
fnhum-14-557534 October 6, 2020 Time: 13:55 # 1

ORIGINAL RESEARCH
published: 07 October 2020

doi: 10.3389/fnhum.2020.557534

Edited by:
Xing Tian,

New York University Shanghai, China

Reviewed by:
Behtash Babadi,

University of Maryland, College Park,
United States

Xiangbin Teng,
Max Planck Institute for Empirical

Aesthetics, Max Planck Society
(MPG), Germany

*Correspondence:
Fei Chen

fchen@sustech.edu.cn

Specialty section:
This article was submitted to

Speech and Language,
a section of the journal

Frontiers in Human Neuroscience

Received: 30 April 2020
Accepted: 09 September 2020

Published: 07 October 2020

Citation:
Wang L, Wu EX and Chen F

(2020) Robust EEG-Based Decoding
of Auditory Attention With

High-RMS-Level Speech Segments
in Noisy Conditions.

Front. Hum. Neurosci. 14:557534.
doi: 10.3389/fnhum.2020.557534

Robust EEG-Based Decoding of
Auditory Attention With
High-RMS-Level Speech Segments
in Noisy Conditions
Lei Wang1,2, Ed X. Wu2 and Fei Chen1*

1 Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China,
2 Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong

The attended speech stream can be detected robustly, even in adverse auditory
scenarios with auditory attentional modulation, and can be decoded using
electroencephalographic (EEG) data. Speech segmentation based on the relative root-
mean-square (RMS) intensity can be used to estimate segmental contributions to
perception in noisy conditions. High-RMS-level segments contain crucial information for
speech perception. Hence, this study aimed to investigate the effect of high-RMS-level
speech segments on auditory attention decoding performance under various signal-to-
noise ratio (SNR) conditions. Scalp EEG signals were recorded when subjects listened to
the attended speech stream in the mixed speech narrated concurrently by two Mandarin
speakers. The temporal response function was used to identify the attended speech
from EEG responses of tracking to the temporal envelopes of intact speech and high-
RMS-level speech segments alone, respectively. Auditory decoding performance was
then analyzed under various SNR conditions by comparing EEG correlations to the
attended and ignored speech streams. The accuracy of auditory attention decoding
based on the temporal envelope with high-RMS-level speech segments was not inferior
to that based on the temporal envelope of intact speech. Cortical activity correlated
more strongly with attended than with ignored speech under different SNR conditions.
These results suggest that EEG recordings corresponding to high-RMS-level speech
segments carry crucial information for the identification and tracking of attended speech
in the presence of background noise. This study also showed that with the modulation of
auditory attention, attended speech can be decoded more robustly from neural activity
than from behavioral measures under a wide range of SNR.

Keywords: EEG, temporal response function (TRF), auditory attention decoding, speech RMS-level segments,
signal-to-noise ratio

INTRODUCTION

The human auditory system enables listeners to follow attended speakers and filter out background
noises effortlessly, known as the “cocktail party” effect (Cherry, 1953). The ability of selective
attention of target streams from interferences is not only grounded in the acoustic properties of
clean and noisy speech (e.g., spatial, spectral, and temporal cues), but also accounts for responses in
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any part of the central auditory pathway (Snyder et al., 2012).
Some researchers have investigated speech signal processing
methods via the examination of neural responses to facilitate
the attended speech recognition of hearing assistance devices in
complex auditory scenes (e.g., Christensen et al., 2018; Miran
et al., 2018; Somers et al., 2019). Several advantages could be
derived from the incorporation of neural responses in speech
signal processing. For instance, the optimal parameters of speech
recognition algorithms could be determined by individual neural
responses in auditory central pathways (Loeb and Kessler,
1995). Furthermore, as listeners’ intentions could be detected
without verbal feedback (Miran et al., 2018), the incorporation
of neural feedback into some speech-processing algorithms
and its application in hearing prostheses (e.g., hearing aids
and cochlear implants) have been considered to be effective
approaches for improvement of the hearing ability of listeners
with communication impairments (e.g., Mc Laughlin et al., 2012;
Aroudi et al., 2019).

Several recent magnetoencephalographic and
electroencephalographic (EEG) studies have shown that
neural responses during auditory selectivity tasks correlate more
strongly with attended than with ignored speech (e.g., Ding
and Simon, 2012; Horton et al., 2013; O’Sullivan et al., 2015).
Auditory attention decoding models have been established
to describe the relationship between continuous speech and
ongoing cortical recordings (Alickovic et al., 2019). The linear
temporal response function (TRF) model (Crosse et al., 2016)
has been used widely to predict EEG responses to speech (i.e., the
encoding model; e.g., Di Liberto et al., 2015) and to reconstruct
speech from associated EEG signals (i.e., the decoding model;
e.g., Ding and Simon, 2012; Mirkovic et al., 2015; Teoh and
Lalor, 2019) using off-line regression techniques. Several speech
features contribute greatly to the decoding of auditory attentional
focus in multi-speaker situations. Given the complex structure
of speech, researchers have suggested that the human auditory
cortex, together with related brain areas, processes speech
using a hierarchical neural structure (Peelle et al., 2010; Ding
et al., 2016). Specifically, low-level acoustic cues (e.g., speech
spectrograms; Ding and Simon, 2013; Horton et al., 2014) and
high-level discrete speech features (e.g., phonemes and semantic
context; Di Liberto et al., 2015; Ding et al., 2016; Broderick
et al., 2019) show reliable correlations to corresponding neural
responses reflected by typical TRF components and neural
tracking abilities, indicating that the reconstruction of specific
neural representations of attended speech is influenced jointly by
different types of speech features under background interference.
Among these speech features, amplitude fluctuations of speech
stimuli at low frequencies (i.e., the speech temporal envelope)
have been used extensively as inputs for the decoding of auditory
attention in online daily-life applications (e.g., Mirkovic et al.,
2015; Van Eyndhoven et al., 2016; Christensen et al., 2018)
employing non-invasive neuroimaging techniques (e.g., EEG).
Use of the speech temporal envelope has enabled the achievement
of high auditory attention decoding accuracy (e.g., Horton et al.,
2014; Kong et al., 2014; Somers et al., 2019), as demonstrated
by the reliability of cortical tracking (i.e., neural phase-locking)
of attended speech at low brain oscillation frequencies (i.e., the

delta and theta bands; Doelling et al., 2014). In envelope-based
auditory attention decoding models, however, the cortical
tracking of attended speech may be attenuated with decreased
speech intelligibility, despite the lack of change in the speech
temporal envelope (Ding et al., 2014; Iotzov and Parra, 2019).
These findings indicate that the robust neural representation
of attended speech is not based simply on speech amplitude
modulation, but also depends on crucial information not fully
expressed in the speech envelope (Obleser et al., 2012; Ding and
Simon, 2014; Drennan and Lalor, 2019). Furthermore, acoustic
information inside the speech temporal envelopes could play
distinct roles in speech perception (Doelling et al., 2014; Wang
et al., 2019). Accordingly, it is important to further explore the
neural mechanism operating in such auditory attention models
and identify speech cues that are vital for the segregation of
attended speech from background noise.

Speech segments carrying distinct intelligibility information
may evoke different cortical responses. Broderick et al. (2019)
found that speech segments with greater semantic similarity
enabled more accurate neural encoding of speech. Di Liberto
et al. (2015) showed that distinct phonemic types within
continuous speech could be reflected by categorical processing
of cortical responses. The speech segmentation method based
on the relative root-mean-square (RMS) level has been used
extensively for the assessment of segmental contributions to
speech intelligibility (e.g., Kates and Arehart, 2005; Ma et al.,
2009; Chen and Loizou, 2011, 2012; Chen and Wong, 2013;
Guan et al., 2016; Xu et al., 2019; Wang et al., 2019). In the
relative RMS-level based segmentation method, the speech was
divided into high-RMS-level segments as with threshold level
originally proposed in Kates and Arehart (2005), which used
the threshold level of 0 dB relative to the overall RMS level
of the whole utterance. In this intuitive definition, high-RMS-
level regions include those speech segments with RMS level at
or above the mean RMS level of the intact utterance, and this
definition for high-RMS-level segments was later consistently
used in many studies to investigate the perceptual impact of
high-RMS-level segments (e.g., Kates and Arehart, 2005; Ma
et al., 2009; Chen and Loizou, 2011, 2012; Chen and Wong,
2013; Guan et al., 2016; Wang et al., 2019; Xu et al., 2019),
including phonetic constitutions (e.g., Chen and Loizou, 2012;
Chen and Wong, 2013; Wang et al., 2019) and contributions
to speech intelligibility modeling (e.g., Kates and Arehart, 2005;
Ma et al., 2009; Chen and Loizou, 2011; Guan et al., 2016; Xu
et al., 2019). Chen and Loizou (2012) compared the impacts
of high-RMS-level and high cochlea-scaled entropy to speech
intelligibility prediction, and revealed an advantage of high-RMS-
level segments against high cochlea-scaled entropy segments to
speech intelligibility. Analysis also showed that high-RMS-level
segments were dominated with vowels, while middle-RMS-level
segments (i.e., from RMS 0 dB to RMS -10 dB) contained
more acoustic transitions between vowels and consonants than
high-RMS-level segments did (e.g., Chen and Loizou, 2012;
Chen and Wong, 2013). The perceptual importance of high-
RMS-level segments was demonstrated in several early work
on understanding high-RMS-level-only sentences either in quiet
or in noise, while the perceptual benefit of high-RMS-level
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segments to speech perception in noisy conditions was partially
attributed to the benefit of large local signal-to-noise (SNR)
levels in high-RMS-level segments (e.g., Guan et al., 2016). The
aim of the present work was to specially study the performance
of high-RMS-level-segment based auditory decoding in noisy
conditions; hence, to be consistent with early work (e.g., Kates
and Arehart, 2005; Ma et al., 2009; Chen and Loizou, 2011,
2012; Chen and Wong, 2013; Guan et al., 2016; Wang et al.,
2019; Xu et al., 2019), this work continued to use 0 dB threshold
level to generate high-RMS-level segments, which would provide
findings supplementary to our existing knowledge of the impact
of high-RMS-level (with 0 dB threshold level) segments on
speech perception.

As the relative intensity of background interference may affect
the quality of neural tracking of attended speech (Alickovic
et al., 2019), the impacts of various SNR conditions on
auditory attention decoding in realistic scenarios should also
be considered. Generally, low SNRs interfere with attended
speech segregation, and the quality of neural tracking of
attended speech declines with increasing noise intensity (Kong
et al., 2014; Das et al., 2018). In some studies, however,
auditory attentional decoding performance remained robust with
top-down attentional modulation, regardless of the number
of competing speakers or the degree of reverberation (Van
Eyndhoven et al., 2016; Aroudi et al., 2019). Reliable neural
tracking of attended streams has also been achieved for a range of
background noise levels (Ding and Simon, 2013; Fuglsang et al.,
2017; Vanthornhout et al., 2019). Hence, the degree of neural
tracking that is feasible under various SNR conditions must
be understood to enable application of the auditory attentional
decoding model to improve the performance of assistive hearing
devices in realistic auditory scenarios.

This study was conducted to explore whether auditory
attention could be decoded well from high-RMS-level
speech segments under various SNR conditions using EEG
signals. Moreover, the mechanisms underlying internal neural
representations of attended speech were investigated based on
the speech temporal envelope, by analyzing speech segments
containing crucial intelligibility information (i.e., high-RMS-
level segments). First, the two-speaker mixed sentences
were presented to subjects at various SNRs during ongoing
EEG recording. Then, the TRF was used to describe the
relationships between EEG signals and the features of attended
and ignored speech (i.e., the temporal envelopes of intact speech
and high-RMS-level segments alone) under different SNR
conditions (Crosse et al., 2016). Auditory attention decoding
performance was assessed by examining correlations between
reconstructed and actual speech signals (Alickovic et al.,
2019). We hypothesized that: (1) the neural-tracking activities
reflected by TRF responses with intact temporal envelopes
would be stronger than that with high-RMS-level segments, as
the high-RMS-level segments only contain a part of acoustic
information; (2) the attention decoding accuracy with high-
RMS-level speech segments would not be inferior to that with
intact speech in the presence of background interference, as the
high-RMS-level segments would carry sufficient information
for the segregation and perception of attended speech; and

(3) the top-down modulation of auditory attention would
facilitate the classification between attended and ignored speech
based on the cortical tracking ability, and be insensitive to the
change of noise level.

MATERIALS AND METHODS

Participants
Twenty native Mandarin-Chinese listeners (12 men and 8
women) aged 18–27 years participated in this experiment.
All subjects reported having normal hearing (pure-tone
thresholds < 25 dB at 125–8000 Hz). Written informed consent
was obtained from all subjects prior to study participation. The
Research Ethics Committee of the Southern University of Science
and Technology approved this study.

Stimuli and Experimental Procedures
The stimuli used in this experiment were four translated short
fiction passages written by Maupassant. Two passages (“Boule de
Suif” and “In Country”) were narrated by a female Mandarin
speaker and two (“My Uncle Jules” and “Les Bijoux”) were
narrated by a male Mandarin speaker. The passages were
divided into approximately 60-s segments ending with complete
sentences, with periods of silence exceeding 0.5 s shortened
to 0.5 s to reduce the possibility of attentional switching. The
segments were normalized to an equal RMS amplitude. To
generate five SNR conditions, the RMS level of the attended
stream was fixed, while the ignored stream was either the same
or 6 dB, 3 dB stronger/weaker. Mixed speech streams consisted
of two fiction passages, one read by the female speaker and the
other read by the male speaker. In each trial, the attended stream
began 1 s before the ignored stream, and the two streams ended
at the same time.

The experiment was conducted in a double-walled sound-
shielded room. All stimuli with a sampling rate of 16,000 Hz
were presented bilaterally using E-prime 2 (Schneider et al., 2002)
via Sennheiser HD 250 headphones at 65 dB SPL. Each subject
was asked to sit in a comfortable chair and look at a fixation
point on a computer screen in front of him/her. A total of
100 trials without repetitions of auditory stimuli was presented
to each subject under five SNR conditions (6, 3, 0, −3, and
−6 dB). The stories were presented in their correct order trial
by trial. Each block consisted of five trials under the same SNR
condition, followed by an attended speech–related four-multiple-
choice question (responses were made by button press). Prior to
each block, an on-screen reminder directed the subject to pay
attention to the female or male stream. The subjects were given
approximately 3-min breaks after every two blocks. During each
break, the experimenter explained the main idea of the auditory
stimuli stated in the former block to subjects to ensure that the
previous story content not affected the understanding of stimuli
in the next block. Each SNR condition consisted of four blocks
across subjects and condition presentation was randomized.
Behavioral performance was recorded as the percentage of
correctly answered questions within the same SNR condition
for each subject.

Frontiers in Human Neuroscience | www.frontiersin.org 3 October 2020 | Volume 14 | Article 557534

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-557534 October 6, 2020 Time: 13:55 # 4

Wang et al. EEG Decoding With Speech Segments

EEG Data Recording
Sixty-four-channel scalp EEG signals were recorded using
a SynAmps RT amplifier (NeuroScan, Charlotte, NC,
United States) with sampling at 500 Hz. Scalp electrodes
were placed following the extended international 10/20 system,
with two additional electrodes placed at the left and right
mastoids (Homan et al., 1987). A reference electrode was placed
at the nose tip, and two electrooculography (EOG) electrodes
were placed above and below the left eye, respectively. All channel
impedances were kept below 5 k�. The participants were asked
to minimize body movements to avoid motion artifacts.

Data Analysis
EEG Signal Preprocessing
Offline EEG signal preprocessing was performed with the
EEGLAB toolbox (Delorme and Makeig, 2004; Mognon et al.,
2011) using Matlab 2015b (MathWorks Inc., Natick, MA,
United States). EEG waveforms were re-referenced with the
averaged waveforms from the left and right mastoids. Fourth-
order Butterworth filtering was conducted with a passband of
1–50 Hz in both forward and backward directions to eliminate
phase shifts. The filtered data were segmented into epochs, and
each epoch was set to contain the whole length of a trial and a
second pre-stimulus baseline. These EEG epochs excluded the
first second of each EEG recording after the onset of mixed
speech to reduce the effects of neural onset responses. Typical
artifacts (i.e., eye blinks, heartbeats, and EOG components) were
removed using independent component analysis, via selection
using the ADJUST algorithm (Mognon et al., 2011) and labeling
by visual inspection in each subject. On average, six independent
components (standard deviations = 2) were deleted across
subjects, and the remaining components were projected back
into channel space for further analyses. In order to decrease
subsequent processing time, all EEG data were down-sampled
to 100 Hz. Subsequently, as the low-frequency neural responses
were phase-locked to speech envelopes (Di Liberto et al., 2015;
O’Sullivan et al., 2015), the continuous EEG data were digitally
filtered with three kinds of band-pass filters (i.e., 2–8, 8–15, and
15–30 Hz) by a zero-phase finite impulse response filter and the
filter order was determined as the three times the ratio of the
sampling frequency to the lower-cutoff frequency (Shamma et al.,
2011; Mai et al., 2016).

Speech Temporal Envelopes Extraction
Speech temporal envelopes that represented amplitude
fluctuations and high-RMS-level speech segments were
used in this study. Hamming windows with the block size
of 16 ms and 50% overlap between adjacent windows were
used to divide sentences into short-term segments. Then, the
signal intensity of each windowed segment was calculated and
classified based on the relative RMS level. High-RMS-level
segments were at and above the RMS level of each whole
utterance (i.e., >0 dB), as defined previously (Kates and Arehart,
2005; Kewley-Port et al., 2007; Chen and Loizou, 2011). The
duration of the high-RMS-level segments accounts for 31.83%
of the intact speech stimuli in this experiment. Figure 1 shows
the relative RMS-level intensity and the defined boundary

of the high-RMS-level segments. Furthermore, an example
sentence and its high-RMS-level segments are displayed in
Figure 1. Each temporal envelope was computed by taking the
absolute values of the Hilbert transform from intact stimuli
and high-RMS-level segments. These envelopes were down-
sampled to the same sampling rate of the EEG signals (i.e.,
100 Hz), and then filtered digitally at three frequency bands
(i.e., 2–8, 8–15, and 15–30 Hz) using a 150th order zero-
phase finite impulse-response band-pass filter. Subsequently,
speech temporal envelopes were generated corresponding
to the attended and ignored streams at three frequency
bands, respectively.

TRF Estimation and EEG Prediction
Temporal response functions were used to explain how the
cortical responses encoded speech stimuli (e.g., Ding and Simon,
2012; Di Liberto et al., 2015; Broderick et al., 2019). TRF
responses were regarded as a filter that described the linear
mapping between the temporal envelopes of stimuli and neural
responses in this study. The TRF responses were analyzed
to describe the relationship between the target speech and
corresponding EEG signals. The magnitude and latency of
TRF responses were sensitive to the stimulus amplitude, i.e.,
the increased TRF magnitude and the decreased TRF latency
were shown with the augment of stimulus amplitude (e.g.,
Drennan and Lalor, 2019). The TRF responses affected by the
SNR level and the speech temporal envelope other than the
stimulus amplitude were mainly investigated in this study. In
this study, the amplitudes of target speech were normalized
across SNR conditions, while the SNR levels of the mixed stimuli
were generated by different amplitudes of the ignored speech.
Additionally, the speech envelopes extracted from the intact
speech and high-RMS-level segments were normalized before
the TRF calculations. The amplitude-normalized envelopes
between the intact speech and high-RMS-level segments reduced
the effects of stimulus amplitude on TRF responses. TRFs
estimation was performed using the mTRF toolbox (Crosse
et al., 2016). The encoding model for stimuli and corresponding
neural responses is represented by the following equation:

r (t, n) =
∑

τ

w (τ, n) s (t − τ)+ ε (t, n) , (1)

where the TRF – w (τ, n) – models the transformation for a
specified range of time lags, τ, relative to the stimulus feature,
s (t), at the instantaneous time; s (t) represents the speech
envelope at each sampled time; r(t, n) is the EEG response
at channel n; and ε (t, n) is the residual response at each
channel. The w (τ, n) was given by minimizing the mean-
squared error (MSE) between the actual and predicted EEG
responses. The TRF calculated window τ was first conducted
from −200 to 800 ms and corresponding TRF responses were
further presented in Figure 2 at fronto-central electrodes. Ridge
regression was used to select the appropriate regularization
parameter for TRF estimation. The optimal ridge regression
parameter was determined using a leave-one-out cross-validation
approach, wherein every trial was decoded by the averaged
decoder parameters trained on the other trials across conditions
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FIGURE 1 | (A) Example segments of relative root-mean-square (RMS) energy representations. The dashed line shows the boundaries of the high-RMS-level region.
(B) The waveform of the original sentence. (C) The sentence containing only high-RMS-level segments.

FIGURE 2 | (A) Topological distributions of TRF responses at P1TRF, N1TRF, and P2TRF components with intact temporal envelopes (left) and high-RMS-level
segments (right). The electrodes marked as black dots are used to conduct further analyses. (B) Grand-averaged estimated temporal response function (TRF)
responses with intact temporal amplitude envelopes (left) and high-RMS-level-only envelopes (right) in five SNR conditions.

and subjects. The regularization parameter for TRF estimate was
varied for the range of 20, 22, . . ., 212, and the optimal value
of 28 was determined for all stimulus conditions, which led

to the highest correlation between the actual neural responses
and those predicted by auditory stimuli. Subsequently, the
TRF estimations were constructed from the temporal envelopes
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of intact speech and speech containing only high-RMS-level
segments under different SNR conditions, respectively. Previous
studies revealed that the TRF responses with a range of time
lag yielded similar components as those in the event-related
potentials (e.g., Lalor et al., 2009; Kong et al., 2014). The
correlation coefficient between the speech envelope and the
corresponding neural response was presented as the TRF value
in each time lag. The polarity of TRF responses indicated
the relationship between the direction of cortical current (i.e.,
negative or positive) and the decrease or increase of envelope
power. The positive TRF responses reflected that a positive
cortical voltage tracked the speech envelope power increase; and
similarly, a negative voltage on scalp responded to the speech
envelope power decrease (Kong et al., 2014). According to the
scalp topographies of the typical TRF components, the amplitude
and latency were further analyzed at the fronto-central channels
(i.e., the black dots in Figure 2A). The TRF amplitudes and
latencies of three typical deflections (i.e., P1TRF, N1TRF, and
P2TRF) were further analyzed across subjects at the specific
statistical window (i.e., 80 ∼ 110, 150 ∼ 180, and 230 ∼ 300 ms)
for each component (see Figure 2B). Figure 3 illustrates the
mean and standard deviations of TRF responses in these typical
components across subjects.

Stimulus Reconstruction and Attended Speech
Identification
A decoding model was generated to estimate different speech
features from ongoing neural responses at various SNRs. Similar
to TRF calculation, the decoder was established by considering
the stimulus–response system as a linear, time-invariant system
(Mirkovic et al., 2015). In the following equation, the decoder –
g(τ, n) – represents linear mapping from the neural response,
r (t, n), to the stimulus feature, s(t):

ŝ (t) =
∑
n

∑
τ

r (t + τ, n) g (τ, n) , (2)

where ŝ (t) represents the reconstructed stimulus envelope, n is
the EEG channel, and τ indicates a specified range of time lags.
The time-lag window between 0 and 400 ms was used in the
decoding model, as this time range reflected the most information
in TRF responses. Ridge regression was used to avoid overfitting.
A leave-one-out cross-validation approach was used to optimize
the regularization parameter by maximizing the accuracy of
speech reconstruction, and the MSE was conducted across trials
to avoid overfitting and get the optimal ridge value. Furthermore,
this defined decoding model was used to assess correlations
between reconstructed and actual temporal envelopes of attended
and ignored speech. When the reconstructed speech envelope
correlated more strongly to attended than to ignored speech, the
attended speech in a mixed speech sample was considered to be
identified correctly based on decoding from EEG signals. The
auditory attention decoding accuracy with different SNRs was
assessed according to the percentage of correct identifications
among trials from subjects. Except for calculating the auditory
attention decoding accuracy with the whole trial duration (i.e.,
60 s), the effects of decoding window durations were also

analyzed by calculating the decoding accuracy with shorter epoch
durations (e.g., 30, 10, and 2 s).

Statistical Analyses
Statistical analyses were performed with SPSS 20.0 (SPSS Inc.,
Chicago, IL, United States) using repeated-measures analysis
of variance (ANOVA). First, two-way ANOVA was used to
examine the effects of speech features, SNR conditions, and their
interaction on TRF responses. Pearson correlation values were
calculated to assess the relationships between reconstructed and
actual speech features of attended and ignored speech. Attended
speech decoding performance across subjects was analyzed using
two-way ANOVA with the two main factors of different speech
features and SNRs. Finally, topological decoding weights in the
left and right hemispheres of the temporal cortex under different
SNR conditions were assessed using two-way ANOVA. The
distribution of these samples was not significantly different from
a normal distribution using the Shapiro–Wilk test (all P > 0.05).
The Mauchly’s test was used to assess whether these hypotheses
were adequate for the assumptions for repeated-measures
ANOVA. ANOVAs generated F scores and P-values, and post hoc
model comparisons were performed using Bonferroni-corrected
paired t-tests. The effects of SNRs on the accuracy of subjects’
responses to questions about attended speech were examined
using the non-parametric Kruskal–Wallis test.

RESULTS

TRF Estimation and Neural Responses of
Speech
Figure 2 displays TRF responses to attended speech with the
intact and high-RMS-level–only temporal envelopes under the
various SNR conditions in the delta and theta bands. The TRFs
contained typical deflections, one negative and two positive
(P1TRF, N1TRF, and P2TRF), reflecting robust neural tracking
of attended speech in the presence of background interference.
The topological distributions across the statistical windows of
the three components show the strongest responses in fronto-
central regions (see Figure 2A). Figure 2B illustrates the
averaged TRF responses of electrodes located at the fronto-
central position across subjects in each condition. Speech
features had a main effect, with the intact-speech temporal
envelopes having higher TRF correlation coefficients than the
high-RMS-level–only envelopes at all three deflections [P1TRF:
F(1,19) = 8.641, P = 0.008, η2

p = 0.313; N1TRF: F(1,19) = 33.354,
P < 0.001, η2

p = 0.637; P2TRF: F(1,19) = 11.274, P = 0.003,
η2

p = 0.372]. A main effect of the SNR was also detected at
N1TRF [F(4,76) = 3.765, P = 0.008, η2

p = 0.165] and P2TRF

[F(4,76) = 4.019, P = 0.005, η2
p = 0.175]. No significant interaction

effect was found between these two main factors in TRF
correlation coefficients of all components [P1TRF: F(4,76) = 0.390,
P = 0.390, η2

p = 0.052; N1TRF: F(4,76) = 1.463, P = 0.222,
η2

p = 0.071; P2TRF: F(4,76) = 0.830, p = 0.510, η2
p = 0.042]. The

shorter of TRF lag is found with the higher SNR in the P2TRF
component [F(4,76) = 7.567, P < 0.001, η2

p = 0.296]. Figure 3
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FIGURE 3 | (A) Statistical results (mean ± standard deviation) for TRF values with intact and high-RMS-level-only envelopes at three typical deflections across
subjects. (B) Statistical results (mean ± standard deviation) for TRF latencies with intact and high-RMS-level-only envelopes at three typical deflections across
subjects in five SNR conditions. ***P < 0.001, **P < 0.01 (prediction difference). n.s., no significant difference (analysis of variance). SNR, signal-to-noise ratio.

illustrates the detailed TRF correlation coefficients and time lags
across subjects in each condition.

Neural Reconstruction of Speech and
Auditory Attention Decoding Accuracy
Figure 4 displays the average Pearson correlation coefficients
between estimated and original envelopes of attended speech in
different frequency bands and the error bars present the standard
deviations across subjects. A three-way repeated ANOVA
analysis was conducted to reveal the speech reconstruction
performance affected by the speech temporal envelope, SNR
level, and frequency band. There was no significant interaction
effect across these three factors [F(8,152) = 1.790, P = 0.083,
η2

p = 0.090]. There was a significant main effect of the speech
temporal envelopes on correlations between estimated and
actual speech [F(1,19) = 34.885, P < 0.001, η2

p = 0.660],
indicating a significantly higher decoding performance with the
intact temporal envelopes than with high-RMS-level segments.
A significant decline in the strength of neural tracking of attended
speech across SNRs was detected [F(4,76) = 7.685, P < 0.001,
η2

p = 0.299]. The Bonferroni adjustment for multiple comparisons
revealed that the speech reconstruction performance at 6 dB SNR
was higher than −3 dB (P = 0.002) and −6 dB (P = 0.004)
SNR. The frequency bands showed significant main effects on the
reconstruction accuracy of the attended speech [F(2,38) = 36.124,
P < 0.001, η2

p = 0.667]. The low-frequency band from 2 to
8 Hz showed the higher Pearson correlation compared to the
frequency bands at 8–15 Hz and at 15–30 Hz (all P < 0.001
with multiple pairwise comparisons by Bonferroni correction).
Therefore, the subsequent analyses were carried out with the

frequency band at 2–8 Hz. Figure 4B shows the correlations
between reconstructed and actual attended and ignored speech
in the low-frequency band from 2 to 8 Hz. A two-way repeated
ANOVA was analyzed to measure the effects of speech temporal
envelope and SNR level. Correlations between reconstructed and
actual speech were weaker for high-RMS-level speech segments
than for intact speech [F(1,19) = 34.014, p < 0.001, η2

p = 0.642].
A significant decline in the strength of neural tracking of attended
speech across SNRs was detected [F(4,76) = 5.251, p = 0.001,
η2

p = 0.217], with Bonferroni-corrected pairwise comparison
revealing significant differences at −3 dB (p = 0.037) and −6 dB
(p = 0.034) relative to 6 dB. No significant interaction effect
between speech features and SNR was observed for the attended
speech [F(4,76) = 2.043, p = 0.097, η2

p = 0.097] or ignored speech
[F(4,76) = 1.665, P = 0.168, η2

p = 0.085] decoding model with the
frequency band at 2–8 Hz.

A three-way repeated ANOVA analysis was carried out
to examine the effects of three factors (i.e., the epoch
duration of attention decoding, speech temporal envelope, and
SNR level) and their interactions on the auditory attention
decoding performance based on corresponding EEG signals
(see Figure 5A). No significant interaction effect among the
three factors was observed [F(12,228) = 0.795, P = 0.655,
η2

p = 0.040]. Different SNR levels had no significant effects on
the auditory attention decoding performances [F(4,76) = 1.288,
P = 0.282, η2

p = 0.063]. A significant decrease of the correlations
between the reconstructed and actual speech was shown with the
shorter epoch duration of decoding window [F(3,57) = 78.637,
P < 0.001, η2

p = 0.805]. The intact and high-RMS-level
based speech temporal envelopes showed distinct effects on
auditory attention decoding performance with different epoch
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FIGURE 4 | (A) Speech envelope prediction correlations under various signal-to-noise ratio (SNR) conditions with the band-pass filter at 2–8, 8–15, and 15–30 Hz.
Error bars display mean ± standard deviation. (B) Speech envelope prediction correlations under various signal-to-noise ratio (SNR) conditions for attended and
ignored streams at the 2–8 Hz frequency band. *P < 0.05, ***P < 0.001 (prediction differences). n.s., no significant difference (analysis of variance).

durations of decoding window. Decoding accuracy performances
declined with high-RMS-level segments compared to those
with intact temporal envelopes at the 10 s decoding duration
[F(1,19) = 5.270, P = 0.033, η2

p = 0.217], while no significant
differences were displayed between the intact and high-RMS-
level segments with the epoch decoding duration at 60 s
[F(1,19) = 4.394, P = 0.051, η2

p = 0.188], 30 s [F(1,19) = 1.802,
P = 0.311, η2

p = 0.054] and 2 s [F(1,19) = 0.054, P = 0.819,
η2

p = 0.003]. With these results on the effect of epoch duration,
the further analyses in this study were processed with the
whole length of epoch (i.e., 60 s) because it showed the highest
value of reconstruction correlation compared to those with
the decoding duration at 30, 10, and 2 s. Figure 5B shows
decoding correlations between the reconstructed- and actual-
speech temporal envelopes for attended and ignored speech in
all trials with the whole duration (e.g., 60 s) of each trail. The
dashed lines indicated the decoding performance was equivalent
for both speech types.

Behavioral Performance
Figure 6 shows the accuracy of subjects’ responses to questions
related to attended speech under the five SNR conditions.
Mean accuracies were 88.75% [standard error of the mean
(SEM) = 3.84%] at 6 dB, 76.25% (SEM = 4.62%) at 3 dB,
65.00% (SEM = 3.80%) at 0 dB, 61.25% (SEM = 3.84%) at

−3 dB, and 63.75% (SEM = 3.84%) at −6 dB. The Kruskal–
Wallis test was implemented to compare the accuracy rates
of the answered questions in different SNR conditions. The
behavioral performance was significantly affected by SNR levels
[H(4) = 24.574, P < 0.001]. There was a strong evidence
showing that the behavioral score for 6 dB SNR condition
was significantly higher than those for the 0 dB (P = 0.004),
−3 dB (P < 0.001), and −6 dB (P = 0.001) SNR conditions,
adjusted using the Bonferroni correction. Although the accuracy
of attended speaker identification exceeds the random degree of
accuracy (i.e., 25%) among all SNR conditions in this behavioral
test, the behavioral performance of attended speech accuracy
shows a significant decrease with the increased intensity of the
competing speaker.

DISCUSSION

The current study investigated whether high-RMS-level speech
segments carried sufficient information for the decoding of
auditory attention when speech signals from two talkers were
presented concurrently. It also explored the interference of the
SNR with the neural tracking of the speech temporal envelope
and the cortical selectivity of attended speech. The results showed
that: (1) the neural tracking activities to intact and high-RMS-
level segments have the same characteristics in topological and
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FIGURE 5 | (A) Average auditory attention-decoding accuracy across subjects with the intact temporal envelopes and high-RMS-level segments for each
signal-to-noise ratio (SNR) with the duration of decoding window at 60, 30, 10, and 2 s. Error bars display mean ± standard deviation. ***P < 0.001. n.s., no
significant difference (analysis of variance). (B) Scatter plots of the correlation of attended vs. ignored streams across all trials and subjects for each signal-to-noise
ratio (SNR) with 60 s decoding window length. Points above the blue dashed lines indicate the correct identification of attended speech.

morphological distributions, and the TRF responses with high-
RMS-level segments showed only weaker magnitudes than that
with intact speech envelopes; (2) the speech temporal envelope
of high-RMS-level segments could be used to decode auditory
attention reliably, with no significant difference in the strength of
cortical selectivity from the temporal envelope of intact speech;
(3) lower SNRs were associated with worse neural tracking of
speech, whereas the accuracy of attended speech selection was
insensitive to the level of background noise.

Contributions of High-RMS-Level
Speech Segments to the Auditory
Decoding Model
Previous studies have indicated that the EEG-based identification
of attended speech in noisy environments depends on robust
representation in the temporal cortex of the attended temporal
envelope with attention modulation (Van Eyndhoven et al., 2016;

Wang et al., 2019). However, the underlying effect of the speech
envelope on the decoding of auditory attention remained
controversial. As many speech features, such as temporal
pitch contours and spatial cues, correlate strongly with the
temporal envelope (Shamma et al., 2011), cortical entrainment
to attended speech does not depend simply on speech amplitude
fluctuations (Obleser et al., 2012; Peelle et al., 2012; Peelle, 2018a).
Furthermore, speech segment stimuli of different intensities have
been shown to result in distinct morphologies of the stimulus–
cortical response model (e.g., the TRF) (Drennan and Lalor, 2019;
Wang et al., 2019). Hence, the temporal envelopes of different
segments of intact speech likely make diverse contributions
to the neural tracking of attended speech in complex auditory
scenarios. Speech intelligibility also plays an important role
in auditory attention decoding (Iotzov and Parra, 2019), and
differs according to the RMS level (Kates and Arehart, 2005;
Chen and Loizou, 2011); high-RMS-level segments contain
crucial speech intelligibility information (especially in
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FIGURE 6 | Average percentages of correct responses to questions related to
the content of attended speech at each signal-to-noise ratio. Error bars
display mean ± standard deviation **P < 0.01, ***P < 0.001 (prediction
differences).

Mandarin), due partially to the large proportions of vowels
and tonal information that they contain (Kewley-Port et al.,
2007). In this study, the speech envelope for high-RMS-level
segments was extracted and utilized as a speech feature to
model the neural tracking ability and attended speech selectivity
in noisy conditions. Neural tracking activities reflected by
TRF amplitudes were worse for high-RMS-level segments
than for the intact temporal envelope, indicating that each
segment of the speech temporal envelope contributes to the
cortical representation of attended speech. These results are
consistent with previous reports of interaction effects among
distinct speech segments (e.g., prediction strategies and semantic
context) in the perception of continuous speech (Golumbic
et al., 2012; Ding and Simon, 2013). In this study, the reliably
topological and morphological distributions of TRF responses
between the intact and high-RMS-level segments suggest that
the high-RMS-level segments carry the sufficient acoustic
information for neural tracking of the amplitude envelope
of auditory stimuli. In addition, we found no difference in
the strength of neural selectivity for attended speech between
high-RMS-level segments and the intact speech, yielding similar
auditory attention–decoding accuracy. This phenomenon could
be used to support that high-RMS-level segments contain the
high speech intelligibility content, even in noisy conditions
(e.g., Chen and Wong, 2013; Guan et al., 2016). However, the
contribution of high-RMS-level segments to auditory attention
decoding performance could also be affected by the length of the
decoding window. In line with previous studies (e.g., Zink et al.,
2017), the accuracy of auditory attention detection declined with
a shorter duration of the decoding window. In this study, with a
shorter duration of the decoding window (e.g., 10 s), more robust
detection accuracies of auditory attention decoding were shown
with the intact temporal envelopes than those with high-RMS
level segments. This suggested that acoustic cues located in
other speech segments (e.g., speech onsets and speech silences)

could potentially play a vital role in auditory attention detection
with a shorter decoding window. In addition, the cortical
representation of attended speech does not depend merely on
the speech envelope; it is associated with an analysis-by-synthesis
process that yields an object-level representation (Ding and
Simon, 2012; Golumbic et al., 2012). Therefore, high-RMS-level
speech segments, with amplitude fluctuations (i.e., the speech
temporal envelope) and containing crucial speech intelligibility
information, could be vital for auditory attentional modulation
to separate attended speech from background noise (Ding and
Simon, 2012; Iotzov and Parra, 2019). These results further
suggested the impact of high-RMS-level segments on speech
perception in the presence of a competing speaker, as well as the
ability to perform auditory attention detection using only certain
crucial speech segments. This study mainly used the robust
correlations between the speech amplitude fluctuations and
corresponding EEG signals to decode auditory attention under
noisy conditions. A higher reconstruction accuracy between
EEG responses and the speech envelopes was found in the delta
and theta bands than that in the higher frequency bands, which
was consistent with the literature (e.g., Ding and Simon, 2013;
Di Liberto et al., 2015). However, speech features in the time
and spectral domain could all affect the speech perception and
corresponding cortical responses (e.g., Biesmans et al., 2016;
Teng et al., 2019). Future studies could systematically analyze
how cortical responses track the speech features at different
auditory-inspired narrow bands to better simulate the processing
in the auditory peripheral and central systems. Furthermore, this
study used the original definition of high-RMS-level segments
as those speech segments with RMS level at or above the mean
RMS level of the intact utterance (i.e., 0 dB relative to the
RMS level of the whole utterance) (Kates and Arehart, 2005),
and this threshold level has been consistently used in many
studies (e.g., Kates and Arehart, 2005; Ma et al., 2009; Chen and
Loizou, 2011, 2012; Chen and Wong, 2013; Guan et al., 2016;
Wang et al., 2019; Xu et al., 2019). Only a limited number of
work focused on the effect of change in RMS-level threshold
on speech perception in the RMS-level based segments (e.g.,
Chen and Wong, 2013). In future studies, the investigation of
different RMS-level thresholds for speech segmentation would
be of importance to understand the perceptual contributions in
each speech segment. Furthermore, the current study mainly
focused on the perceptual contribution of speech segments with
high RMS levels, and it warrants further investigations to study
the contributions of the other related and important acoustic
features (e.g., local SNR and cochlea scaled entropy).

Auditory Attention Decoding
Performance Under Various SNR
Conditions
The temporal profiles of the TRFs at the fronto-central positions
showed three reliable components for the analysis of neural
tracking of attended speech under various SNR conditions in this
study. These three typical peaks of TRF responses reflect different
neurophysiological processing stages, and are also discovered in
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previous studies (e.g., Crosse et al., 2016). The P1TRF response
remained stable with varying intensity of background noise, and
may be related only to the acoustic features of the attended
stream (Ding and Simon, 2013; Petersen et al., 2016). The
N1TRF and P2TRF components reflect the perception of attended
speech separately from background noise (Ding and Simon, 2012,
2014). Their amplitudes declined with the increasing level of
competing speech and the P2TRF latencies were significantly
prolonged with the lower SNR; together with the observed
weaker neural tracking at higher competing-speech intensities,
these findings confirm that the intensity of background noise
affects the neural tracking of attended speech. In contrast,
the SNR between 6 and −6 dB had no significant effect
on the tracking of ignored streams in this study. Hence,
this study illustrated that SNR levels have different impacts
on neural responses to attended and ignored speech, in line
with previous findings suggesting that attended and ignored
speech are processed independently for the identification of
target auditory objects in complex auditory scenarios (Simon,
2015). In addition, auditory attention could lead to the distinct
modulation of attended and ignored speech (i.e., enhancement
and suppression, respectively) to facilitate the detection of
attended auditory objects (Horton et al., 2013; O’Sullivan et al.,
2015).

Regardless of the effect of the SNR (e.g., from 6 dB
to −6dB) on the neural tracking of attended speech, the
auditory attention decoding accuracy was robust (>80%) in
this study. This finding further verifies that contributions
of auditory attentional modulation to neural selectivity for
attended speech (Obleser and Kayser, 2019). Additionally,
the behavioral results showed that the attended speech was
intelligible, in other words that it could be separated from
background noise and understood. This intelligibility may
have led to the robust cortical selectivity observed under all
SNR conditions in this study. The present work suggested
that auditory attention decoding performance with high-RMS-
level segments was relatively robust under noisy conditions
within a range of SNR levels (i.e., from 6 to −6 dB). This
finding provided new evidence on the robust performance
in human listeners’ auditory attention decoding task in noisy
conditions, and also has important insights to our knowledge
on the mechanism of robust EEG-based auditory attention
decoding. Further work could focus on how the robust EEG-
based auditory attention decoding improves speech perception
in challenging listening conditions, e.g., with severe SNR levels
(i.e., less than −6 dB), and in cocktail party problems. Moreover,
this study illustrated only the effect of the SNR on decoding
accuracy for attended speech; other studies have indicated that
the degree of the speaker’s position separation (e.g., Dai and
Shinn-Cunningham, 2016; Das et al., 2018) and the speaker’s
gender and speaking rate (e.g., Peelle, 2018b), jointly influence
auditory attention detection with different background noise
levels. Listener characteristics (e.g., age and degree of hearing
impairment) have also been found to affect individual EEG-
based detection (e.g., Dai et al., 2018). Hence, further studies
should incorporate consideration of these factors into exploration
of the effect of background noise and improvement of the

auditory attention detection algorithm with neural feedback in
realistic scenarios.

CONCLUSION

The present study investigated the contributions of high-RMS-
level segments of Mandarin sentences to the EEG-based decoding
of auditory attention in the presence of various intensities of
competing speech. Although the TRF responses and the activities
of neural tracking were decreased for these speech segments, the
strength of neural selectivity was comparable to that for intact
speech. Similarly, the decoding accuracy of attended speech was
robust based on neural activities, and insensitive to the SNR
range between 6 dB to −6dB tested in this study. These results
suggest that high-RMS-level speech segments are critical for the
construction of object-level neural representations of attended
speech under various SNR conditions. The study results also
indicate that EEG signals can be used to robustly identify the
attended speaker when the intensity of the interfering speech
increases within a certain range.
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