame(min = c(0, 100, 0.001, 0, 15, 0.001,1,
0.001, 0.001),

max = c(0, 100, 0.01, 0.01, 15,
0.01,5, 0.01,0.01))
rownames(parRanges) <- names(pars)

# ID of parameters in vector ‘‘pars’’ to be
# considered
# in global sensitivity analysis
parID <- c(3,4,6,7,8,9)

summ.sR <- list() # list of sensitivity ranges for
each parameter

for (i in 1:length(parID))
{
sR <- sensRange(func = model, parms = pars,

dist = ‘‘grid,’’
sensvar = c(‘‘c’’), parRange = parRanges[

parID[i],],
num = 50)

summ.sR[[i]] <- summary(sR)
}

# Sensitivity ranges estimated for 100 combinations
# of the parameters k1, k2, h
Sens <- summary(sensRange(func = model, parms = pars,
dist = ‘‘latin’’, sensvar = ‘‘c’’,
parRange = rbind(parRanges[3:4,],
parRanges[6, ]), num = 100))

# Objective function (sensitivity to k2)
q = 1
b = 1
p = 1

k2.range <- seq(0.0004, 0.1, 0.0001)

parsL <- list()
J <- c()
for (i in 1:length(k2.range))

{
parsL[[i]] <- list(E0 = 0,
Emax = 100,
k1 = 0.005,
k2 = k2.range[i],
EC=1,
h=0.001,
k=1,
A=0.001,
B=0.001)
out <- model(parsL[[i]], times=seq(t0,tf,by=

step))
J[i] = tail(out[,2], n=1)*trapz(q*out[,2] + b*

signal$dosage)
}

# how k2 variations affect J
# plot(k2.range, J)

These ranges have been obtained with the procedure reported in
Hearne (1985), where we selected the latin hypercube sampling
algorithm (see the R code in Table 2).

We focus our analysis on k2 (similar conclusions can be drawn
for the parameter h since it is as k2 a multiplicative factor of u(t)).
The higher the positive k2 value, the sooner the curve c(t) reaches
the saturation point and the lower the concentration saturation
value is in Figure 4, we see that how k2 affects the value of J: a
small increment of k2 induces a steep decrement of J.

An interesting case arises for negative values of k2. For
example, if we consider k2 = −0.0004 (instead of k2 =

+0.0004), the curve of c(t) looks like in Figure 5: after a time
interval in which it shows slight fluctuations corresponding to
the fluctuations of u(t), its growth accelerates and the fluctuations
become almost nil. In case of negative values of k2 the control and
the optimal control are not guaranteed. In this regard, Ledzewicz
et al. (2013) comment saying for the bilinear model the sign k2
matters and for k2 > 0 singular controls satisfy the necessary
conditions for optimality. There is an intuitive explanation for
this: once the drug’s concentration is built up, in this case the
injection of smaller time-varying doses can be used to maintain a
high effectiveness of the drug which by itself slowly decays.

We finally note that the scarce influence of parameters A and
B on the model reveals the scarce influence of the compartment
of the model in which the drug-cell interactions take place. This

FIGURE 1 | Numerical simulation of the system defined by Equations (15) and

(16) with E0 = 0, Emax = 100, k1 = 0.005, k2 = 0.0004, EC50 = 15,

h = 0.001, k = 1, A = 0.001, B = 0.001. As shown later, numerical

simulations for times greater than 500 time units, shows that after the first 500

time units the oscillatory behavior disappears to give way to a plateau.

TABLE 3 | Parameters’ ranges used for the global sensitivity analysis of the model

defined by Equations (15) and (16).

Parameter Min. Max

k1 0.001 0.01

k2 0.000 0.01

h 0.001 0.01

k 1.000 5.00

A 0.001 0.01

B 0.001 0.01
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FIGURE 2 | Sensitivity range of the concentration curve to the parameters listed in Table 3 (see text for R-code).

FIGURE 3 | Sensitivity ranges of the concentration c(t) for 100 combination of

parameters k1, k2 and h. We select the Latin hypercube sampling algorithm

(see the R code in Table 2).

fact is a limitation of these models, since the processes through
which the drug performs its functions are different in different
phases of the cell cycle.

5. POTENTIAL FUTURE DEVELOPMENTS
IN THE FIELD

Considering the model described in the previous section, it
may look like we always know the explicit formulas for the
control(s), but, unfortunately, this is not the case in most of
the applications of control theory to the experimental sciences
and especially to biological sciences. Usually, a guess of the
analytical form of u(t) comes from the first experimental regime

FIGURE 4 | The value of objective function j rapidly decreases as k2 increases.

designed for drug administration scheduling. However, the
example shown in the previous section shows that the knowledge
of the mathematical form for u(t) is not enough if an accurate
knowledge of its parameters is missing. We indeed observed that
the controllability and also the optimality of the control strongly
depend on the parameters of u(t) (k2 and h are two multiplicative
factors of u(t)).

As Moore notes in Moore (2018), a frequent assumption
in pharmacokinetic/pharmacodynamic modeling is that the
structure of the equations is the same in animals and humans,
and only the parameter values differ. In the case in which
parameter values in a model are obtained by fitting the model
to animal preclinical data. Allometric scaling is used to predict
corresponding parameter values for a human population (Knibbe
et al., 2005; Mahmood, 2009; Huang and Riviere, 2014). In spite
of the fact that allometric scaling is a simple potential tool and

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 January 2021 | Volume 8 | Article 621269

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Lecca Control Theory and Cancer Chemotherapy

FIGURE 5 | Numerical simulation of the system defined by Equations (15) and

(16) with E0 = 0, Emax = 100, k1 = 0.005, k2 = −0.0004, EC50 = 15,

h = 0.001, k = 1, A = 0.001, B = 0.001. A negative value of k2 causes the

concentration curve to assume an increasing monotone trend, while a positive

value of k2 causes the curve to reach a plateau after an initial oscillatory

behavior.

rational option for the estimate of pharmacokinetic parameters
in species for which there are no data available, is has no the
same predictive power of the use of human data samples. if data
from human cohorts are available, the best way to obtain the
parameter values is by directly fitting the model to human clinical
data. In addition to tying models closely to data, evaluation
of a predicted optimal regimen with experimental data is very
essential. Study outcomes from regimens that are predicted to be
optimal should be compared with those from standard regimens
(Moore, 2018). Such evaluation tests whether assumptions in the
model, the objective functional, and the parameter estimates,
are plausible and lead to desired outcomes (i.e., the model is
optimally controllable by u(t)).

The experimental determination of a possible model for u(t)
and the estimation of its parameters are not the last steps to be
taken before applying the control theory to optimize or discard
the proposed regime for u(t). Performing sensitivity analysis
on the model is an equally important step that we suggest to
perform before any attempt to fit the model to the available
data. As we have seen in the simple example of the previous
section, sensitivity analyses is crucial to identify parameters that
the outcome is largely insensitive. The parameters that do not
affect the model can be fixed, while the other can be estimated
by fitting the model to data or from the literature. Finally,
however, the presence of parameters to whose variations the
model is insensitive deserve out attention, and has not to be
welcome as the possibility to reduce the dimensions of the free
parameter space. It could indicate the inadequacy of the model
used to describe the kinetics and dynamics of the drug under
investigation. This is the case for example of similar models to
the one presented in this study, which in fact is representative of
a populated class of similar models. The specificity of the kinetics
and dynamics at the cell cycle phase that the chemotherapist
demonstrates in vivo is not adequately described by these models.
In such models, the controllability analysis does not depend
on the actual values of these parameters, but it is the type of

pharmacokinetics model which determines the class of optimal
controls, as noted also by Ledzewicz et al. (2013). In this case the
issue about the proper choice of pharmacokinetics in the cancer
chemotherapy problems arises and become an essential item in
the modeling of cancer chemotherapy. In fact, it must always be
remembered that when we talk about controllability we always
refer to the controllability of a model. If the model turns out to
be very close to reality then, the terms model and system can be
used interchangeably and it can be said whether the system (and
not only themodel) is controllable or not.

6. CONCLUSIONS

The techniques and examples in this article are
intended to present to practitioners and modelers of
pharmacokinetics/pharmacodynamics the basic concepts of
the optimal control theory and its application to optimize
drug regimens.

Considering a simple but widely used example we show
that the prediction about optimal controllability depends on the
formal characteristics of the model equation and the knowledge
or the possibility to infer their parameters. Controllability is
primarily a property of the model, which becomes a property
of the system if the model is accurately realistic. By integrating
clinical data with data concerning the molecular processes of
drugmetabolism,mathematicalmodels that are able to accurately
capture the drug kinetics and dynamics as well as the dynamics
of the disease states, there are advantageous opportunities to take
advantage of the application of optimal control theory. The final
goal is to plan therapeutic regimens for preclinical or clinical use
to predict optimal therapeutic regimens.

Until a few years ago the clinical application of mathematical
models of tumor growth were limited because they require
input data difficult to obtain with sufficient spatial resolution
in patients even at a single time point—for example, extent
of vascularization, immune infiltrate, ratio of tumor-to-normal
cells, or extracellular matrix status (Yankeelov et al., 2013).
Nowadays, however, the availability of data from advanced
quantitative tumor imaging methods rekindles the interest in the
development of mathematical models and paves the way to an
effective application of control theory to predict optimal therapy
delivery parameters and ultimately to control the response to
treatment and the time to progression. Indeed, the number of
publications on mathematical modeling of cancer is growing at
an exponential rate (Brady and Enderling, 2019), and for this
reason it is urgent to consider the application of control theory to
the analysis of the available models to evaluate their effectiveness
as tools to aid in the programming of an optimal dosage and drug
administration scheduling.

In this direction, there is also another particularly important
aspect that control theory must incorporate, namely the
development of the chemo-resistance. In a recent study
concerning the abiraterone treatment for metastatic castrate-
resistant prostate cancer, Gatenby et al. (Zhang et al., 2017a)
noted that with standard dosing, evolution of resistance with
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treatment failure (testified by radiographic progression) occurs
at a median of about 16.5 months.

The authors observed that the conventional treatment
strategy, which administers cytotoxic drugs at maximum
tolerated dose until progression, can be evolutionarily unwise
since it strongly selects for resistant phenotypes and eliminates
potential competitors. These Darwinian dynamics can lead
to rapid proliferation of resistant populations. On the basis
of this idea, the authors developed an evolutionary game
theory model of Lotka–Volterra equations with three competing
cancer “species”: androgen dependent, androgen producing, and
androgen independent. As expected, the model simulations with
standard abiraterone dosing demonstrated strong selection for
androgen-independent cells and rapid treatment failure. Gatenby
et al. then hypothesized that the time to progression could be
increased by integrating evolutionary dynamics into therapy
scheduling models. In order to implement this integration, they
framed the population dynamics before and during abiraterone
therapy using a game theoretic model built on evolutionary
first principles with parameter estimates inferred from clinical
data. The results of Gatenby et al. model (Zhang et al., 2017a)
demonstrated how a therapy treatment strategy synchronized
with intra-tumoral evolutionary dynamics may prolong time
to progression and significantly decrease total drug dose. The
evolution-based strategy suggested by themodel was then applied
in pilot clinical trials.

Cancer is a complex multiscale process (Zhang et al.,
2008; Deisboeck et al., 2011), whose modeling requires the
integration of different type of data (Deisboeck et al., 2011). this
raises the problem of developing control theory approaches to
multiscale systems. Building a model for a multiscale system
is generally challenging. In particular, a multiscale model of
tumoral growth in response to a therapy, can include (i)
equations spanning a wide range of time and length scales,
(ii) stochasticity inherent to the intracellular and intercellular
biochemical interactions, and, consequently, non-continuum
and dynamically coupled continuum-non-continuum processes
description. To all this is added a comprehensive knowledge

of the physicochemical mechanisms as well as the values of
thermodynamic and kinetic parameters of the biochemical
reactions involving the drug and its target molecules. Each
of these points poses a challenge to the control theory
applied to tumoral growth models. Overcoming each of
these challenges in a short time may be possible if in the
near future we will be able to develop a control theory
suitable for the analysis of controllability of multiscale hybrid
stochastic systems.

From the theoretical point of view, in the last decade
works have been published that expose the mathematical
foundations of control theory or that do discuss the perspectives
of its application to the case of multiscale systems (see
for example (Christofides and Armaou, 2006; Christofides
et al., 2009; Hartmann et al., 2014; Mei et al., 2016),
and to stochastic systems (see for example (Braatz et al.,
2006; Nisio, 2015; Zhang et al., 2017b). What is currently
lacking and which could prove to be of great use for
the design of dosages and administration regimens of an

anticancer drug is the construction of a control theory of
control for hybrid stochastic multiscale systems. The modeling
and control of stochasticity could also provide further tools
for controlling the evolution of drug resistance (as an
extension of evolutionary dynamics models) and implementing
appropriate countermeasures.
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