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Abstract

Cell adhesion molecules are important structural substrates, required for synaptic plasticity and synaptogenesis. CAMs differ
widely in their expression throughout different brain regions and their specific structural and functional roles in the brain
remain to be elucidated. Here, we investigated selected cell adhesion molecules for alterations in expression levels and
neuronal localization in validated mouse models for Alzheimer’s disease that mimic the age-related progression of amyloid
accumulation and tauopathy. Among the cell adhesion molecules analyzed, Nectin-3 expression was affected most and
specifically in all mouse models with tauopathy. In particular was Nectin-3 depleted from the specific region of the
hippocampus, known as the stratum lacunosum and moleculare, in mice that express wild-type or mutant human protein
Tau, either chronically or sub-acutely. Tauopathy progresses from the entorhinal cortex to the hippocampus by unknown
mechanisms that could involve transport by the myelinated axons of the temporoammonic and perforant pathways. The
decreased expression of Nectin-3 in the stratum lacunosum moleculare is an early marker of impaired transport, and
eventual synaptic problems, caused by beginning tauopathy.
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Introduction

Alzheimer’s Disease (AD) is the most prevalent form of

dementia and its incidence and prevalence is increasing in our

ageing populations [1]. Cognitive decline in AD was originally

proposed to result from extracellular amyloid plaques and

intraneuronal tauopathy, the two major pathological hallmarks

in post-mortem AD-brain. More recently, defects in the structure

and function of synapses were proposed as the underlying cause of

the progressive cognitive decline associated with normal ageing

and with dementia. Nevertheless, individuals with mild cognitive

impairment (MCI) do not necessarily convert to AD, despite the

reduced numbers of synapses in their hippocampal CA1 region

[2]. Factors that cause the synaptic defects in MCI and the

subsequent conversion to AD remain largely unknown. Accumu-

lation of amyloid peptides occurs in MCI, and is even observed in

normocognitive individuals. This is an important event in relation

to the triggering of tauopathy, the co-morbid pathology always

associated with amyloid accumulation in AD. The tauopathy

component in AD is known to comprise aberrantly increased tau

phosphorylation, which involves various kinases [3–5]. In partic-

ular, the role of activated glycogen synthase kinase-3 (GSK3)

needs to be further elucidated also because of its important

functions in normal synaptic transmission [6–9].

Learning and memory rely on the establishing and the

strengthening of synapses and neural circuits, which need to be

both stable and plastic [10]. Synaptic plasticity and spinogenesis

depend on modifications of membrane adhesion properties,

regulated by a wide variety of cell-adhesion molecules (CAMs).

Synapses comprise two types of junctions and both are populated

by different CAMs: (i) synaptic junctions with asymmetric profiles

across the synaptic clefts, wherein CAMs maintain the structural

integrity of the synapse and function in cell-cell signaling, and (ii)

puncta adherentia junctions (PAJ) that are mostly symmetrically

structured [11] with CAMs playing mechanical roles [12–15].

Problems with normal CAM functioning are suspected to

contribute to synaptic dysfunction, which may eventually lead to

neurodegeneration. Neurons within the entorhinal cortex (ERC)

and Cornus Ammonis (CA) regions (Fig. S1) are the most

vulnerable in AD, most likely due to these neurons harboring

the causes of disease initiation and spreading [16–20]. Two major

myelinated axonal tracks connect the ERC to the hippocampus: (i)
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the perforant pathway (PP) projecting from ERC layer II to

dentate gyrus, and (ii) the temporoammonic pathway (TA) linking

ERC layer III to CA1 by synapsing on apical dendrites within the

stratum lacunosum moleculare (SLM) [21,22]. The precise

anatomical connections and the roles played by different CAMs

in these pathways, in normal brain and in cognitive disorders such

as AD, remain to be elucidated.

Here, we investigated a selection of CAMs for alterations in

their expression and localization throughout the age-related

progression of amyloid and tauopathy in different mouse models.

These mouse models have been validated for specified aspects of

AD [23,24]. Among the CAMs analyzed, Nectin-3 expression was

the most noticeably affected in the AD mouse models for

tauopathy. Nectin-3 is a CAM predominantly expressed in PAJ

and we observed it to be lacking in the SLM of mice expressing

human protein Tau, either chronically by transgenesis or sub-

acutely by intracerebral injection of adeno-associated virus (AAV)-

vectors [5,25–27].

Materials and Methods

Transgenic mice and AAV mouse models
All animal experiments were performed by certified researchers

conforming to regional, national and European regulations

concerning animal welfare and animal experimentation, autho-

rized and supervised by the university animal welfare commission

(Ethische Commissie Dierenwelzijn, KULeuven). We formally

declare that we comply to the European FP7-Decision 1982/

2006/EC, Article 611, i.e. all research activities is carried out in

compliance with fundamental ethical principles and all experi-

ments are approved and overlooked by the respective Animal

Welfare Commissions.

The full details on the characterization and validation of the

mouse models used in this study are available in the associated

references. All the transgenic mice were generated in or back-

crossed to the FvB genetic background. Four major genotypes

were analyzed in depth in this study and were denoted according

to their transgene(s): (i) Tau.P301L: mice expressing human tau

protein containing the P301L mutation [25], (ii) APP.V717I: mice

expressing amyloid precursor protein(APP) with the V717I

mutation [28,29], (iii) bigenic biAT: mice which are a cross of

the APP.V717I x Tau.P301L mice [26,30], and (iv) bigenic biGT:

mice which are a cross of the Tau.P301L x GSK3b[S9A] mice

[26]. For some experiments, these strains were compared to two

other strains, mice expressing human Tau.4R [31] or mice

expressing GSK3b[S9A], constitutively active GSK3b and denot-

ed TG3 [32,33]. Mice deficient in protein tau (Jackson labs, Bar

Harbor, ME) were used as a negative control in some experiments

[34].

We also analyzed FvB wild-type mice (age 4–7 months) injected

unilaterally in their hippocampus at coordinates posterior

1.94 mm, lateral 1.4 mm, ventral 2.2 mm relative to bregma,

with adeno-associated virus vectors (AAV) to express one of the

following human proteins: wild-type Tau.4R, mutant Tau.P301L,

C-truncated Tau (Tau.255) lacking the microtubule-binding

domains, wild-type APP, and the triple mutant APP-SLA

(Swedish-London-Austrian mutation) [5,27]. Injection of AAV-

Tau.4R in the entorhinal cortex was at coordinates posterior

4.72 mm, lateral 3.25 mm and 3.5 mm relative to bregma.

Hippocampal synaptosomes
Hippocampi were rapidly dissected from mouse brains and

homogenized to prepare synaptosomes [35]. Crude synaptosomal

pellets were resuspended in 10 volumes of 50 mM HEPES

(pH 7.4) containing 2 mM EDTA and proteinase and phospha-

tase inhibitors. Total homogenates and synaptosomal preparations

were analyzed by western blotting, after proteins were denatured,

reduced and separated on 10% Tris-Glycine SDS-PAGE gels

(Anamed, Germany). After protein transfer, nitrocellulose mem-

branes were blocked with skimmed milk (5% in TBS) and probed

for: Nectin-3 (rabbit anti Nectin-3, AbCam 63931), Nectin-1

(rabbit anti Nectin-1, generous gift from H.J. Federoff, George-

town University; [36]), NCAM (goat anti NCAM, AbCys

AbC0026), and SynCAM (rabbit anti SynCAM, Sigma S4945)

by overnight incubation with the primary antibodies at 4uC. After

rinsing, membranes were incubated with suitable peroxidase-

labeled secondary antibodies for 1 hr at room temperature.

Development of immune reactions (ECL prime; GE Healthcare),

image acquisition and analysis were performed as previously

described (ImageQuant software v7.0; LAS 4000 imager, GE

Healthcare) [35,37].

In situ hybridization
Mouse brains were quickly removed, frozen in isopentane

cooled on dry ice, and stored at 280uC until analysis. In situ

hybridization was performed as described [38,39]. In brief,

coronal brain sections (20 mm) were thaw-mounted on superfrost

slides, dried and kept at 280uC. The following primers were used

to generate antisense RNA hybridization probes (485 basepairs)

recognizing shared sequences of Nectin-3 variants: AGCCGTTA-

CATTCCCACTTG (forward primer) and ATTGTCCATC-

CAACCTGCTC (reverse primer). The riboprobe for Nectin-

1(406 basepairs) was generated using the following primers:

AGTCGGGTTGTAGATGGCCA (forward primer) and

GTCATCAGCCGTTACCGTTT (reverse primer). After radio-

labeling, hybridization of slides were apposed to film (Biomax MR,

Eastman Kodak) and autoradiographs were digitized for determi-

nation of relative expression by dedicated software (Scion Image

analysis).

Immunohistochemistry (IHC)
Mice were anesthetized (Nembutal; 100 mg/kg, i.p.) before

transcardiac perfusion with ice-cold saline (4 ml/min, for 2 min).

Brains were quickly removed and fixed overnight in 4%

paraformaldehyde in PBS at 4uC, and stored in PBS containing

0.1% sodium azide at 4uC until sectioning by vibratome (40 mm).

Immunohistochemistry was performed as previously described

[25–27,35]. After rinsing in PBS, sections were pretreated for

15 min with 1.5% H2O2 in 50% methanol/PBS to eliminate

endogenous brain peroxidase activity. Subsequent blocking of

nonspecific binding sites by incubation in 10% fetal calf serum,

0.1% Triton X-100 in PBS (blocking solution), was followed by

incubation at 4uC overnight with primary antibodies: AT180

(mouse anti-pT231, Thermo Scientific MN1040), Nectin-3 (rabbit

anti Nectin-3, AbCam 63931), Nectin-1(generous gift from H.J.

Federoff, Georgetown University; [36]), NCAM (goat anti

NCAM, AbCys AbC0026), PSA-NCAM (mouse anti PSA-

NCAM, AbCys AbC0019) or SynCAM (rabbit anti-SynCAM,

Sigma S4945). After rinsing (0.1% TritonX-100 in PBS), sections

were incubated for 1 h with the appropriate secondary antibodies

diluted 1:500 in blocking buffer. When indicated, sections were

incubated for 30 min with avidin-biotin complex (Vectastain ABC

Elite, Vector labs). Sections were rinsed in PBS and incubated for

5 min in 50 mM Tris-HCl (pH 7.6), before staining with 3,39-

diaminobenzidine (0.5 mg/ml), 0.3% H2O2 in 50 mM Tris-HCl

(pH 7.6). Hematoxylin was used for counterstaining, prior to

dehydration by passage through a graded series of ethanol-water

mixtures. After incubation in 100% xylol, the dehydrated sections
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were mounted on microscope glass-slides (DePeX) [35]. For

confocal microscopy, following overnight incubation with HT7

(mouse anti HT7, Thermo scientific MN1000) and Nectin-3

(rabbit anti Nectin-3, AbCam 63931) and rinsing (0.1% TritonX-

100 in PBS), sections were incubated for 1 hr with appropriate

Alexa-488 or Alexa-594 labeled secondary antibodies (diluted

1:1000 in blocking buffer). Sections were treated to reduce auto-

fluorescence (Autofluorescence Eliminator Reagent, Millipore

#2160) and mounted using Mowiol-Dabco containing Hoechst

stain (Molecular Probes #33342). All confocal images were

acquired using the same settings.

Analysis of myelin was by histological staining (Black Gold II

myelin staining [40] (Millipore, AG400) following the provided

instructions, and by IHC for 29,39-cyclic nucleotide 39-phospho-

diesterase (CNPase) (Millipore, MAB326) and for Myelin Proteo-

lipid Protein (PLP) (AbD Serotec, MCA839G).

PSA-NCAM positive cells in the granular cell layer of the

dentate gyrus (Fig. S1) were counted under microscopic observa-

tion (x64 magnification) with the experimenter blinded to the

identity of the sections, as previously described [41]. Three

sections per mouse, spaced over 240 mm, were analyzed and

results expressed as the number of PSA-NCAM positive cells per

0.15 mm2 of granular cell layer of dentate gyrus (DG). Nectin-3

IHC staining intensity was quantified, with the experimenter blind

to the identity of the sections, using grey level optical density

(Qwin software; Leica) in three different areas of SLM versus

stratum radiatum (SR) (Fig. S1). For transgenic models, results

were expressed as the optical density (OD)-ratio of SLM/SR, and

averaged for each genotype. For the AAV-injected mice models,

the OD-ratio of SLM/SR were computed for both the ipsi and

contra lateral sides, and results expressed as the ratio of the ipsi

over contra lateral side. Regional brain areas were measured using

dedicated software (Qwin, Leica).

Statistical analysis
Statistical analysis was performed using dedicated software

(GraphPad Prism v5.03; San Diego, CA). Data-sets were analyzed

either by Student’s t-test (unpaired, two-tailed) or ANOVA (one-

way or two-way), followed by Dunnett or Bonferroni post hoc test as

indicated in the figure legends. Statistical significance was defined

as p,0.05.

Results

In this study, we aimed to analyze immunohistochemically and

biochemically the expression and localization of selected CAMs

(Table 1) in the brains of transgenic mice that are validated models

for amyloid and tau pathology [5,24–26,29,35,42,43]. The CAMs

analyzed in this study were selected for their reported or presumed

contribution to cognitive brain functions, particularly to deficits in

memory and learning as affected by normal ageing and by chronic

diseases associated with old age.

NCAM
NCAM, arguably the best characterized neuronal CAM,

presents biochemically as 3 major isoforms: two transmembrane

isoforms denoted NCAM-180 and NCAM-140, while NCAM-120

is GPI-anchored [44,45]. Unfortunately, the lack of isoform-

specific antibodies makes it impossible to distinguish between the

three isoforms in IHC. Nevertheless, NCAM was observed to be

located throughout the brain, most prominently in the CA3 and

DG sub-regions of the hippocampus (Fig. 1A, upper panels).

NCAM was evident in somata of CA1 pyramidal neurons and

their apical dendrites (Fig. 1A, lower panels). Neither the pattern

nor the intensity of NCAM expression was consistently altered in

the different mice analyzed for each genotype (Fig. 1A).

NCAM was further analyzed biochemically in total hippocam-

pal homogenates and observed mainly as the two larger isoforms,

with the 120 kDa isoform much less prominent (Fig. 1B). No

significant changes in the levels of NCAM-140 and NCAM-180

were evident in any genotype, relative to wild-type FvB mice

(Fig. 1B; one-way ANOVA; NCAM-140 F(5,18) = 0.8239,

p = 0.5488 and NCAM-180 F(5,18) = 1.391, p = 0.2742). To

measure synaptic NCAM expression more specifically, we

prepared hippocampal synaptosomes from all genotypes. In these

synaptosomal preparations, NCAM-180 had a significantly higher

expression level in the TG3 and biGT mice than wild-type mice

(Fig. 1B; one-way ANOVA: F(5,18) = 4.934, p = 0.0051), the two

genotypes that express human GSK3b.S9A. A similar change was

observed in both these genotypes for the NCAM-140 isoform, but

statistical significance was reached only in the TG3 mice, not in

the biGT mice (Fig. 1B; one-way ANOVA: F(5,18) = 3.925,

p = 0.0139). No significant differences between genotypes were

observed for NCAM-120 isoform (Fig. 1B; one-way ANOVA;

F(5,18) = 0.475, p = 0.7901).

As an additional control, the total homogenate and synapto-

somal preparations from the hippocampi of Tau.P301L mice and

in all derived genotypes were checked for tau protein expression.

Expression of Tau (Fig. 1B) was similar to that previously reported

[35].

PSA-NCAM
NCAM is modified post-translationally by addition of a-2,8-

linked sialic acid to form polysialylated NCAM (PSA-NCAM)

presenting as a separate structural and functional entity. PSA-

NCAM is expressed in brain regions with high levels of synaptic

plasticity, predominantly in the developing nervous system, but

also in adult brain in areas involved in memory and learning,

particularly the hippocampus [46–50]. In agreement with these

and other reports, we observed that PSA-NCAM was expressed

mainly on neurons that border the hilar region of the DG (Fig. 2,

upper panel).

We measured the number of PSA-NCAM positive neurons in

the DG and this was demonstrated to depend on the genotype and

also on the age of the mice within each genotype (Fig. 2).

Interestingly, at a young age, all transgenic genotypes tended to

have higher numbers of PSA-NCAM expressing-neurons in the

DG than wild-type mice (Fig. 2). These differences reached

statistical significance in young biAT mice compared to age and

gender-matched wild-type mice (Fig. 2). Age-dependent decline of

PSA-NCAM expression in the DG was evident in all mice models

relative to wild-type mice, independent of the genotype (Fig. 2;

two-way ANOVA: genotype: F(5,76) = 5.515, p = 0.0002; age:

F(3,76) = 44.16, p,0.0001; interaction: F(15,76) = 0.9852,

p = 0.4782). As these observations are consistent with the usual

age-related changes in PSA-NCAM reported, this suggests that the

contribution of this specialized CAM to defects resulting from

ageing may not be specifically related to those inflicted by amyloid

or tau pathology.

SynCAM
IHC showed SynCAM-1 to be strongly expressed within the

hippocampus (Fig. 3A, upper panel). Particularly, the CA1 region,

including the SLM, stained intensely for SynCAM-1, although a

marked zone along the border of the SLM with the stratum

radiatum (SR) remained nearly devoid of SynCAM-1 (Fig. 3A,

lower panels, arrowheads). Similar patterns were observed in all
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mice, independent of their genotype by IHC staining for

SynCAM-1 (Fig. 3A).

Biochemical analysis of SynCAM-1 by western blotting revealed

multiple protein species reacting with the same antibody (S4945)

used for IHC. Although this antibody is reported to be specific for

SynCAM-1, we consistently observed additional SynCAM iso-

forms (Fig. 3B, upper left-hand panel). As the SynCAM-1

(100 kDa), -2 (60–75 kDa) and -3 (48 kDa) isoforms were clearly

distinguished by western blotting, as previously reported by others

[51], we consider the S4945 antibody to be a pan-SynCAM

antibody.

We analyzed the different SynCAM isoforms biochemically in

total homogenates and in hippocampal synaptosomes prepared

from all genotypes. The levels of the two smaller SynCAM

isoforms did not differ significantly in total hippocampal homog-

enates (Fig. 3B; one-way ANOVA: SynCAM-2, F(5,18) = 0.6476,

p = 0.6669 and SynCAM-3, F(5,18) = 0.3669, p = 0.8645) nor in

hippocampal synaptosomal preparations from the different geno-

types (Fig. 3B; one-way ANOVA: SynCAM-2, F(5,18) = 1.202,

p = 0.3476 and SynCAM-3, F(5,18) = 0.8915, p = 0.5073). Quanti-

fication of the 100 kDa SynCAM-1 isoform was hampered by the

much stronger chemiluminescence signals from the bands

representing SynCAM-2 and SynCAM-3, which interfered with

the analysis of SynCAM-1.

Nectins
Biochemical analysis of total hippocampal homogenates and of

hippocampal synaptosomes demonstrated that the overall levels of

Nectin-3 were not markedly affected in the transgenic models

(Fig. 4A; one-way ANOVA: total homogenates F(5,18) = 0.5732,

p = 0.7198 and synaptosomes F(5,18) = 1.734, p = 0.1779). Similar-

ly, biochemical analysis of hippocampal total extracts or synap-

tosomal fractions did not show any effects on Nectin-1 protein

levels in any of the genotypes (Fig. 4B; one-way ANOVA: total

homogenates F(5,18) = 0.6277, p = 0.6809 and synaptosomes

F(5,18) = 1.671, p = 0.1926). IHC demonstrated Nectin-3 expres-

sion in the hippocampus of wild-type mice predominantly in the

CA3 and the SLM of CA1 (Fig. 5A). Unexpectedly, a marked

decrease, or even absence of Nectin-3 was observed in the CA1

SLM of Tau.P301L mice (Fig. 5A; t-test: p = 0.0022). In contrast,

again Nectin-1 was not affected in the SLM of Tau.P301L mice

(Fig. 5A; t-test: p = 0.3622). We concluded that the observed

under-representation of Nectin-3 in the SLM of Tau.P301L mice

was not a general defect, but specific for this specialized CAM.

Nectin-3 defect in SLM of Tau.P301L mice
The SLM of CA1 acts as a connection hub for the ERC to

hippocampus, linked by the temporoammonic pathway (TA). The

ERC and CA regions are the first limbic structures targeted by the

pathology of AD, before it spreads to other brain regions

[18,19,52]. To determine whether the decreased levels of

Nectin-3 in the SLM of Tau.P301L mice originated in the CA1

or in the ERC, we performed in situ hybridization to detect the

mRNA of both Nectins.

Nectin-3 mRNA was most prominent in the hippocampal CA

subregions (Fig. 5B, left panels) and tended to be lower in CA sub-

regions of Tau.P301L mice, but the difference was not statistically

significant relative to wild-type mice (Fig. 5B; t-test: CA1,

p = 0.0530; CA3, p = 0.0692). In contrast, the marked decrease

of Nectin-3 mRNA was evident in the ERC, particularly in layer II

(Fig. 5B; t-test: layer II, p = 0.001; layer III-V, p = 0.0205). This

suggested two possible causes for the low levels of Nectin-3 protein

in SLM: either the low levels of mRNA indicate an impaired

synthesis of Nectin-3 by ERC neurons, or more likely the impaired

transport of Nectin-3 protein from ERC to SLM in Tau.P301L

mice.

The levels of Nectin-1 mRNA were decreased in the CA3 of

Tau.P301L mice relative to wild-type mice (Fig. 5C; t-test: CA3,

p = 0.0101). The decrease was nevertheless less pronounced than

that of Nectin-3 in the ERC, which may explain why Nectin-1

protein levels were not markedly affected in the hippocampus of

Tau.P301L mice.

We analyzed whether expression of protein Tau itself was

affected in the SLM of Tau.P301L mice, and compared by IHC

Table 1. Overview of the Cell Adhesion Molecules analyzed.

CAM Main Characteristics Localization (tentative) References Antibodies

NCAM 3 isoforms distinguished by MW Pre- & post-synaptic [49,64–66] AbCys AbC0026

Role in: NCAM-180 postsynaptic

- Development NCAM-140 neurons & glia

- Plasticity NCAM-120 mainly glia

- Cognition

PSA-NCAM Polysialylated version of NCAM Pre- & post-synaptic [41,67,68] AbCys AbC0019

Role in:

- Spatial memory

SynCAM 4 isoforms distinguished by MW Pre- & post-synaptic [69–72] Sigma S4945

Role in:

- Cognition

Nectin-1 Interacts with Nectin-3 Puncta adherentia junctions [12,14,36] gift H.J. Federoff

Binds actin (l-Afadin) Pre-synaptic (CA3

Nectin-3 Interacts with Nectin-1 Puncta adherentia junctions [12,14,60,61] AbCam 63931

Binds actin (l-Afadin) Post-synaptic (CA3)

Axonal

Abbreviations: MW, molecular weight; NCAM, neural cell adhesion molecule; PSA, polysialic acid.
doi:10.1371/journal.pone.0063589.t001
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Figure 1. Expression of NCAM in the hippocampus and in synaptosomes. A. NCAM expression in hippocampus (upper panels) and CA1
(lower panels) of selected transgenic mice (age 4 months) compared to wild-type FvB mice. Images are representative of the median expression
observed (n = 5/6 per genotype). Scale bars: 400 mm in upper panels, 100 mm in lower panels. B. NCAM expression in total homogenates (left panels)
and hippocampal synaptosomes (right panels) (n = 4 per genotype). NCAM expression was normalized to actin levels and presented relative to wild-
type FvB mice. Note that NCAM-120 signals were at least one order of magnitude weaker, hampering reliable quantification. Differential exposure
times were used for the NCAM-180 isoform and NCAM-140/120 isoforms. The presence of human Tau was verified biochemically in each genotype
and preparation tested. Data: mean 6 SEM, statistically analyzed by one-way ANOVA followed by Dunnet post hoc test with respect to FvB (* p,0.05,
** p,0.01).
doi:10.1371/journal.pone.0063589.g001
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the localization of Nectin-3 to that of selected phosphorylated Tau

isoforms. Among the different phospho-specific antibodies ana-

lyzed, AT180, defining the pT231 phospho-epitope on protein Tau,

proved most informative. AT180 markedly labeled neurons and

processes in the hippocampus, as well as in ERC layers II to V of

Tau.P301L mice (Fig. 6A). Moreover, on serial sections, the same

neurons and layers of the ERC were observed to have a lower

intensity of staining and lesser density of Nectin-3 positive neurons

in the ERC of Tau.P301L mice, relative to wild-type mice (Fig. 6A).

Moreover, neurons expressing human protein Tau in the ERC

of Tau.P301L mice, stained much weaker for Nectin-3 (Fig. 6B),

resulting in less cells showing colocalization. Moreover, the images

clearly illustrated the important decreased number of neurons that

expresses Nectin-3 in Tau.P301L mice, compared to wild-type

FvB mice.

These combined data therefore suggested that expression of

mutant Tau.P301L, and the concomitant early stages of beginning

tauopathy marked by increased phosphorylation of protein tau in

the entorhinal cortex, specifically impairs the expression of the

synaptic CAM Nectin-3 in the SLM of the hippocampus.

Nectin-3 defect in SLM of other transgenic models
The specific defect in the expression of Nectin-3 in the SLM of

Tau.P301L mice led us to investigate whether Nectin-3 expression

was affected in our other models for amyloid and tauopathy.

Interestingly, the outcome of IHC analysis was clear-cut: Nectin-3

protein was not only significantly reduced in the monogenic

Tau.P301L mice, but also in the bigenic biGT mice, combining

Tau.P301L x GSK3b.S9A transgenes, without any effect of age

(Fig. 7A, B, C; two-way ANOVA: genotype: F(5,76) = 45.53,

p,0.0001; age: F(3,76) = 0.1511, p = 0.9287; interaction:

F(15,76) = 1.085, p = 0.3844, upper panel*). Moreover, a marked

reduction of Nectin-3 levels in the SLM was also observed in

transgenic mice that express human wild-type Tau.4R protein

[31,32], while mice deficient in endogenous mouse protein Tau

had normal expression levels of Nectin-3 in their SLM (data not

shown). Interestingly, biAT mice that express human Tau.P301L

in combination with human APP.V717I transgenes, and thereby

develop the combined amyloid and tau pathology typical for AD

[26], also showed reduced Nectin-3 levels in the SLM (Fig. 7A, C).

In contrast, the parental APP.V717I mice, with amyloid pathology

only, presented with unaltered Nectin-3 levels in the SLM (Fig. 7A,

C).

Our combined results corroborate the hypothesis that a

reduction in Nectin-3 expression in the hippocampal SLM is

specifically induced by expression of human protein tau. The

observation that expression of human wild-type Tau.4R and

human mutant Tau.P301L protein led to the same defect in

Figure 2. PSA-NCAM expression in the Dentate Gyrus. Upper panel: Representative images of IHC for PSA-NCAM expression in young (3
months) and old (12 month or terminal) mice with genotypes indicated. Scale bar: 50 mm. Lower panel: Number of PSA-NCAM positive neurons in the
dentate gyrus of mice aged 3, 6, 9, and 12 months (n = 3 to 6 per age-group). Data: mean 6 SEM, analyzed by two-way ANOVA followed by
Bonferroni post hoc test: *p,0.05, **p,0.01, ***p,0.001, ****p,0.0001 (* relative to 3 months); $$p,0.01 ($ relative to FvB).
doi:10.1371/journal.pone.0063589.g002
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Figure 3. SynCAM in the hippocampus and synaptosomes. A. IHC for SynCAM in hippocampus (upper panels) and CA1 region (lower panels)
of young mice (age 4 months) of the indicated genotypes. Arrowheads denote the layer between CA1 SLM and SR in which SynCAM is absent.
Images are representative for median expression observed (n = 5/6 per genotype). Scale bars: 400 mm in upper panels, 100 mm in lower panels. B.
Biochemical analysis of SynCAM isoforms in total homogenates (upper panels) and synaptosomal preparations (lower panels) from the hippocampus
(n = 4 per genotype). Data were normalized to actin levels and reported relative to those in wild-type FvB mice. Quantification of SynCAM-1 was not
possible because of the poor reaction with the antibody, producing too weak signals. Data: mean 6 SEM, analyzed by one-way ANOVA followed by
Dunnett post hoc test with respect to FvB.
doi:10.1371/journal.pone.0063589.g003
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Nectin-3 in the SLM, suggested a similar underlying mechanism.

Nevertheless, the phenotypes of Tau.4R and Tau.P301L mice

differ specifically: severe axonopathy in the Tau.4R mice caused

by microtubuli-associated transport problems is not observed in

Tau.P301L mice [25,26,31,32,53].

Because Nectin-3 expression was affected by protein Tau in

CA1 SLM, which contains the TA projections, we also investi-

gated Nectin-3 expression within the molecular layer of the DG,

which is the perforant path area of projection. Interestingly,

Nectin-3 levels in the molecular layer of the DG were significantly

affected by the genotype (Fig. 7D; two-way ANOVA: genotype:

F(5,76) = 8.078, p,0.0001; age: F(3,76) = 1.979, p = 0.1242; interac-

tion: F(15,76) = 1.160, p = 0.3208). Of note, however, only in old

Tau.P301L mice (age 9 months) tended to decrease Nectin-3,

whereas in old biGT mice the reduction was significant, with a

trend already at young age (3 months).

Figure 4. Nectin-3 in the hippocampus and synaptosomes. Nectin-3 levels in total homogenates and synaptosomal preparations from
hippocampus (n = 4 per genotype) normalized to actin levels and expressed relative to levels in wild-type FvB mice. Data: mean 6 SEM, analyzed by
one-way ANOVA followed by Dunnett post hoc test with respect to FvB.
doi:10.1371/journal.pone.0063589.g004
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Figure 5. Nectin-1 and Nectin-3 protein and mRNA expression. A. IHC for Nectin-3 and Nectin-1 proteins in hippocampus (upper panels) and
CA1 (lower panels) of Tau.P301L and wild-type FvB mice. Images are representative for the median of expression observed (n = 3). Levels of Nectin-3
and Nectin-1 are expressed as the ratio of optical densities measured in SLM and SR of CA1. The red broken line (ratio = 1) is added to illustrate the
relative levels of Nectin-3 in SLM versus SR, emphasizing the decrease of Nectin-3 in CA1 SLM. Data are represented as mean 6 SEM (n = 3 per
genotype), analyzed by unpaired Student’s t-test (two-tailed); ** p,0.01. Scale bars: 400 mm in upper panels, 100 mm in lower panels. Asterisks
denote the CA1 SLM region. B. In situ hybridization for Nectin-3 mRNA in the brain of Tau.P301L and wild-type FvB mice. Data: mean 6 SEM (n = 8
and 7, respectively), analyzed by unpaired Student’s t-test (two-tailed). C. In situ hybridization for Nectin-1 mRNA in the brain of Tau.P301L and wild-
type FvB mice. Values reported are mean 6 SEM (n = 8 and 7, respectively), analyzed by unpaired Student’s t-test (two-tailed)); * p,0.05, *** p = 0.001.
C. In situ hybridization for Nectin-1 mRNA in the brain of Tau.P301L and wild-type FvB mice. Values reported are mean 6 SEM (n = 8 and 7,
respectively), statistically analyzed by unpaired Student’s t-test (two-tailed); * p,0.05.
doi:10.1371/journal.pone.0063589.g005
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Nectin-3 defect in sub-acute AAV-Tau models
The specific defect in Nectin-3 expression in the SLM that we

consistently observed was in three strains of transgenic mice that

express human protein tau postnatally (weeks 2–3) as instructed by

the mouse Thy1-gene promoter. This led us to question whether

the same defect would occur in the sub-acute Tauopathy model

that we recently developed, based on intracerebral injection of

recombinant AAV vectors [5,27,43].

Following intracerebral injection of AAV-Tau.P301L in the

hippocampus of wild-type mice, a marked decrease in Nectin-3

protein expression was already evident at 10 days post-injection,

prior to signs of neurodegeneration (Fig. 8A, D; one-way ANOVA:

F(9,29) = 27.31, p,0.0001). Subsequent analysis after injection of

other AAV-vectors, and at later time-points post-injection, not

only confirmed the localized Nectin-3 protein decrease in the SLM

by the AAV-Tau.P301L vector (Fig. 8A, C, D) but also by the

AAV-Tau.4R vector that confers expression of wild-type human

Tau.4R (Fig. 8A, D). In contrast, similar intracerebral injection in

wild type mice of AAV-Tau.255, encoding the C-truncated

version of protein tau that is devoid of the C-terminal microtu-

bule-binding domains [5,27,43], did not affect Nectin-3 levels in

SLM (Fig. 8A, D). These combined observations provided

additional conclusive evidence for a direct, inverse relation

between the expression of human wild-type Tau.4R or mutant

Tau.P301L and the CAM Nectin-3 within the SLM. Moreover,

injections of lesser doses of AAV-Tau vectors did reduce or even

Figure 6. Nectin-3 T231-Tau in entorhinal cortex. A. IHC for pT231-Tau (AT180) and Nectin-3 in the entorhinal cortex of wild-type FvB mice and
Tau.P301L mice. Images are representative of the median expression observed (n = 3). Scale bars: 1 mm in upper panels, 200 mm in lower panels. B.
IHC for total human protein tau (HT7; green), Nectin-3 (red) and Hoechst (blue) in the entorhinal cortex of wild-type FvB mice and in Tau.P301L mice.
Images are representative of the median expression observed (n = 4). Scale bars: 50 mm.
doi:10.1371/journal.pone.0063589.g006
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eliminate the neurodegeneration in CA1, but still caused the

reduction of Nectin-3 in the SLM of CA1 (Fig. 8A, D).

Of note, similar intracerebral injections in wild-type mice of

either AAV-APP or AAV-APP.SLA to express human wild-type

APP or triple mutant APP.SLA [5,27,43] did not affect the

expression of Nectin-3 within the SLM, not even at 3 months post-

injection (Fig. 8B, D). As an additional control, we injected AAV-

EGFP vectors intracerebrally in wild-type mice and observed

normal levels of Nectin-3 in the SLM (Fig. 8B, D). The results

support and extend our observations on Nectin-3 expression in the

APP.V717I and biAT transgenic mice and exclude amyloid-

related effects on Nectin-3 expression in the SLM.

Finally, injection of AAV-Tau.4R in the ERC led to strong

expression of human Tau in the TA and PP pathways (Fig. S2).

Moreover, the concomitant selective decreased expression of

Nectin-3 in CA1 SLM underscored the hypothesis that at least a

major part of Nectin-3 protein originated in ERC neurons.

We conclude that neurodegeneration of CA1 pyramidal

neurons in AAV-Tau models does not explain the lack of

Nectin-3 protein in the CA1 SLM and that the origin of Nectin-

3 in SLM is most likely located in the ERC. This outcome fits the

accepted localization of Nectin-3 as mainly axonal, although some

dendritic contribution cannot be excluded. These conclusions

would further imply that Nectin-3 mRNA or protein is transported

from the ERC to the SLM, by way of the TA, resulting in the

localization of Nectin-3 in the pre-synaptic compartments of the

TA-axons in the SLM.

Discussion

Cognitive decline, late in normal ageing and early in

neurodegenerative disorders, must find its causes at the level of

dysfunctional synapses that lead only later, directly or indirectly, to

degeneration of the neurons they connect. The brain-regions that

are affected by normal ageing and/or compromised by disease

vary considerably individually, depending on unknown genetic

and epigenetic factors. In neurodegenerative diseases, the affected

brain regions are generally well delineated, for instance the

hippocampal formation in AD, or the frontal lobe in fronto-

temporal dementia. In addition to the regional diversity, the

structural and functional composition of synapses varies in

different brain-regions, posing additional analytical problems

and interpretation issues. Among the many proteins that are

needed to make up functional synapses, CAMs are important

partners. Many different types of CAMs are known as integral

synaptic constituents, needed for the structure but also for the

plasticity of synapses, making CAMs subject to change for

physiological adaptation, but also vulnerable in disease processes.

Our combined data argued neither for a general nor for a

consistent effect on the different synaptic CAMs in the transgenic

mouse models analyzed. Our studies showed widely differing

responses: some CAMs were not affected, while others were

increased or decreased in specified brain-regions. NCAM, PSA-

NCAM and SynCAM were demonstrated to be either marginally

affected, or to be not informative for the specific processes that we

are interested in. Interestingly, the demonstrated effects of GSK3b
on NCAM may relate to the phosphorylation of NCAM by this

important kinase [54], while conversely, NCAM-derived peptides

modulate GSK3b-medicated intracellular signaling [55]. Of

interest, young transgenic mice of all genotypes tended to express

higher levels of PSA-NCAM than wild-type mice in the hippocam-

pus, but all underwent a similar age-dependent decline in PSA-

NCAM, as documented previously for wild-type animals [41,48].

Our most marked, and unexpected finding, was the diminished

expression of Nectin-3 in the SLM of all mice that express human

protein tau, either wild-type or mutant, and either chronically by

transgenesis or sub-acutely by intracerebral AAV-vector injection.

Unlike SynCAM and NCAM that are located within the synaptic

cleft, Nectins are predominantly found at puncta adherentia

junctions. Nectin-3 has been proposed to be asymmetrically

distributed, and to differ from Nectin-1 respectively by post- and

pre-synaptic locations, presumed to allow heterologous interaction

[12]. Interestingly, the decrease in Nectin-3 was already apparent

early in the disease process, long before the appearance of

axonopathy or fibrillar intra-neuronal tauopathy in the transgenic

models, or of CA1 neurodegeneration in the AAV-models [5,25–

27,31,32].

All data obtained in the different transgenic genotypes that

express human protein Tau chronically, in combination with the

acute models of AAV-Tau vectors injected intracerebrally,

converge on, and support the conclusions.

The effect on expression of Nectin-3 in the SLM by the

beginning tauopathy, prior to Tau aggregation, was both rapid and

early. Moreover, it is observed only for this CAM and specifically in

the SLM, the brain region targeted by myelinated axons originating

in the ERC. Interestingly, the pathological process of neurodegen-

eration and the loss of Nectin-3 was provoked by intracerebral

injection of AAV-Tau.P301L and AAV-Tau.4R vectors, but not by

AAV-Tau.255 [5,27,43]. Obviously, the C-terminal microtubule-

binding domain of protein tau is essential to provoke both

neurodegeneration and disruption of Nectin-3 expression in the

SLM. These data on truncated Tau lacking its microtubular binding

and transport module, complement the in situ hybridization results

for Nectin-3 mRNA and implicate the microtubular domain of

protein tau in the proposed mechanisms: besides the decreased

Nectin-3 mRNA levels, we propose disturbed transport from ERC

to hippocampus by protein tau to be co-responsible for the reduced

expression of Nectin-3 in the SLM.

Our data support the hypothesis that Nectin-3 in the SLM

originates from the entorhinal cortex and is transported by the

myelinated axons of the temporoammonic pathway [56,57]. The

specific hippocampal region concerned, the SLM of CA1, is of

considerable functional interest because of its normal role as the

connection hub of ERC to hippocampus. The TA consists of

myelinated axons that originate in ERC layer III and synapse on

distal parts of the apical dendrites of pyramidal CA1 neurons [57–

Figure 7. Expression of Nectin-3 in the SLM. A. IHC for Nectin-3 in hippocampus and CA1 of young mice with the genotypes indicated (age 3
months). Asterisks denote low or negative Nectin-3 expression within SLM of CA1. Scale bars: 400 mm in upper panels, 100 mm in lower panels. B.
Representative higher power images of SLM of FvB and Tau.P301L mice. Scale bar: 20 mm. C. Levels of Nectin-3 in mice with the indicated genotypes
at age 3, 6, 9 and 12 months or Terminal (n = 3 to 6). Expression levels are the ratio of optical densities measured in SLM and SR of CA1. The red
broken line (at ratio = 1) represents the relative levels of Nectin-3 in SLM versus SR, is included to illustrate the relative decrease of Nectin-3 in SLM in
Tau.P301L and biGT mice at all ages. Data, mean 6 SEM, analyzed by two-way ANOVA followed by Bonferroni post hoc test when appropriate (*
p,0.05, ** p,0.01, *** p,0.001, ****p,0.0001, relative to wild-Type FvB mice). D. Levels of Nectin-3 in the molecular layer (ml) of the DG relative to
SR in the different genotypes at age 3, 6, 9 and 12 months or Terminal (n = 3 to 6). The red broken (ratio = 1) delineates equal levels of expression of
Nectin-3 in the ml layer of the DG and in the CA1 SR. Data are represented as mean 6 SEM, statistically analyzed by two-way ANOVA followed by
Bonferroni post hoc test when appropriate (* p,0.05, *** p,0.001, relative to wild-type FvB mice).
doi:10.1371/journal.pone.0063589.g007
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59]. The involvement of these regions is of interest physiologically

because of their function in memory and learning. Moreover,

these two brain regions also take up center-stage in Alzheimer’s

disease, in terms of the initiation and the spreading of the

pathology [16–19,52].

Although Nectin-3 expression within the molecular layer of the

DG region followed a similar trend to decrease, it was far less

pronounced. A possible explanation would be the organization of

both pathways, illustrated by histological and immunohistological

staining for myelin (Black Gold II, CNPase, PLP) (Fig.S3). The TA

located within the SLM appears far more dense than the perforant

pathway. We continue to analyze structural and functional

characteristics of the SLM, in terms of myelinated axons and

their synapses, in these mouse models for AD.

The exact consequences for the function of synapses in the SLM

need to be defined, but can be predicted to be important. The

function of Nectin-3 in the SLM, which according to our

hypothesis must be located pre-synaptically, should now be subject

to further analysis of eventual functional deficiency inflicted by

protein Tau and tauopathy. The proposed pre-synaptic localiza-

tion of Nectin-3 contrasts with its previously reported post-synaptic

localization [14], but supports the axonal localization observed in

central and peripheral nervous systems [60,61].

The SLM undergoes important pathological changes in AD,

denoted as ‘‘dendritic amputation’’ [52], which combined with

inflammation [62] was proposed to relate to the spatiotemporal

spreading of tauopathy in diseased brain [19]. The most recent

observations of close correlation between decreased size of SR and

SLM with cognitive decline in AD [63] is one additional strong

argument to promote a detailed investigation into the functional

changes associated with temporoammonic vulnerability in tauo-

pathies. The mouse models presented and characterized here offer

essential insights and experimental entry into these problems.

Supporting Information

Figure S1 Structures of Hippocampus and entorhinal
cortex analyzed. Left panel: main structures of interest analyzed

in this study, with Cornus Ammonis (CA) subfields delimited. CA1

is divided in stratum radiatum (SR) and stratum lacunosum

moleculare (SLM). Dentate gyrus (DG) is divided in molecular

layer (ml) and granular layer (gl). Right panel: higher magnifica-

tion of the entorhinal cortex with the different layers of interest

numbered from I to VI. Scale bars: 200 mm.

(TIF)

Figure S2 Intracerebral injection of AAV-Tau.4R in the
entorhinal cortex. A. IHC for total human tau HT7, Nectin-3

and Nectin-1 in wild-type FvB mice injected with AAV-Tau.4R in

the entorhinal cortex at coordinates posterior 1.94 mm, lateral

1.4 mm, ventral 2.2 mm relative to bregma. representative images

are shown of the hippocampus and its subregions, stained for total

human Tau, Nectin-3 and Nectin-1. Scale bars: overview,

400 mm; magnification, 100 mm. B. Ratio of optical densities of

IHC for Nectin-3 and Nectin-1 in CA1 SLM versus SR, and in

molecular layer of the DG versus CA1 SR (3 sections/mouse).

(TIF)

Figure S3 Histology and IHC of Myelin. Histological

staining using Black Gold II, and IHC for CNPase and PLP of

hippocampus (upper panels) and higher magnifications of TA (*)

and PP (+) in respectively CA1 SLM and molecular layer of the

DG (lower panels). Scale bars: upper panels:400 mm; lower panels:

100 mm.

(TIF)
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43. Jaworski T, Kügler S, Van Leuven F (2010) Modeling of Tau-mediated synaptic

and neuronal degeneration in Alzheimer’s disease. International journal of

Alzheimer’s disease 2010.

44. Reyes AA, Small SJ, Akeson R (1991) At least 27 alternatively spliced forms of

the neural cell adhesion molecule mRNA are expressed during rat heart

development. Molecular and cellular biology 11: 1654–1661.

45. Ditlevsen DK, Povlsen GK, Berezin V, Bock E (2008) NCAM-induced

intracellular signaling revisited. Journal of neuroscience research 86: 727–

743.

46. Fox GB, O’Connell AW, Murphy KJ, Regan CM (1995) Memory consolidation

induces a transient and time-dependent increase in the frequency of neural cell

adhesion molecule polysialylated cells in the adult rat hippocampus. Journal of

neurochemistry 65: 2796–2799.

47. Becker CG, Artola A, Gerardy-Schahn R, Becker T, Welzl H, et al. (1996) The

polysialic acid modification of the neural cell adhesion molecule is involved in

spatial learning and hippocampal long-term potentiation. Journal of neurosci-

ence research 45: 143–152.

48. Rønn LC, Berezin V, Bock E (2000) The neural cell adhesion molecule in

synaptic plasticity and ageing. International journal of developmental neurosci-

ence: the official journal of the International Society for Developmental

Neuroscience 18: 193–199.

49. Venero C, Herrero AI, Touyarot K, Cambon K, López-Fernández MA, et al.
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