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To infect plants successfully, pathogens adopt various strategies to overcome their
physical and chemical barriers and interfere with the plant immune system. Plants deploy
a large number of resistance (R) proteins to detect invading pathogens. The R proteins
are encoded by resistance genes that contain cell surface-localized receptors and
intracellular receptors. In this study, a new plant R protein predictor called prPred was
developed based on a support vector machine (SVM), which can accurately distinguish
plant R proteins from other proteins. Experimental results showed that the accuracy,
precision, sensitivity, specificity, F1-score, MCC, and AUC of prPred were 0.935, 1.000,
0.806, 1.000, 0.893, 0.857, and 0.948, respectively, on an independent test set.
Moreover, the predictor integrated the HMMscan search tool and Phobius to identify
protein domain families and transmembrane protein regions to differentiate subclasses
of R proteins. prPred is available at https://github.com/Wangys-prog/prPred. The tool
requires a valid Python installation and is run from the command line.

Keywords: prPred, plant R protein, CKSAAP, CKSAAGP, support vector machine

INTRODUCTION

Plant pathogens can disturb the plant immune system to support their growth and development
within plant tissue. The propagation and spread of pathogens threaten food security and
cause crop and economic losses. To recognize invading pathogens, plants have evolved various
disease resistance proteins (R proteins). There are two main categories of plant R proteins:
membrane-bound pattern recognition receptors (PRRs) and intracellular resistance receptors.
PRRs are comprised of two receptor classes, receptor-like proteins (RLPs) and receptor-like
kinases (RLKs), that are located on the plant plasma membrane as the first layer of the
surveillance system to detect microbe-derived molecular patterns. PRRs typically contain highly
variable extracellular domains, such as lysin motif (LysM), leucine-rich repeat (LRR), and lectin
domains (Zhou and Yang, 2016). The majority of intracellular resistance receptors (NBS-LRRs
or NLRs) are nucleotide-binding sites (NBSs) and LRR proteins that can recognize effectors
delivered into host cells by pathogens. The NBS domain is part of the NB-ARC domain
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that contains additional subdomains, including apoptotic
protease-activating factor-1 (APAF-1), R gene products and
caenorhabditis elegans death-4 protein (CED-4) (van der Biezen
and Jones, 1998; Van Ooijen et al., 2008). NLR proteins are
divided into two subclasses based on the N-terminal structure:
TIR-NBS-LRR (TNL), which contains a toll-like-interleukin
receptor (TIR) domain, and CC-NBS-LRR, which carries a
coiled-coil (CC) domain (Han, 2019; Sun et al., 2020).

Five computational approaches have been developed for
R protein prediction (Table 1). NLR-parser, RGAugury, and
Restrepo-Montoya’s pipeline are alignment-based tools, and
NBSPred and DRPPP are learning-based tools. NLR-parser
uses motif alignment and search tool (MAST) to identify
NLR-like sequences (Steuernagel et al., 2015). RGAugury
identifies different subclasses of R proteins, including membrane-
associated receptors (RLPs or RLKs) and NBS-containing
proteins, by integrating the results generated from several
computing programs, such as BLAST (Camacho et al., 2009),
InterProScan (Zdobnov and Apweiler, 2001), HMMER3 (Eddy,
2011), nCoil (Lupas et al., 1991), and Phobius (Käll et al.,
2004). Restrepo-Montoya et al. (2020) developed a computational
approach to classify RLK and RLP proteins using SignalP
4.0 (Petersen et al., 2011), TMHMM 2 (Krogh et al., 2001)
and PfamScan (Finn et al., 2014). However, methods based
on sequence alignment are low-sensitive and time-consuming,
which can lead to difficulties in predicting low similarity proteins.
Machine learning-based methods, NBSPred and DRPPP, are
used for the detection of R proteins based on SVM by
considering various numerical representation schemes of protein
sequences. NBSPred was developed to differentiate NLR/NLR-
like proteins from non-NLR proteins. However, the NBSPred
training datasets were generated by electronic searches and were
not experimentally verified, which might reduce the accuracy
of the model. DRPPP was built by extracting various features
from input protein sequences, and the model achieved 91.11%
accuracy for prediction plant R proteins. Unfortunately, the
NBSPred1 and DRPPP2 web servers are no longer available.

In this study, we developed an accurate computational
approach for identifying R proteins using various sequence
features. It is worth highlighting that the composition of k-spaced
amino acid pairs (CKSAAPs) and k-spaced amino acid group
pairs (CKSAAGPs) were also considered in the training process.
The two-step feature selection strategy was adopted to detect
irrelevant and redundant features. Then, the optimal k value and
algorithm were evaluated for R protein prediction. Ultimately,
support vector machine (SVM) and 5-spaced amino acid (group)
pairs were chosen and applied to construct classifiers with
sequence features.

MATERIALS AND METHODS

A flowchart of our method is shown in Figure 1. It
can be summarized in five steps: (1) data collection;

1http://soilecology.biol.lu.se/nbs/
2http://14.139.240.55/NGS/download.php

(2) feature construction; (3) two-step feature selection;
(4) performance evaluation of features with or without
CKSAAPs and CKSAAGPs; and (5) performance evaluation of
different algorithms.

Data Collection
We obtained plant R protein sequences from the PRGdb
database3. R protein sequences were derived from 35 plant
species and served as a positive dataset (Osuna-Cruz et al.,
2018). Next, the known protein sequences of 35 plant
species were downloaded from the NCBI protein database
to construct a negative dataset. The sequences containing
NB-ARC, LRR, Pkinase, TIR, FNIP, Acalin, peptidase_C48,
PPR, zf-BED, and WRKY were filtered by a Pfam domain
search (Kushwaha et al., 2016). To remove redundancy,
proteins with sequence similarity >30% were excluded from
the non-R protein dataset using CD-HIT (Fu et al., 2012).
However, 34,975 protein sequences remained in the non-R
protein dataset after filtering, thus, to ensure the balance
of data, 304 protein sequences were selected randomly from
the identified non-R proteins to serve as a final negative
dataset. Then, 152 R proteins and 304 non-R proteins were
split into training and test datasets at an 8:2 ratio. Finally,
the training dataset is made up of 121 R protein sequences
and 243 non-R protein sequences, and the independent test
dataset is composed of 31 R protein sequences and 61 non-R
protein sequences.

Feature Construction
Features were extracted from input sequences using iFeature
(Chen et al., 2018), such as amino acid composition,
grouped amino acid composition, quasi-sequence-
order, composition/transition/distribution (C/T/D),
autocorrelation, conjoint triad and pseudo-amino acid
composition (PseAAC). More detailed information about
the features is described in the Supplementary Methods and
Supplementary Table 1.

There are lots of feature extraction methods (Pal et al., 2016;
Zeng et al., 2016; Liao et al., 2018; Zhang and Liu, 2019; Ikram
et al., 2020; Li J. et al., 2020; Wang et al., 2020; Zhao et al.,
2020; Zhu et al., 2020). In this work, we utilized CKSAAPs and
CKSAAGPs as numeric vectors to represent the protein sequence.
CKSAAP was used to calculate the occurrence frequencies of any
two amino acids separated by any k amino acids. For example, if
k = 0, the 0-spaced residue pairs can be represented as: AA, AC,
AD, . . ., YY; if k = 1, the 1-spaced residue pairs can be expressed
as AxA, AxC, AxD, . . ., YxY. The CKSAAPs are defined as:

k = 0
(

N [AA]
N0

,
N [AC]
N0

,
N [AD]
N0

, . . . . . . ,
N [YY]
N0

)
400

k = 1
(

N [AxA]
N1

,
N [AxC]

N1
,

N [AxD]
N1

, . . . . . . ,
N [YxY]

N1

)
400

3http://prgdb.org/prgdb/
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TABLE 1 | Summary of existing tools for plant R protein prediction.

Tool Methods Objects Sites References

NLR-parser Motif alignment and search
tool (MAST)

NLRs http://github.com/steuernb/NLR-Parser Steuernagel et al., 2015

RGAugury BLAST search and
domain/motif analysis

RLKs, RLPs, NLRs https://bitbucket.org/yaanlpc/rgaugury Li et al., 2016

Restrepo-Montoya’s method BLAST search and
domain/motif analysis

RLKs, RLPs https://github.com/drestmont/plant_rlk_rlp/ Restrepo-Montoya et al., 2020

NBSPred SVM NLRs http://soilecology.biol.lu.se/nbs/ Kushwaha et al., 2016

DRPPP SVM R proteins http://14.139.240.55/NGS/download.php Pal et al., 2016

SVM, support vector machine.

k = 2
(

N [AxxA]
N2

,
N [AxxC]

N2
,

N [AxxD]
N2

, . . . ,
N [YxxY]

N2

)
400

where “x” represents any of 20 amino acids; Nk was calculated as
Nk = L− (k+ 1), k = 1, 2, 3. . ., where L represents the length of a
given protein sequence. The final feature vector was computed by
concatenating the individual feature vectors; for example, if k = 5,
the number of vector dimensions would be 400× 6 = 2,400.

Amino acid residues can be divided into five categories
based on chemical properties of the side chains, including
aliphatic group (g1: GAVLMI), aromatic group (g2: FYW),
positive charged group (g3: KRH), negative charged
group (g4: DE), and uncharged group (g5: STCPNQ).
k-spaced amino acid group pairs (CKSAAGP) is based
on the frequency of two group separated by any k amino
acids. If k = 0, the 0-spaced group pairs is represented
as:

k = 0

(
N
[
g1g1

]
N0

,
N
[
g1g2

]
N0

,
N
[
g1g3

]
N0

, . . . . . . ,
N
[
g5g5

]
N0

)
25

Two-Step Feature Selection Strategy
First, feature vectors were sorted according to the
value of information gain (IG). A new feature list was
generated in descending order of the IG value. Second,
we selected or removed features based on the accuracy
value during the training process. We added features
from higher IG value to lower IG value. If the addition
of a feature did not reduce the accuracy in the cross-
validation strategy, then the feature vector was retained;
otherwise, it was removed.

Machine Learning Algorithms
Eight algorithms, including logistic regression (LR) (Hosmer
et al., 2013), K-nearest neighbors (KNN) (Kramer, 2013),
SVM (Hearst et al., 1998), decision tree (DT) (Swain
and Hauska, 1977), random forest (RF) (Breiman, 2001),
gradient boosting classifier (GBC) (Aler et al., 2017),
Adaboost (Schapire, 2013), and extra-tree classifier (ETC)
(Geurts et al., 2006), were chosen to train the model.
We applied grid search (GS) to find optimal parameter
combination in 10-fold cross-validation for each model.
GS requires specifying a range for parameters, for

example, the SVM parameter optimization using GS is
implemented within the given ranges of C = {−5, 11}
and γ = {−9, 13}.

Performance Evaluation
To estimate the contributions of CKSAAPs and CKSAAGPs
and to measure the overall predictive performance of the
classification models, six parameters were applied for 10-fold
cross-validation and independent tests (Hearst et al., 1998;
An et al., 2019; Chen et al., 2019; Ding et al., 2019a,b;
Fang et al., 2019; Jiang et al., 2019; Lv et al., 2019b, 2020b;
Shen et al., 2019; Liu et al., 2020), including precision (Pre),
sensitivity (Sen), specificity (Spe), accuracy (Acc), F1-score, and
Matthew’s correlation coefficient (MCC). They are defined as
follows:

Pre =
TP

TP+ FP
(1)

Sen =
TP

TP+ FN
(2)

Spe =
TN

FP+ TN
(3)

Acc =
TP+ TN

TP+ FP+ TN+ FN
(4)

F1− score =
2× Pre × Sen

Pre+ Sen
(5)

MCC =
TP× TN− FP× FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

(6)

where TP is the number of R proteins classified as R proteins, TN
is the number of non-R proteins classified as non-R proteins, FP
is the number of non-R proteins classified as R proteins, and FN
is the number of R proteins classified as non-R proteins.

Additionally, the ROC curve and PR curve were used as visual
assessment metrics. The ROC curve shows the false-positive rate
versus the true positive rate, and the PR curve is recall versus
precision. The area under the curve (AUC) is also provided as
performance measure (Wang et al., 2010; Cheng et al., 2019). An
AUC close to 1 indicates better prediction of the model.
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FIGURE 1 | prPred workflow.
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TABLE 2 | Performance comparison of features with and without CKSAAP and CKSAAGP in the independent dataset test.

Algorithms Independent dataset test

Acc Pre Sen Spe F1-score MCC AUC

Without CKSAAPs and CKSAAGPs LR 0.891 0.839 0.839 0.918 0.839 0.757 0.919

KNN 0.891 0.862 0.806 0.934 0.833 0.754 0.928

SVM 0.902 0.893 0.806 0.951 0.847 0.778 0.935

RF 0.880 0.885 0.742 0.951 0.807 0.727 0.924

DT 0.859 0.846 0.710 0.934 0.772 0.676 0.847

GBC 0.815 0.733 0.710 0.869 0.721 0.583 0.839

Adaboost 0.848 0.840 0.677 0.934 0.750 0.650 0.859

ETC 0.913 0.926 0.806 0.967 0.862 0.803 0.947

k = 5 LR 0.891 0.862 0.806 0.934 0.833 0.754 0.946

KNN 0.924 0.929 0.839 0.967 0.881 0.828 0.935

SVM 0.935 1.000 0.806 1.000 0.893 0.857 0.948

RF 0.913 0.960 0.774 0.984 0.857 0.805 0.931

DT 0.880 0.917 0.710 0.967 0.800 0.729 0.854

GBC 0.902 0.923 0.774 0.967 0.842 0.778 0.882

Adaboost 0.870 0.828 0.774 0.918 0.800 0.704 0.880

ETC 0.924 0.962 0.806 0.984 0.877 0.829 0.938

LR, logistic regression; KNN, K nearest neighbors; SVM, support vector machine; RF, random forest; DT, decision tree; GBC, gradient boosting classifier; ETC, extra
tree classifier. The bold values represent the predictive performance of SVM based on 5-spaced amino acid pairs.

FIGURE 2 | ROC (A) and PR (B) curve for the prPred classifier in the independent dataset test.

TABLE 3 | Example results in the CSV-format output file of prPred.

ID R_protein_possibility TM SP Domain

Protein1 0.992151981 0 0 NB-ARC (PF00931.22) Rx_N (PF18052.1) LRR_8 (PF13855.6) LRR_8 (PF13855.6) LRR_8 (PF13855.6)

Protein2 0.992149469 0 0 NB-ARC (PF00931.22) NB-ARC (PF00931.22) Rx_N (PF18052.1) Rx_N (PF18052.1) Rx_N (PF18052.1)

Protein3 0.998599022 0 0 TIR (PF01582.20) NB-ARC (PF00931.22) NB-ARC (PF00931.22) TIR_2 (PF13676.6)

Protein4 0.992166647 1 Y Pkinase (PF00069.25) Pkinase_Tyr (PF07714.17) LRRNT_2 (PF08263.12) LRRNT_2 (PF08263.12) LRR_8 (PF13855.6)

Protein5 0.992152188 1 Y LRR_8 (PF13855.6) LRR_8 (PF13855.6) LRR_8 (PF13855.6) LRR_8 (PF13855.6) LRR_8 (PF13855.6)

Protein6 0.023914191 0 0

Protein7 0.022744187 0 0 FHA (PF00498.26)

Protein8 0.023851809 1 0
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RESULTS

Comparison of Different Feature
Combinations and Classification Models
CKSAAPs and CKSAAGPs are numerical encoding schemes
that can capture short linear motif information, and the
composition of CKSAAPs has been successfully applied
to identify protein modification sites (Cheng et al., 2018;
Lv et al., 2020c,d). We constructed feature vectors with
CKSAAPs and CKSAAGPs because plant R proteins contain
motif information distinct from that of non-R proteins
(Supplementary Figure 1). The numerical encoding schemes
of CKSAAP and CKSAAGP have exhibited obvious differences
between R and non-R proteins using Wilcoxon rank sum
test (Supplementary Figure 2). Table 2 showed that different
models had different responses to the features with or without
CKSAAPs and CKSAAGPs. For example, the Acc of LR showed
no noticeable changes when CKSAAP and CKSAAGP features
were added, while the Acc of SVM was improved from 0.902
to 0.935 in the independent dataset when considering 5-spaced
amino acid pairs.

To determine the optimal algorithms and k value, we explored
the discrimination power of k = 3-, 5-, 7-, 9-, and 13-spaced
amino acid pairs using different algorithms (e.g., LR, KNN, SVM,
RF, DT, GBC, Adaboost, and ETC) (Supplementary Table 2).
We observed that SVM achieved better performance than other
algorithms in 10-fold cross-validation tests in the same k-value.
Although the AUC of SVM when k = 5 (AUCk = 5 = 0.948) was
slightly lower than that when k = 9 and 13 (AUCk = 9 = 0.953,
AUCk = 13 = 0.951) in the ROC curve in the independent
dataset tests, the PR curve showed 4.12 and 7.09% improvements
in AUC-PR when k = 5 compared with k = 9 and 13
(Figure 2). Moreover, the Acc, Spe, F1-score, and MCC values
were improved by 2.41% (4.94%), 3.41% (3.41%), 3.60% (8.77%),
and 6.72% (13.81%), respectively, compared with k = 9 (and
13) (Supplementary Table 2). Therefore, we chose SVM as
the model and k = 5 to build the plant R protein predictor.
The predictor showed satisfactory prediction results for the
independent dataset with an Acc of 0.935, Pre of 1.000, Sen
of 0.806, Spe of 1.000, F1-score of 0.893, MCC of 0.857, and
AUC of 0.948 (Table 2 and Supplementary Table 2). The
optimal parameters of SVM with the RBF kernel were C = 2.0
and γ = 0.0078.

Prediction Pipeline of prPred
Because the published methods based on machine learning
algorithms (e.g., NBSPred and DRPPP) are no longer available,
performance comparisons cannot be carried out between
prPred and the state-of-the-art methods. The alignment-
based tools, NLR-parser and Restrepo-Montoya’s method
are mainly applied to predict NLRs and PRRs (RLKs and
RLPs), respectively. The RGAugury project aims to identify
resistance gene analogs for plant genomes using interolog-
and domain-based approaches. In the study, prPred integrated
machine learning method and sequence alignment-based
method to analyze and evaluate the potential R proteins.

Except for predicting the potential R proteins, it was capable of
annotating protein domain families based on Pfam-A using a
hidden Markov model (HMM) and searching transmembrane
regions (TMs) using Phobius to differentiate RLPs/PLKs
from NLRs. Users can import protein sequences in FASTA
format, and the prPred prediction results can be saved to
CSV- and FASTA-formatted file. The CSV-formatted file
output contains information about the protein sequence ID,
prediction probability score, TM number, that as shown
in Table 3.

CONCLUSION

In this study, we developed a bioinformatics tool called
prPred for the prediction of plant resistance proteins that
combines CKSAAP and CKSAAGP features based on
SVM. The predictive and analytical results demonstrated
that the constructed model is an efficient predictor to
distinguish R proteins from non-R proteins. CKSAAP and
CKSAAGP features provide important improvements in
the prediction performance. We expect that prPred will be
a useful tool to facilitate biological research and provide
guidance for related experimental validation. In the feature,
we will use deep learning method and deep representation
learning features for prPred (Lv et al., 2019a, 2020a, 2021;
Li F. et al., 2020).
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