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Abstract

Background and aims

Isoniazid (INH) is part of the first-line-therapy for tuberculosis (TB) but can cause drug-

induced liver injury (DILI). Several candidate single nucleotide polymorphisms (SNPs) have

been previously identified but the clinical utility of these SNPs in the prediction of INH-DILI

remains uncertain. The aim of this study was to assess the association between selected

candidate SNPs and the risk of INH-DILI and to assess the clinical validity of associated var-

iants in a Singaporean population.

Methods

This was a case-control study where 24 INH-DILI cases and 79 controls were recruited from

the TB control unit in a tertiary hospital. Logistic regression was used to test for the associa-

tion between candidate SNPs and INH-DILI. NAT2 acetylator status was inferred from geno-

types and tested for association with INH-DILI. Finally, clinical validity measures were

estimated for significant variants.

Results

Two SNPs in NAT2 (rs1041983 and rs1495741) and NAT2 slow acetylators (SA) were sig-

nificantly associated with INH-DILI (OR (95% CI) = 13.86 (4.30–44.70), 0.10 (0.03–0.33)

and 9.98 (3.32–33.80), respectively). Based on an INH-DILI prevalence of 10%, the sensitiv-

ity, specificity, positive and negative predictive values of NAT2 SA were 75%, 78%, 28%

and 97%, respectively. The population attributable fraction (PAF) and number needed to

test (NNT) for NAT2 SA were estimated to be 0.67 and 4.08, respectively. A model with clini-

cal and NAT2 acetylator status provided significantly better prediction for INH-DILI than a

clinical model alone (area under receiver operating characteristic curve = 0.863 vs. 0.766,

respectively, p = 0.027).
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Conclusions

We show the association between NAT2 SA and INH-DILI in a Singaporean population and

demonstrated its clinical utility in the prediction of INH-DILI.

Introduction

Tuberculosis (TB) is one of the top 10 causes of death world-wide, with an estimated 10.4 mil-

lion new cases and 1.8 million TB-related deaths worldwide in 2015 [1]. Isoniazid (INH) is an

effective anti-mycobacterium agent and is part of first-line 4-drug therapy for TB that also

includes rifampicin, pyrazinamide and ethambutol [1]. However, INH is associated with drug-

induced liver injury (DILI) that can range from asymptomatic elevations in liver enzymes in

10–20% of patients, to clinically significant hepatitis and acute liver failure in 0.5–1% of

patients [2]. Risk factors for INH-DILI include age, female gender, black race, alcoholism, pre-

existing liver disease, and concomitant medications such as rifampicin and pyrazinamide [2].

The molecular mechanisms of anti-TB DILI are not fully understood, but it is thought accu-

mulation of toxic intermediate metabolites plays an important role [3]. Pharmacogenomic

studies have been mainly focused on candidate genes involved in INH biotransformation and

metabolism, including N-acetyltransferase 2 (NAT2), cytochrome P450 2E1 (CYP2E1) and glu-

tathione-S-transferase genes (GSTT1, GSTM1 and GSTP1). In addition, INH and some of its

metabolites are readily oxidized to reactive species, which may contribute to liver damage [4].

INH-DILI typically occurs within 2 weeks to 6 months after commencing therapy [2]. The

delayed nature of INH-DILI also points to a possible immune component [4]. As such, genes

in the antioxidant and detoxification pathways [5–8], human-leukocyte antigen system [9,10]

and tumor necrosis factor-α [11] have also been studied.

Meta-analyses have consistently shown that NAT2 slow acetylators (SA) have a higher risk

of INH-DILI, with an odds ratio (OR) of around 3.1 [12,13]. Seven common coding single

nucleotide polymorphisms (SNPs) (rs1801279, rs1041983, rs1801280, rs1799929, rs1799930,

rs1208 and rs1799931) define 34 haplotypes, but most studies only genotype a subset to infer

acetylator status [14]. Recently, a tag SNP, rs1495741, located 14.5kb 3’ of NAT2 has been asso-

ciated with INH-DILI, although it may not be a good surrogate for acetylator status [14,15].

In CYP2E1, two polymorphisms are most commonly studied (RsaI/PstI (rs2031920/

rs3813867) and DraI (rs6413432)). rs2031920 and rs3813867 are in complete linkage disequi-

librium in East Asians [16]. A recent meta-analysis found that the RsaI/PstI polymorphism c1/
c1 (major allele for both SNPs) confers a higher risk of INH-DILI with an OR of 1.32 com-

pared to the c1/c2 or c2/c2 genotypes, but no increase in risk for the DraI polymorphism [16].

These candidate SNPs have been studied in diverse populations including several of Asian

descent (Chinese, Xinjiang Uyghurs, Japanese, Korean, Indian, Taiwanese and Indonesian)

[15,17–39]. However, no previous study has been conducted in a Singaporean population. The

3 major ethnic groups in Singapore, Chinese, Malays and Indians, originated largely from

Southern China, Peninsula Malaysia and Indonesia, and Southern India, respectively [40].

Results derived from the Singaporean population may therefore have broad applicability to

populations that have not been well represented in previous candidate gene studies. Malays in

particular, have not been included in INH-DILI studies apart from one focused on NAT2 [35].

Representation of these populations is crucial since India, China and Indonesia are among the

countries with the greatest burden of TB burden worldwide [1].
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To facilitate the clinical implementation of prospective pharmacogenomic screening for

INH-DILI in these South and Southeast Asian countries, it is imperative to determine the

genetic and clinical relevance of INH-DILI pharmacogenomic biomarkers in representative

populations. Therefore, the objective of this study was to assess the association between

selected candidate SNPs and the risk of INH-DILI, and to assess the clinical validity of associ-

ated variants in a multiethnic Singaporean population representative of the Southeast Asian

region.

Results

Clinical and demographic characteristics

A total of 104 patients were recruited (S1 Fig). One patient failed genotyping quality control

(QC) due to sex mismatch, leaving 103 patients (24 cases and 79 controls) for analysis. No

samples were removed due to high identity-by-state (IBS). The clinical characteristics of

cases and controls are shown in Table 1. Most cases had grade 2 (41.7%) or grade 3 (54.2%)

INH-DILI and only 1 patient had grade 4 INH-DILI. The median onset time for INH-DILI

was 17.5 days (range 4–111 days), which is consistent with the typical onset time of 2 weeks to

6 months [2]. Cases were more likely to be female than controls (p = 1.80 x 10−3) and were

more likely to be of ‘Other’ ethnicity (Table 1).

After removing SNPs with call rate <95% or deviation from Hardy-Weinberg Equilibrium

(HWE) within Chinese patients, 536859 SNPs remained. Principal components analysis

(PCA) performed using our genome-wide SNP data showed distinct clustering according to

self-reported ethnicity, except for ‘Others’ which was spread between the Chinese and Malay

clusters (S2 Fig). Although Mann-Whitney U tests on the first 10 principal components

(PCs) by case control status were not statistically significant, we used the first 2 PCs to adjust

for ethnic differences in subsequent analyses based on the fact that there were different eth-

nicities in our cohort, scree plot of the eigenvalues (S3 Fig) and visual inspection of PCA plot

(S2 Fig).

Pharmacogenomic association analysis

We performed a comprehensive literature review of INH-DILI and identified 20 candidate

SNPs with prior evidence of association with INH-DILI, minor allele frequency (MAF) > 0.05

in at least 1 population and present in our genotyping panel (S1 Table), which we tested for

association in our cohort. Of these 20 candidate SNPs, 2 SNPs (rs1041983 and rs1495741),

both in the NAT2 gene, were significantly associated with INH-DILI in our cohort after cor-

rection for multiple correlated tests. The recessive model was most significant for rs1041983

(OR (95% confidence interval (CI)) = 13.86 (4.30–44.70), adj P = 4.754 x 10−4), whereas the

dominant model was most significant for rs1495741 (OR (95% CI) = 0.10 (0.03–0.33), adj

P = 0.004) (Table 2 & S2 Table). Analyses using the first 5 PCs, 20 PCs or self-reported ethnic-

ity instead of the first 2 PCs yielded very similar results. Association with INH-DILI severity

by ordinal logistic regression also yielded very similar results (S3 Table). Cluster plots of these

2 SNPs showed clear clustering of genotypes (S4 Fig).

We next inferred acetylator phenotype using a 4 SNP panel, which did not include either of

the 2 significant SNPs [14]. Thirty-five patients (34%) were predicted to be SA. SA status was

significantly associated with INH-DILI compared to intermediate acetylator (IA) + rapid acet-

ylator (RA) (OR (95% CI) = 9.98 (3.32–33.80), logistic regression p = 8.36 x 10−5). Results

from Fisher’s exact test were similar (S4 Table). The frequencies of the risk alleles showed an

increasing trend with DILI grade (Fig 1).
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Genetic associations may be specific to certain populations. To determine if the associations

we observed were consistent across all ethnic groups, we also explored the association between

NAT2 acetylator status and the 2 significant SNPs within the 3 major ethnic groups in our

cohort. The effect sizes remained similar in Chinese but were smaller and consistent in direc-

tion in Malays and Indians (S5 Table).

Table 1. Demographic and clinical characteristics of Singaporean patients diagnosed with TB and treated with INH.

Clinical and Demographic Characteristics All Patients (n = 103) INH-DILI Cases (n = 24) Controls (n = 79) P value*

Age, mean (sd) 51.1 (14.5) 51.6 (16.8) 50.9 (13.9) 0.728‡

Male gender, n (%) 68 (66.0) 9 (37.5) 59 (74.7) 1.80 x 10−3†

Ethnicity, n (%) 0.034†

Chinese 69 (67.0) 12 (50.0) 57 (72.2) 0.051¶

Malays 15 (14.6) 5 (20.8) 10 (12.7) 0.333¶

Indians 8 (7.8) 1 (4.2) 7 (8.9) 0.677¶

Others 11 (10.7) 6 (25.0) 5 (6.3) 0.018¶

BMI, mean (sd) 21.5 (3.7) 21.5 (3.8) 21.4 (3.7) 0.949§

TB type, n(%) 0.934†

Pulmonary 73 (70.9) 17 (70.8) 56 (70.9)

Extrapulmonary 19 (18.4) 4 (16.7) 15 (19.0)

Both 11 (10.7) 3 (12.5) 8 (10.1)

Drug doses (mg), median (range)

Isoniazid 300 (200–386₤) 300 (200–300) 300 (200–386₤) 0.648‡

Rifampicin 600 (257₤–600) 600 (300–600) 600 (257₤–600) 0.149‡

Pyrazinamide 1250 (643₤–2000) 1250 (1000–1750) 1250 (643₤–2000) 0.590‡

Ethambutol 1000 (400–1600) 950 (600–1400) 1000 (400–1600) 0.204‡

Received hepatotoxic concomitant medications^, n(%) 22 (21.3) 5 (20.8) 17 (21.5) 1†

NIH Grade, n (%)

0 0 79 (100) -

2 10 (41.7) 0 -

3 13 (54.2) 0 -

4 1 (4.2) 0 -

Baseline LFT, median (range)

AST (U/L) 22 (14–48) 21 (11–69) -

ALT (U/L) 18 (8–46) 18 (6–64) -

Onset or follow up LFT, median (range)

AST (U/L) 212 (104–1401) 22 (9–42) -

ALT (U/L) 199.5 (58–684) 17 (5–42) -

P < 0.05 was considered statistically significant and was used for the selection of covariates for the subsequent genomic association analysis

*For association between clinical characteristic and case-control status,
‡Mann-Whitney U test,
†Fisher’s exact test,
¶each category compared against all others combined,
§t-test,
₤one patient on renal dialysis received thrice weekly doses of all drugs.

^Hepatotoxic medications considered here include atorvastatin, simvastatin, ibuprofen, clopidogrel, fenofibrate, paracetamol, acarbose, amitriptyline and

tolbutamide. These medications were among drugs with likelihood categories A and B in NIH livertox database.

ALT: alanine transaminase, AST: aspartate transaminase, BMI: body mass index, INH-DILI: isoniazid-induced liver injury, LFT: liver function test, NIH:

National Institute of Health, mg: milligram, sd: standard deviation, TB: tuberculosis

https://doi.org/10.1371/journal.pone.0186200.t001
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Table 2. Pharmacogenomic association of NAT2 variants in the Singaporean population.

Gene SNP Maj/ min MAF Additive Dominant Recessive

Cases Ctrl OR (95% CI) P Adj P OR (95% CI) P Adj P OR (95% CI) P Adj P

NAT2 rs1041983 G/A 0.792 0.367 6.34 (2.54–15.82) 7.667 x 10−5 0.003 5.72 (1.18–27.69) 0.030 0.597 13.86 (4.30–44.70) 1.078 x 10−5 4.754 x 10−4

NAT2 rs1495741 A/G 0.167 0.551 0.21 (0.09–0.52) 6.267 x 10−4 0.024 0.10 (0.03–0.33) 1.084 x 10−4 0.004 0.25 (0.05–1.21) 0.085 0.901

NAT2 rs1799929 G/A 0.042 0.076 0.36 (0.07–1.95) 0.235 0.995 0.36 (0.07–1.95) 0.235 0.995 NA*

NAT2 rs1799930 G/A 0.5 0.222 2.85 (1.32–6.16) 0.008 0.226 2.16 (0.74–6.28) 0.159 0.980 12.00 (2.49–57.84) 0.002 0.069

NAT2 rs1799931 G/A 0.292 0.139 2.85 (1.20–6.77) 0.017 0.420 3.10 (1.05–9.15) 0.040 0.691 7.33 (0.96–56.24) 0.055 0.790

NAT2 rs1801280 A/G 0.042 0.095 0.30 (0.05–1.62) 0.161 0.978 0.30 (0.05–1.68) 0.169 0.982 NA*

This table shows the association results from logistic regression with gender, PC1 and PC2 as covariates. P values were adjusted for 55 multiple correlated

tests using the p_ACT procedure. Significant SNPs (Adj P <0.05) are bolded. Only results for NAT2 are shown here.

*Logistic regression could not be performed due to absence of patients with homozygous variant in either cases or controls.

Adj P: adjusted P value, CI: confidence interval, Ctrl: controls, MAF: minor allele frequency, Maj: major allele, Min: minor allele, OR: odds ratio

https://doi.org/10.1371/journal.pone.0186200.t002

Fig 1. Risk allele frequency of associated NAT2 variants by DILI grade. The frequencies of the risk variants (rs1041983 A, rs1495741 A

and NAT2 SA) increase with DILI grade. There was only 1 patient with grade 4 DILI, who was homozygous for the non-risk variants. DILI:

drug-induced liver injury, SA: slow acetylators.

https://doi.org/10.1371/journal.pone.0186200.g001
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Pharmacogenomic risk prediction analyses

Next, we investigated the accuracy and clinical significance of NAT2 acetylator status and the

2 significant NAT2 SNPs in predicting INH-DILI. Based on the estimated prevalence of serum

aminotransferase elevations of 10% [2], we estimated the sensitivity, specificity, positive pre-

dictive value (PPV) and negative predictive value (NPV) of predicting INH-DILI at a preva-

lence of 10% from NAT2 SA status to be 75%, 78%, 28% and 97%, respectively. Interestingly,

the 2 significant NAT2 SNPs also demonstrated similar performance measures, though

rs1041983 had slightly lower sensitivity but higher specificity and PPV (Fig 2). As PPV and

NPV are dependent on prevalence of the outcome, we also calculated these values for a range

of prevalence from 5–20%. While PPV varied considerably (16–47%), NPV was within a nar-

row range of 93–98% (S6 Table). The population attributable fraction (PAF) and number

needed to test (NNT) for NAT2 SA were estimated to be 0.67 and 4.08, respectively.

To examine if NAT2 significantly improves INH-DILI prediction over clinical factors, we

then compared the predictive accuracy of a model using clinical variables alone to models that

Fig 2. Clinical validity of NAT2 acetylator status and significant SNPs. Prevalence of 10% is assumed and the risk genotypes for all

variants were used for the calculation of clinical validity measures. For both rs1041983 and rs1495741, the homozygous AA genotype is the

risk genotype since GA/GG is protective. DOM: dominant, NPV: negative predictive value, PPV: positive predictive value, REC: recessive,

SA: slow acetylators.

https://doi.org/10.1371/journal.pone.0186200.g002
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included NAT2 acetylator status using receiver operating characteristic (ROC) curves (Fig 3)

and Youden’s index. The addition of NAT2 acetylator status provided significantly better pre-

diction over a model with clinical variables alone (area under the curve (AUC) = 0.863 vs.

0.766, respectively, p = 0.027) (Fig 3). We also assessed the additional contributions of

rs1041983 and rs1495741 individually as a comparison to NAT2 acetylator status. Models with

clinical factors and the 2 SNPs separately also performed similarly, with AUCs of 0.861

(rs1495741) and 0.853 (rs1041983) (S5 Fig). Interestingly, both models with clinical factors

and rs1495741 or rs1041983 were significantly better than clinical factors alone (p = 0.029 and

0.038, respectively), but not significantly different from one with clinical factors and NAT2

acetylator status (p = 0.678 and 0.592, respectively). The Youden’s indexes for clinical factors

alone, clinical and NAT2 acetylator status, rs1495741 or rs1041983 were 0.500, 0.698, 0.672

and 0.656, respectively.

We further explored the correlation between the 2 SNPs and NAT2 acetylator status in

order to determine how well these SNPs tag NAT2 acetylator status in the Singaporean

Fig 3. Predictive value of NAT2 acetylator status. Predictive values were evaluated using receiver

operating characteristic (ROC) curves and expressed as area-under-curve (AUC), which is a summary

measure of the sensitivity and specificity. The clinical model (clin) consists of age, gender and self-reported

ethnicity. SA: slow acetylators.

https://doi.org/10.1371/journal.pone.0186200.g003
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populations. We found that the rs1495741 AA genotype had almost complete concordance

(98.1%) with the SA phenotype (S7 Table).

Discussion

Here we assessed the association of previously identified pharmacogenomic biomarkers for

INH-DILI in a multiethnic Singaporean population. The major findings of this study are that

we confirmed the association for 2 NAT2 variants and NAT2 SA status with INH-DILI in this

population for the first time. The effect size of 9.98 (95% CI: 3.32–33.8) that we observed was

larger than the pooled ORs of 3.1 (3.10 (95% CI: 2.47–3.88) and 3.08 (95% CI: 2.29–4.15)) in

prior meta-analyses, although the 95% CIs overlap [12,13]. The effect size we found was also

similar to that reported in some studies in Japanese and Iranian populations [17,22,41]. This is

the first study to report on the association of NAT2 variants and INH-DILI in a Singaporean

population, and adds to the body of literature on the importance of this marker as a predictor

of INH-DILI. We also demonstrate the potential clinical utility of NAT2 genotyping for

INH-DILI prediction in these Southeast Asian populations.

Our study had >75% power to detect associations for variants with MAF� 0.15 and allelic

OR� 4.5 at a significance level of 0.003 (Bonferroni corrected alpha level for 17 independent

SNPs). The MAF of majority of the candidate SNPs outside NAT2 (except TNF rs1800629)

were> 0.15, so the lack of replication of these variants in our study was likely because the true

effect sizes were too small to be detected.

We further demonstrated the clinical validity of testing for NAT2 variants for the prediction

of INH-DILI in patients receiving anti-TB drugs. Based on the effect size in our study, NAT2 is

an effective test for ruling out INH-DILI if patients are found to not have SA status, owing to

the high NPV. Importantly, the NPV is robust to uncertainties in the INH-DILI prevalence.

This is potentially clinical significant, as it suggests that patients found to be non-SA could

safely undergo treatment with INH with limited monitoring for DILI and high confidence that

INH-DILI would not occur. Conversely, patients with SA status would likely benefit from

closer surveillance for the development of DILI. Two-thirds of INH-DILI cases can be attrib-

uted to the presence of NAT2 SA, and about 4 patients would need to be tested to prevent one

case, if followed by an intervention that effectively mitigates the risk of INH-DILI. NAT2 was

also shown to significantly improve INH-DILI prediction over clinical factors alone. To our

knowledge, this is the first study to include an assessment of the clinical validity of NAT2 for

INH-DILI, which is a necessary step towards clinical implementation of this drug-gene pair.

Future studies will be able to formally assess the cost-effectiveness of NAT2 genotyping based

on the clinical validity of the test as determined in our study.

Our results add to the body of evidence supporting the use of NAT2 acetylator status for

prediction of INH-DILI. For individuals found to be at high genetic risk of INH-DILI, dose-

adjustment based on NAT2 genotype may represent a strategy to reduce the risk of DILI. A

clinical trial of pharmacogenomic-guided INH dosing in a Japanese population demonstrated

a significant reduction in INH-DILI when NAT2 SA were administered a reduced, without

compromising treatment effectiveness [42]. Another pilot study linking NAT2 genotype and

INH serum concentration also supports pharmacogenetic-guided INH dosage regimens [43].

Further work is needed to establish evidence-based genotype specific clinical recommenda-

tions for NAT2 [44].

While NAT2 acetylator status has been consistently associated with INH-DILI, results for

individual NAT2 SNPs are much more variable. For example, rs1799930 was significantly asso-

ciated with INH-DILI in some studies [23,27,32,34,35,45,46] but not others [24,29,31,47,48].

One possibility for this observation could be the imperfect tagging of NAT2 acetylator status
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by a single SNP, which we also observed in our study. A tag SNP for NAT2 acetylator status

(rs1495741) was identified in a bladder cancer GWAS in Europeans [49]. Other studies have

also found high concordance between rs1495741 and NAT2 acetylator status in Asians, Euro-

peans and admixed Americans, but not in Africans [15,50]. Consistent with these observa-

tions, we also found high concordance between rs1495741 and NAT2 acetylator status in our

cohort. The presence of African Americans in the study of Hein et al. may explain the high

misclassification rate for rs1495741 reported in that study [14]. Taken together, our results

suggest rs1495741 could be used to tag NAT2 SA with high accuracy in Southeast Asian

populations.

There are several limitations to our study. Firstly, we did not have sufficient Malay and

Indian patients to thoroughly explore the ethnic specificity of the associations in those sub-

groups. However, it appears that the effect is consistent across the 3 major ethnic groups

though the associations in Malay and Indian populations alone did not reach statistical signifi-

cance due to small sample size. Secondly, some variants previously associated with INH-DILI

were not included due to the nature of our genotyping assay. However, a review of these

excluded variants found none of sufficient priority in terms of strength of evidence. Most vari-

ants were from single studies or were not significant in meta-analyses (GSTM1 and CYP2E1
rs6413432). We therefore chose not to genotype or impute them in our study. Thirdly, our

study focused on specific candidate gene variants, and did not identify new genetic variants for

INH-DILI. Future studies which combine multiple cohorts will be needed to perform GWAS

for INH-DILI with appropriately powered sample sizes. Lastly, it was not possible to identify

definitively the causative drug for the DILI as patients were taking 4 drugs simultaneously, but

INH has the highest hepatotoxic potential among the drugs. All DILI cases were re-challenged

and 80% of them tolerated INH upon re-challenge and completed their treatment. However,

this is in line with reports that up to 80% of suspected INH-DILI cases tolerate reintroduction

of treatment after the resolution of the initial injury [2].

In conclusion, we have reestablished the association between NAT2 SA and INH-DILI in a

Singaporean population and demonstrated its clinical validity in prediction of INH-DILI.

Clinical studies and pharmacoeconomic analyses are now needed to support the clinical imple-

mentation of NAT2 pharmacogenetic testing for INH-DILI in Singapore.

Material and methods

Recruitment and detailed clinical characterization of patients

Cases of INH-DILI were defined as patients with Common Terminology Criteria for Adverse

Events (CTCAE) v4.03 grade 2 and above for levels of aspartate transaminase (AST) and/or

alanine transaminase (ALT) (i.e. >2.5x upper limit of normal (ULN)) [51], and were recruited

retrospectively. Patients with active TB from 2014 to January 2016 were identified from the

National TB registry, and those treated at the TB Control Unit (TBCU) in Tan Tock Seng Hos-

pital were screened. Potential cases were shortlisted if their TB treatment was interrupted

because of drug-induced liver reactions. A trained research nurse reviewed the medical rec-

ords of these patients to determine if they met the inclusion criteria: i) undergoing treatment

of active TB, ii) on anti-TB drugs which should include INH, rifampicin, pyrazinamide, and

ethambutol, and iii) 21 to 95 years old. Patients were excluded if they had any of the following:

i) unable to provide informed consent, ii) pregnant or breast feeding, iii) alcoholism, iv)

chronic hepatitis B or C and other types of hepatitis or v) HIV co-infection. There was no limi-

tation on the co-administration of drugs unrelated to TB treatment but we also assessed the

possible contribution of potentially hepatotoxic drugs. For this purpose, drugs classified in cat-

egories A (>50 published reports) and B (13–50 published reports) for likelihood of causing
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DILI were considered hepatotoxic [52,53]. Eligible cases were then recalled for informed con-

sent and blood sampling.

Control patients were recruited from October 2015 to April 2016 and were eligible if they

had completed 6 months of TB treatment in TBCU with no symptoms of hepatotoxicity dur-

ing treatment, and had normal post-treatment liver function tests (LFTs). All patients received

their anti-TB treatment under direct observed therapy and all controls were adherent to

therapy.

Blood or saliva was collected from recruited patients and deoxyribonucleic acid (DNA)

extracted using the prepIT-L2P kit (Genotek, Ottawa, Canada) and DNeasy Blood & Tissue

Kit (Qiagen GmbH, Hilden, Germany), respectively, according to manufacturer’s instructions.

Clinical data were collected from all patients, including demographics, drug treatment details,

baseline and follow-up LFTs, which occurred at the point of onset for cases or 6 months after

treatment initiation for controls. All patients gave their written informed consent and the

study was approved by the National Healthcare Group Domain Specific Review Board.

Genotyping and quality control

All samples were genotyped using the Illumina HumanOmniExpress-24 beadchip v1.2 (Illu-

mina, San Diego, CA). To verify the accuracy of all genotyping results, multiple positive and

negative (water) controls as well as duplicate samples were included in the assays. No genotyp-

ing errors were detected with the use of these controls. To remove any samples or SNPs with

genotyping failure or errors, QC filtering was performed to remove samples with high IBS, dis-

cordant sex, excess heterozygosity or call rate<95%, and SNPs with call rate<95%, deviation

from HWE in Chinese (p<1.0 x 10−6). All Chinese patients (cases and controls) were chosen

as the population for HWE testing to remove SNPs with genotyping errors in view of the pres-

ence of population mixture and small sample size. PCA was performed and we included PCs

as covariates to adjust for population structure. Cluster plots of SNPs reaching statistical signif-

icance were inspected visually.

Candidate SNP selection

A comprehensive literature search was performed via PubMed to identify previous pharmaco-

genomic studies on INH-DILI using the key words (isoniazid OR tuberculosis) AND (liver

injury OR hepatitis OR hepatotoxicity) AND (pharmacogen� OR gene OR genetic OR allele�

OR variant�) on 7 Oct 2016. We also searched the publication list for INH in the Pharmacoge-

nomics Knowledgebase (PharmGKB) [54], a publicly available resource with manually curated

knowledge on the impact of human genetic variation on drug response, to supplement the pri-

mary literature search. Genetic variants that have been found to be associated with INH-DILI

at least once were then screened for their allele frequencies in Chinese, Malays and Indians

using the Singapore Genome Variation Project database [40] or 1000 genomes (Southern Han

Chinese (CHS) and Sri Lankan Tamil from the UK (STU), which has previously been shown

to be very similar to Singaporean Indians) [55,56], and their presence in the genotyping panel.

Statistical analysis

The primary study was designed as a case control study comparing a group of adult TB

patients with INH-DILI with a drug matched control group without INH-DILI. We compared

clinical characteristics between cases and controls to identify any that were significantly differ-

ent (P< 0.05) between the 2 groups using t-test, Mann-Whitney U test, chi-square test or Fish-

er’s exact test as appropriate. The associations between the candidate SNPs and INH-DILI

were tested using logistic regression under different genetic models (additive/dominant/
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recessive), with gender and the first 2 PCs as covariates. Results were presented as P-values

and OR with 95% CIs. To adjust for multiple testing, we calculated adjusted P-values using

PACT, a computationally efficient method which takes into account correlation due to linkage

disequilibrium and different genetic models [57]. Adjusted P-values of<0.05 were considered

statistically significant and the genetic model with the lowest P-value was used for further anal-

yses. The distribution of the individual alleles and genotypes between cases and controls for

the associated variants were also assessed and the P-values and ORs with 95% CIs for each of

the respective alleles and genotypes estimated using Fisher’s exact test.

We inferred NAT2 acetylator status using a 4 SNP panel (rs1801280, rs1799930, rs1799931

and rs1801279), where RA were homozygous common for all SNPs, IA were heterozygous for

any SNP and SA were heterozygous for�2 SNPs or homozygous variant for at least 1 SNP

[14]. rs1801279 was not included in our candidate SNP list as it was not present on our geno-

typing panel and expected to be monomorphic in Chinese, Malays and Indians (S1 Table). We

therefore considered this SNP to be homozygous wild type in our cohort. The association

between NAT2 acetylator status and INH-DILI was tested using logistic regression with covar-

iates included, as well as Fisher’s exact test. All statistical tests performed were 2-sided.

To evaluate the clinical utility of NAT2 acetylator status and associated SNPs, we calculated

the sensitivity, specificity, and estimated the PPV and NPV using Baye’s theorem assuming a

prevalence of 10% [58]. To take into account uncertainty in the estimation of INH-DILI preva-

lence, we also performed a sensitivity analysis for the PPV and NPV over a range of preva-

lences (5–20%). We further calculated the PAF and NNT to detect 1 case of INH-DILI

according to the following formulas,

PAF ¼
IPt � IPo

IPt
ð1Þ

NNT ¼
1

ARR
ð2Þ

where IPt = incidence proportion in the total population and IPo = incidence proportion in the

unexposed (IA/RA group), and ARR = absolute risk reduction = IPt—incidence proportion in

exposed (SA).

Finally, we demonstrated the clinical utility of NAT2 acetylator status and SNPs over

clinical variables using ROC analysis and compared the AUCs for prediction models based on

clinical factors (“clinical”) and “clinical +genetic” risk factors using DeLong’s test [59]. To esti-

mate the additional contribution of genetic factors in a clinical setting, we used all known clin-

ical factors relevant (not invariant) in our cohort, which were age, gender and self-reported

ethnicity. The performance of each prediction model (overall sensitivity and specificity) was

calculated using AUC of the ROC curves as well as Youden’s index (or Youden’s J statistic),

where J = sensitivity + specificity -1. The maximum value of J along all points on the ROC

curve represents the optimum sensitivity and specificity [60]. All analyses were conducted in

PLINK v1.9 [61] or R version 3.3.3 [62].

Supporting information

S1 Fig. Patient recruitment flowchart. Flowchart showing numbers of patients screened,

excluded and enrolled for INH-DILI cases and controls.

DILI: drug-induced liver injury, INH: isoniazid, LFT: liver function tests, TB: tuberculosis,

TBCU: Tuberculosis control unit, tx: treatment, �: Still attending TBCU for treatment.
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S2 Fig. Principal components analysis plot. Plot of the first 2 principal components. PC1 sep-

arates the Indians from the other ethnicities while PC2 separates the Chinese from the Malays.

(JPG)

S3 Fig. Scree plot. Plot of eigenvalues for the first 20 principal components. The first 2 PCs

explained more variance than the rest of the PCs.

(JPG)

S4 Fig. Cluster plots for associated NAT2 SNPs. Cluster plots for (a) rs1041983 and

(b) rs1495741 shows clear clustering of genotypes.

(JPG)

S5 Fig. Predictive value of NAT2 acetylator status and SNPs. Predictive values were evalu-

ated using receiver operating characteristic (ROC) curves and expressed as area-under-curve

(AUC), which is a summary measure of the sensitivity and specificity. The clinical model (clin)

consists of age, gender and self-reported ethnicity. DOM: dominant, REC: recessive, SA: slow

acetylators.

(JPG)
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S2 Table. Pharmacogenomic association of candidate variants in the Singaporean popula-
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(DOCX)
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S4 Table. Allelic and genotypic distributions of NAT2 associated variants.
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