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Abstract

Visual stimuli are represented by a highly efficient code in the primary visual cortex, but the

development of this code is still unclear. Two distinct factors control coding efficiency: Rep-

resentational efficiency, which is determined by neuronal tuning diversity, and metabolic effi-

ciency, which is influenced by neuronal gain. How these determinants of coding efficiency

are shaped during development, supported by excitatory and inhibitory plasticity, is only par-

tially understood. We investigate a fully plastic spiking network of the primary visual cortex,

building on phenomenological plasticity rules. Our results suggest that inhibitory plasticity is

key to the emergence of tuning diversity and accurate input encoding. We show that inhibi-

tory feedback (random and specific) increases the metabolic efficiency by implementing a

gain control mechanism. Interestingly, this led to the spontaneous emergence of contrast-

invariant tuning curves. Our findings highlight that (1) interneuron plasticity is key to the

development of tuning diversity and (2) that efficient sensory representations are an emer-

gent property of the resulting network.

Author summary

Synaptic plasticity is crucial for the development of efficient input representation in the

different sensory cortices, such as the primary visual cortex. Efficient visual representation

is determined by two factors: representational efficiency, i.e. how many different input

features can be represented, and metabolic efficiency, i.e. how many spikes are required to

represent a specific feature. Previous research has pointed out the importance of plasticity

at excitatory synapses to achieve high representational efficiency and feedback inhibition

as a gain control mechanism for controlling metabolic efficiency. However, it is only par-

tially understood how the influence of inhibitory plasticity on excitatory plasticity can

lead to an efficient representation. Using a spiking neural network, we show that plasticity

at feed-forward and feedback inhibitory synapses is necessary for the emergence of well-

distributed neuronal selectivity to improve representational efficiency. Further, the emer-

gent balance between excitatory and inhibitory currents improves the metabolic
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efficiency, and leads to contrast-invariant tuning as an inherent network property.

Extending previous work, our simulation results highlight the importance of plasticity at

inhibitory synapses.

Introduction

The primary visual cortex (V1) represents visual stimuli in a highly efficient manner [1, 2].

Recent research has identified two distinct factors underlying the efficiency of visual represen-

tations: First, representational efficiency in terms of absolute information content, which is

mainly determined by the receptive field tuning diversity [3]. Second, metabolic efficiency in

terms of the number of spikes required to represent a specific input stimulus. This aspect is

strongly influenced by gain control mechanisms caused by inhibitory feedback processing [4,

5]. How these determinants of coding functionality are shaped is only partially understood.

While it has long been known that excitatory plasticity is necessary for the development of an

accurate and efficient input representation [6, 7, 8], there has recently been growing interest in

the role of inhibitory plasticity, fueled by recent studies demonstrating plasticity at inhibitory

synapses [9]. As the synaptic plasticity of inhibitory interneurons in V1 likely exerts strong

effects on the outcome of excitatory plasticity [10], complex circuit-level interactions occur

between both types of plasticity. This notion has received further support based on recent the-

oretical studies [11]. Above all, these findings raise the question of how excitatory and inhibi-

tory plasticity can cooperate to enable the development of an efficient stimulus code.

Network models have proposed neural-level mechanisms of sparse code formation [6]

based on Hebbian plasticity. However, these models typically rely on simplified learning

dynamics [8, 12, 13] or consider plasticity only at a subset of projections in the network [14,

15], not addressing the development of feedback-based gain control. As such, it remains

unclear how functional input encoding can emerge during development in a more detailed V1

circuit model.

We here propose how a single underlying mechanism—the influence of inhibitory plasticity

on excitatory plasticity—is sufficient to explain both, the observed feed-forward tuning and

neuronal gain-control by feedback processing, which we demonstrate in a spiking network

model of V1-layer 4. To test for an additional influence of inhibitory strength on the emer-

gence of feed-forward tuning, we varied the balance between excitation and inhibition in the

network. Our findings support a role for inhibitory plasticity in the joint development of feed-

forward tuning and balanced inhibitory feedback currents. Importantly, this balance leads to

the spontaneous emergence of contrast-invariant tuning curves, as an inherent phenomenon

of the network and its plasticity dynamics. Our results link both representational efficiency

and metabolic efficiency to synaptic plasticity mechanisms.

Results

To investigate the interaction between excitatory and inhibitory plasticity, we designed a spik-

ing network model of V1-layer 4 consisting of an excitatory and inhibitory population, stimu-

lated with natural image patches (Fig 1A) (see Network input). The circuit of our neuronal

network implements both feed-forward and feedback inhibition, in agreement with anatomi-

cal findings [5]. Although different kinds of inhibitory neurons have been found in the neocor-

tex [16, 17], our network contains only one population of inhibitory neurons, as a

simplification. The size of the inhibitory population was chosen to match the 4:1 ratio between

excitatory and inhibitory neurons found in striate cortex [16, 18, 19]. The plasticity of the
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excitatory synapses follows the voltage-based triplet spike timing-dependent plasticity (STDP)

rule proposed by Clopath et al. [20]. The strength of the inhibitory synapses changes according

to the symmetric inhibitory STDP rule described by Vogels et al. [21], which achieves homeo-

stasis by maintaining a constant postsynaptic firing rate (ρ).

To analyze the influence of inhibitory plasticity on excitatory plasticity, we used two

approaches. First, we investigate how the balance between excitation and inhibition influences

the emergence of neuronal gain-control and feed-forward tuning, by comparing a network

with a 2 : 1 ratio of excitation to inhibition (E/I ratio) to a model version with a 3 : 1 E/I ratio,

averaged on 10, 000 natural scene patches (Fig 1B). This ratio is adjusted via the ρ parameter

exclusively. Additionally, we blocked inhibitory synapses after learning to investigate the

dynamic effects of inhibition on network coding (called blockInh). To analyze the influence of

inhibition during learning after all, a further model configuration did not contain any inhibi-

tory synapses (called noInh model) and learns with the absence of inhibition.

Second, to analyze if plastic inhibition has a measurable effect during learning, we deacti-

vated plasticity selectively at specific connections for two model variations: Only at the inhibi-

tory feedback connections (called fix fb inh) and at all excitatory projections to the inhibitory

population (called fix ff inh). We used shuffled weight matrices from a successfully learned

EI2/1 model for all connections to ensure that the network will have an E/I ratio comparable

to networks where all synapses are plastic. Only the incoming excitatory weights of the excit-

atory population are chosen anew from a normal distribution. To verify that learning is suc-

cessful with the shuffled pre-learned weights, we trained one model variation where all

connections are plastic (see S1 Fig). While we vary the inhibitory influence, the feed-forward

synapses to the excitatory population are plastic in all model configurations.

In all model configurations, the populations consist of the same number of neurons and

synapses between them. Each model configuration was repeated 20 times. If not mentioned

otherwise, initialized with randomly chosen weight values, to test the stability and reproduc-

ibility of the observed outcomes.

Fig 1. Network with excitatory and inhibitory plasticity rules. A Whitened image patches of size 12x12 were converted to

Poisson spike trains by setting the firing rates of LGN ON- and OFF-populations to the positive and the negative part of the

pixel values, respectively. Feed-forward inputs from LGN project both onto excitatory and inhibitory V1 populations, which are

mutually connected. The circuit therefore implements both feed-forward and feedback inhibition. Inhibitory interneurons

receive additional recurrent inhibitory connections. All excitatory synapses (orange) changes via the voltage-based STDP rule

(vSTDP) [20]. All inhibitory synapses (blue) changes via the inhibitory STDP rule (iSTDP) [21]. Connectivity patterns are all-

to-all. Population sizes are: LGN, 288 neurons; V1 excitatory, 144 neurons; V1 inhibitory, 36 neurons. Neurons in the LGN

population show Poisson activity and are split into ON- and OFF- subpopulations. B Inhibitory currents as a function of

excitatory currents, averaged across the duration of a stimulus. The post-synaptic target firing rate of the iSTDP rule (ρ)

controls the excitation to inhibition ratio at excitatory cells. For the EI2/1 model (green dots) a value of ρ = 0.4 leads to higher

inhibitory currents than ρ = 0.7 for the EI3/1 model.

https://doi.org/10.1371/journal.pcbi.1009566.g001
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We first analyze the structural characteristics of the network as a consequence of the learn-

ing process, and then present its functional properties. In both cases, we investigate the effect

of plastic vs fixed synapses and different inhibitory strengths.

Emergence of diversely tuned receptive fields

The receptive fields of V1 simple cells are often described by Gabor functions [22, 23, 24]. We

observe the emergence of Gabor-like receptive fields in our network for the excitatory and

inhibitory population with the spike triggered average method (STA, see Receptive field map-

ping). Without inhibition, most of the receptive fields have a similar orientation and position

(Fig 2A), as it is to be expected from the chosen learning rule, see also [20]. In contrast, the

presence of plastic inhibition during learning resulted in a higher diversity of receptive fields

with a more complex structure for the excitatory population (Fig 2B) and the inhibitory popu-

lation (Fig 2C).

We observed the emergence of stable receptive fields after presenting approx. 200, 000 sti-

muli (see S2 and S3 Figs). We presented another 200, 000 stimuli to ensure that all synapses

reach a stable state. The measured receptive fields showed a strong tendency for weight values

to cluster around the minimum or the maximum value (see S4 Fig). This is a known character-

istic of the learning rule chosen for excitatory synapses, which enforces strong synaptic compe-

tition [15, 20].

To measure the preferred orientation of each neuron, we presented sinus gratings with dif-

ferent orientations (see Tuning curves and orientation selectivity). To quantify the diversity

of receptive field orientations across model repetitions, we calculated an orientation diversity

index (ODI) via the Kullback-Leibler divergence between the measured orientations and an

idealized uniform distribution of orientations (see Eq 15). Our calculated ODI is the exponen-

tial function of the Kullback-Leibler divergence and thus, higher values indicate a more

Fig 2. Tuning diversity requires inhibition during learning. A–C Learned response profile of 36 excitatory neurons from the

noInh model A, of 36 excitatory neurons from the EI2/1 model B, and of all 36 inhibitory neurons from the EI2/1 model C,

measured with the spike triggered average method. Lighter pixels represent positive values and darker values represent negative

values. D–F Histogram of the spatial orientation across 20 model runs, of the noInh model’s excitatory population D, the EI2/1

model’s excitatory population E, and the the EI2/1 model’s inhibitory population F. Note the strong clustering of orientations

in the noInh model D. The spatial orientation are measured by presenting sinus grating on different orientations (see Tuning

curves and orientation selectivity).

https://doi.org/10.1371/journal.pcbi.1009566.g002
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uniform orientation distribution, which means a higher orientation diversity (see Orientation

diversity).

A broader range of orientations emerged in the networks with inhibition (Fig 2E). Without

inhibition, most receptive fields converge to a preferred orientation around 0˚ or 180˚ (Fig

2D). In the model with weaker inhibition (EI3/1), receptive fields converge to a very similar

orientation distribution than in the EI2/1 model (see S5 Fig). This is mirrored in the orienta-

tion distribution (Fig 3). These results suggest that the presence of inhibition is more impor-

tant for the emergence of receptive field diversity than its strength. In earlier studies of simple

cells in the cat visual cortex, a broad distribution of different oriented simple cells has been

reported, with a tendency to more cells selective for horizontal stimuli [25], vertical stimuli

[26] or both [27]. In our simulations, both models with inhibition (EI2/1 and EI3/1) show a

broad distribution with a slightly higher number of cells with a preference for horizontal and

vertical stimuli (see Fig 2E and S5 Fig).

In addition, the inhibitory cells in the EI2/1 models also become selectively tuned, with a

clear preference at 0˚ and 180˚ (Fig 2F), as well as the inhibitory cells in the EI3/1 models (see

S5 Fig). This is in line with recent experimental reports of tuned inhibition in ferret V1 [28].

However, it is still debated whether tuned inhibition is as a general property of the visual sys-

tem. For example, in mouse V1, recent research has identified inhibitory interneurons which

are non-selective for orientation [29, 30, 31], very broadly tuned interneurons [32], and some

subtypes of inhibitory interneurons which have a sharp tuning [33].

To further analyze the influence of fixed and plastic feed-forward and feedback inhibition

on the resulting orientation diversity, we used the shuffled weight matrices from a EI2/1 model

to ensure a comparable balance between excitation and inhibition, except for the feed-forward

synapses of the excitatory cells, which are newly chosen from a normal distribution. We

observed a reduction of tuning diversity in the fix ff inh model, in which the excitatory input

weights to the inhibitory cells are unspecific and kept fixed (Fig 3). This presumably led to

highly homogeneous activity across the interneuron population. A stronger reduction of tun-

ing diversity occurred in the fix fb inh model, in which the inhibitory feedback connections

were kept fixed. As a consequence, all excitatory neurons received unspecific inhibitory

Fig 3. Tuning diversity is improved by plastic feed-forward and feedback inhibition. The orientation diversity

index (ODI) is calculated via the Kullback-Leibler divergence between an idealized orientation distribution and the

measured distribution in the network. The exponential of the divergence value is taken, so that higher values indicate a

more uniform orientation distribution. Green arrows indicate plastic synapses, black arrows denote fixed synapses.

Orange arrows indicate weaker synaptic connections. Dotted lines indicate that the model weights were initialized with

shuffled values from weights of a previous run of the EI2/1 model. The highest diversity of RFs is observed for all

models with fully plastic inhibition during learning (EI2/1, EI3/1, and blockInh models). Abolishing plasticity at feed-

forward inputs to inhibitory neurons led to a moderate decrease of orientation diversity (fixffinh model). Blocking

plasticity at inhibitory feedback synapses onto excitatory neurons led to a stronger decrease in orientation diversity

(fixfbinh model). The lowest diversity was observed in the noInh model, were inhibition was fully absent.

https://doi.org/10.1371/journal.pcbi.1009566.g003
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feedback. As expected, the noInh model showed the lowest degree of tuning diversity in the

absence of any inhibition.

Emergence of structured feed-forward and recurrent connectivity

As both, the excitatory and inhibitory cells in our network developed a tuning for orientation

and position, we expected that their modifiable synaptic connections developed a specific pat-

tern reflecting activity correlations [13, 14]. For an exemplary model simulation, our analysis

confirmed that excitatory neurons developed strong connections to inhibitory neurons with

similar orientation tuning (Fig 4A, top). Inhibitory weights to the excitatory layer showed a

similar pattern, although with somewhat reduced specificity (Fig 4A, bottom). This imple-

ments an indirect inter-neuron connection between two excitatory neurons via mutually con-

nected inhibitory neurons, to inhibit each other maximally. The development of recurrent

inhibitory synapses between similarly tuned inhibitory cells can be observed as well (Fig 4B).

Fig 4. Synaptic connections reflect tuning similarity. Weight matrices from the excitatory to the inhibitory population (and vice

versa) A, sorted by the receptive field orientation, and for the lateral inhibitory weights B. A, Top: Weights from the excitatory to the

inhibitory population. A, Bottom: Weights from the inhibitory to the excitatory population. For display, all weight matrices were

normalized by the maximum value. All weights are from the EI2/1 model. C Normalized synaptic strength as a function of the

template match between the pre- and postsynaptic neuron’s receptive fields for the EI2/1 (first row) and the EI3/1 (second row)

model. Shaded areas denote the mean +/- standard deviation. As expected, we observed strong weights between neurons with highly

similar receptive fields, and near-zero weights between neurons with highly dissimilar receptive fields. For neurons with a moderate

degree of RF similarity, we observed a steep transition from weak to strong weights at the E-I projection. At the I-E and I-I

projections, this transition was more gradual.

https://doi.org/10.1371/journal.pcbi.1009566.g004
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We next analyzed the connectivity structure based on all model repetitions as follows: First,

for any pair of neurons sharing a synaptic connection, we calculated the template match

between their receptive fields. Second, we binned the weight values and template match values

for all neuron pairs from all model repetitions. Finally, we plotted the average weight strength

as a function of the average template match for all neuron pairs per bin (Fig 4C). For both

models with plastic inhibition (the EI2/1 and the EI3/1 model), we observe that neurons with a

more similar receptive field have a higher mutual synaptic weight value. These results are in

agreement with recent experimental reports from mouse visual cortex [34].

Inhibition controls response decorrelation

We observed that the different levels of inhibition in the EI2/1 and EI3/1 models led to similar

orientation distributions. To investigate if response correlations between neurons only depend

on the orientation similarity or whether lateral inhibition has an additional decorrelation effect

(as mentioned in previous modeling approaches [8, 12, 13, 35]), we analyzed the development

of correlations during receptive field learning (Fig 5A). During the first 250, 000 of all 400, 000

input stimuli, a weak reduction of the correlation can be observed in the noInh model. The

EI2/1 model showed a pronounced decrease of correlations across learning, with the highest

reduction occurring in the early phase of learning showing the highest amount of changes of

the feed-forward weights. Weaker feedback inhibition (EI3/1 model) led to weaker decorrela-

tion of neuronal activity. The researcher in [36] recorded the neuronal activity in V1 of

macaque monkeys during the presentation of drifting sinusoidal gratings and reported a

dependence of pairwise response correlations on orientation tuning similarity. We performed

a similar analysis of our model data, to analyze the effect of feedback inhibition on the

response correlation with respect to the orientation selectivity. We sorted all cell pairs by simi-

larity, grouped them into 30 equally-spaced bins, and averaged their response correlation val-

ues within each bin, based on natural scene stimuli (Fig 5B). In both models without

inhibition, we observed a mean response correlation of� 0.95 for cell pairs with highly similar

receptive fields. With inhibition, this value dropped to� 0.8. By contrast, cell pairs with dis-

similar receptive fields showed average correlation values of around 0.4 for the noInh and the

blockInh model. Here, inhibitory processing substantially reduced the mean correlation to

near zero-values for the EI2/1 model. A comparison between the EI2/1 model and its

Fig 5. Inhibitory strength influences the response decorrelation. A The development of mean response correlation and weight change at the LGN

excitatory synapses across learning. Stronger inhibition, in the EI2/1 model, leads to a stronger decorrelation of the neuron responses during learning

(compare green with red (EI3/1) line). Mean response correlation changed only very slightly without inhibition (blue line). The change in the synaptic

weights (gray bars) decreases over the developmental process, indicating the emergence of stable receptive fields. B Response correlation is higher for

neurons with more similar receptive fields. Blocking inhibition (yellow line) after learning reveals that inhibition leads to a overall decrease of the

response correlation (green line).

https://doi.org/10.1371/journal.pcbi.1009566.g005
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counterpart with blocked inhibition shows that dissimilarly tuned neuron pairs are more

strongly decorrelated than pairs with highly similar tuning. At a first glance, this pattern con-

trasts with the emergent connectivity structure: The connectivity pattern favors strong mutual

inhibitory connections between inhibitory neurons which receive projections from (and proj-

ect back to) excitatory neurons with similar tuning, creating strong reciprocal inhibition (Fig

4A and 4B). However, our observation of target-specific decorrelation is best understood by

considering that correlated spike counts can arise both through a similarity of tuning and

through unspecific baseline activity, caused by contrast differences. Natural image patches are

likely to evoke broad excitation among many cells, leading to different neuronal responses as

sinusoidal gratings [37]. Due this, studies measuring the pairwise response correlation with

sinusoidal gratings, reported a stronger decorrelation effect between similar neurons [36, 38].

Despite that, studies presenting natural scene inputs to measure the neuronal response correla-

tion reported higher correlation values in comparison to sinusoidal gratings [1, 39] or more

similar values [40]. The correlation between dissimilarly tuned neurons is most likely caused

by the activity baseline, which is strongly reduced by inhibition. Besides, similarly tuned cells

will retain strongly overlapping tuning curves even after reduction of unspecific activity, asso-

ciated with strong correlation of their mean response [41]. Our observation that blocking the

inhibitory processing leads to an overall increase of activity correlation is in line with previous

studies. Sippy and Yuste [42] reported an increase of activity correlation between principal

cells from 0.31 up to 0.66 by reducing inhibition pharmacologically in thalamocortical slices

from mice (without considering receptive field similarities). A similar increase is observable if

the compare the mean pairwise correlation from the EI2/1 model (0.32) and the blockInh
counterpart (0.60).

Inhibitory feedback shapes tuning curves

To quantify the effect of inhibition on the magnitude of individual neuronal responses, we

measured orientation tuning curves of each neuron by sinusoidal gratings. For all approaches

and model variants, the maximum firing rate in the input was set to� 85Hz to obtain suffi-

ciently high activity levels. We observed high baseline and peak activity in both model variants

without inhibition (Fig 6A). However, activity levels in the blockInh model were lower than in

the noInh model, likely owing to its smaller and more dispersed receptive fields. As expected,

the model with active inhibitory feedback showed the lowest firing rate to input ratio. To

obtain a measure of tuning sharpness, we next estimated the orientation bandwidth (OBW) of

the excitatory population, based on the measured tuning curves. As expected, and consistent

with previous observations [5, 43], our model shows a sharpening effect through inhibition

(Fig 6B).

Duo to the same overall magnitude of inhibitory feedback as for the EI2/1 model, we

assume for the fix ff inh and the fix fb inh a highly similar behavior, as it has been reported in

previous work that broad or untuned inhibition causes tuning sharpening [17, 44, 45].

Spontaneous emergence of contrast-invariant tuning curves

Besides the sharpening of tuning curves, previous models suggest a role of inhibition in the

invariance to input contrast changes [17, 45, 46]. However, those models assume hard-wired

connectivity, and propose push-pull or anti-phase inhibition [45, 46]. Contrast-invariant V1

simple cells have been found in different mammals such as, cats [47, 48] or ferrets [49], based

on sinusoidal gratings with different contrast strength. We use the same approach (see Tuning

curves and orientation selectivity) to measure the tuning curves and calculated the averaged

OBW over all excitatory cells for the different contrast levels (Fig 7A). Interestingly, the OBW
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is constant only for the EI2/1 model. For the model with weaker inhibition (EI3/1 model) and

the model without inhibition (noInh), the OBW increases for higher input contrast values.

Similarly, we observed a contrast-dependent increase in tuning width when inhibition was

blocked after learning (blockInh). As it has been shown that random feedback inhibition is suf-

ficient for the emergence of contrast invariant tuning curves [44], we omit data for the fix ff
inh and fix fb inh models for clarity of display.

To understand how the strength of inhibition affects contrast tuning curves, we compared

the EI2/1 with the EI3/1 model with regard to their spike count, average membrane potential,

and the average of the summed synaptic input current, for different contrast levels. At any con-

trast level, the activity of neurons in the EI2/1 model remains strongly suppressed at non-pre-

ferred orientations and increases around the preferred orientation (Fig 8A). By contrast, the

EI3/1 model shows increased activity for high input contrast at all orientations (Fig 8B). This

results in increased OBW values for higher input contrast (see also S9 Fig for normalized spike

counts). Interestingly, for the non-preferred orientation, the average membrane potential the

EI2/1 model is less hyperpolarized for lower contrast than for higher contrast. For higher con-

trast, the average membrane potential increases at the preferred orientation and is substantially

stronger than for lower contrast. Both curves intersect around −50mV, close to the resting

state spiking threshold (−50.4mV) (Fig 8C). This can be explained with the average input cur-

rent: At higher contrast levels and non-preferred orientations, the feedback inhibitory current

increases more strongly than the excitatory current and nearly compensates it (Fig 8E and S3

(A) Fig), providing hyperpolarization of the membrane potential. This compensation of excita-

tion decreases around the preferred stimulus, where the membrane potential exceeds the spik-

ing threshold. In comparison, the membrane potential for the EI3/1 model increases

proportionally with the total input current caused by higher input contrast (Fig 8D and 8F and

S3(B) Fig). This suggests that the contrast-invariant tuning of the EI2/1 model depends on an

appropriate balance between excitation and inhibition.

Fig 6. Inhibition controls tuning curve sharpening. A Average tuning curve of all excitatory cells in the EI2/1 model, the

corresponding counterpart with blocked inhibition, and the no inhibition model. B The orientation bandwidth (OBW) of cells in all

three models. Every point represents the average OBW resulting from model simulation. Smaller OBW values correspond to

narrower tuning curves. As expected, the EI2/1 model (green) shows the narrowest tuning curves. The slightly reduced inhibitory

strength in the EI3/1 model (red) leads to moderately broader tuning curves. Fully blocking inhibition post-learning leads to both

wider tuning curves and increased baseline activity in the blockInh model (yellow). The broadest tuning curves and highest baseline

activity were observed in the noInh model (blue), which produced relatively large receptive fields.

https://doi.org/10.1371/journal.pcbi.1009566.g006
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Based on the observation of contrast invariant tuning curves, we conclude that feedback

inhibition modulates the neuronal gain controlled by input orientation and contrast. Fig 7B

shows the average response gain for the excitatory population, averaged across the whole pop-

ulation, and sorted by the input current(see Neuronal gain curves for more details). We show

the response gain curves for low and high contrast stimuli. For the model with blocked inhibi-

tion (blockInh), the gain curve is unaffected by contrast and follows the activation function

defined by the neuron model. The firing rate to input ratios of neurons in the EI2/1 model are

strongly reduced relative to the blockInh model, but this gain modulation is contrast-depen-

dent, as the highest reduction of firing rates is observed for high contrast. This shows that the

effect of inhibition on the neuronal gain function not only depends on the amount of excit-

atory input, but also on the stimulus orientation and contrast strength.

Sparseness is increased by both, inhibition and tuning diversity

As we observed that inhibitory processing led to an increase in the selectivity to artificial sti-

muli, we asked whether inhibition contributed to a sparser population code for natural

images. We first compared the overall spiking behavior based on raster plots of network

responses to five example image patches, for the EI2/1 (Fig 9A) and the blockInh model (Fig

9C). The model with active inhibition showed sparser firing and a less synchronous spiking

behavior than the model with blocked inhibition. Second, to quantify this effect, we mea-

sured the population sparseness for all model configurations, based on the responses to

10.000 natural image patches (Fig 9B). The highest sparseness value (0.62) was observed in

the EI2/1 model, 0.54 for the blockInh model and the lowest sparseness value (0.43) in the

noInh model. Interestingly, the development of a higher diversity of receptive fields had a

Fig 7. Response gain control by inhibition. A Mean OBW as a function of the contrast level in the input. Whiskers represent the standard deviation.

Data from the EI2/1 model (green line), the model with all synapsed are from and to the inhibitory population are random and fixed (gray line), EI3/1

model (red line), and noInh model (blue line). B Spike count as a function of the excitatory input current for the EI2/1 model (green line), the EI3/1

model (red line) and the blockInh model (orange line). Data are taken from the sinusoidal tuning curve measurement, sorted by input current. Squares:

Low input contrast. Triangles: High input contrast. Contrast-invariant tuning is only present in the EI2/1 model, while all other models show varying

degrees of contrast-dependent widening of tuning curves.

https://doi.org/10.1371/journal.pcbi.1009566.g007
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Fig 8. Emergence of contrast-invariant responses. A Average neural tuning curves for low and high contrast stimuli

in the EI2/1 model, B and the EI3/1 model. C Average membrane potential (averaged across all neurons in the

excitatory population) as a function of orientation and contrast level for the EI2/1 model, D and the EI3/1 model. E

Sum of the excitatory and inhibitory input currents as a function of orientation and contrast level for the EI2/1 model,

F and the EI3/1 model. In the EI3/1 model, high-contrast stimuli with non-preferred orientations are associated with

very different dynamics than in the EI2/1 model: In the EI2/1 model, the sum of excitatory and inhibitory currents is

near zero for non-preferred orientations at high contrast (E). In the EI3/1 model, the total synaptic current (F) remains

large enough to elicit considerable membrane depolarization for non-preferred orientations at high contrast (D),

reflected in elevated baseline activity and broader tuning (B).

https://doi.org/10.1371/journal.pcbi.1009566.g008
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stronger influence on the population sparseness than inhibitory processing: Sparseness val-

ues differed more strongly between the model configurations without inhibition, the noInh
and blockInh model, than between the EI2/1 and its blocked counterpart, which share the

same feed-forward receptive fields.

Metabolic efficiency benefits from strong feedback inhibition

The efficiency of information transmission (such as the numbers of spikes to represent specific

input stimuli and the amount of information transmitted via a spike), or metabolic efficiency,

is associated with the observed increase of the population sparseness [50]. To quantify the met-

abolic efficiency, we calculated the mutual information between input and response (see

Mutual information). This analysis revealed a strong impact of inhibition on transmission

efficiency (Fig 9D), normalized by spike count. The EI2/1 model shows the highest amount of

information per spike (0.96 bits/spike). A lower inhibition strength in the EI3/1 model leads to

a lower transmission efficiency (0.77 bits/spike). Both models without inhibition were associ-

ated with the least efficient population coding, with a lower value for the blockInh model,

caused by a more diverse receptive field structure. To analyze further how the increase in

information transmission was achieved, we calculated the discriminability index d0 on 500 ran-

domly chosen natural scene patches to quantify the trial-to-trial fluctuation. We observed that

higher d0 values were associated to both, high tuning diversity and the presence of inhibition

(see S6 Fig). The improvement in discriminability is likely caused by a reduction of unspecific

Fig 9. Sparse and efficient input representations through inhibitory processing. A Raster plot of the excitatory population for the

EI2/1 model, same for the blockInh model C. Spikes are recorded on the same five natural image patches. The red lines show the

stimulus onset. B Population sparseness for the EI2/1, the blockInh, and the noInh model, averaged across 10.000 natural scene

patches. Higher value represent a higher sparseness of population activity. D Mutual information in bits/spike for the same three

models as in B. B and D show data from 20 independent simulations per model configuration. Note the more synchronous

population activity in the noInh model (C), associated with reduced sparseness (B) and lower information content (D). While

blocking inhibition post-learning in the blockInh model decreases sparseness only moderately, it considerably reduces the

information per spike.

https://doi.org/10.1371/journal.pcbi.1009566.g009
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activity by inhibition, associated with more reliable stimulus representations, as observed in

cat V1 [51] and mouse V1 [52]. In summary, our results show that the inhibitory processes in

our models suppress redundant spikes which convey little information about the current stim-

ulus [53].

Metabolic efficiency has also previously been linked to a minimum wiring principle [54]

between neurons or cortical areas [54, 55]. While it would be interesting to explore effects of

structural plasticity on metabolic efficiency, we here focused on the effects of inhibition.

Input reconstruction benefits from plastic inhibition

We assume that a diversity of receptive fields, which encode the relevant input features, is cru-

cial to provide an input representation without loss. To measure the quality of the input repre-

sentation and to compare our model with existing sparse coding models, in terms of stimulus

encoding, we calculated the image reconstruction error (IRE), which measures the mean-

square error between the input image and its reconstruction obtained by linear decoding (see

Image reconstruction error). We plot the IRE as a function of the receptive field diversity,

measured by the orientation diversity index (ODI) as described previously (see Orientation

diversity). The EI2/1 model with active and plastic inhibition during learning showed the low-

est reconstruction error value (0.74), with a high ODI value (0.75) (Fig 10). By contrast, we

Fig 10. Plastic inhibition during learning improves input encoding quality via higher orientation diversity. Image

reconstruction error (IRE) as a function of the orientation diversity index (ODI), for the EI2/1 model (green dot),the EI3/1

model (red dot), the blockInh model (orange dot), model with fixed feed-forward inhibition (brown dot), model with fixed

feedback inhibition (light blue dot), and the noInh model (dark blue dots). IRE is calculated as the mean-square error between

input image and the reconstruction. A better reconstruction is represented by smaller values for the IRE and is associated with

a higher orientation diversity (presented by higher ODI values). Data shown from 20 independent simulations per model

configuration.

https://doi.org/10.1371/journal.pcbi.1009566.g010
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observed a substantially smaller ODI value if there is no inhibition (noInh model) at all during

learning (0.19), resulting in a higher reconstruction error (1.06). When the inhibition was

blocked in the EI2/1 model after learning, the IRE shows a slight increase to a value of 0.79

(blockInh model). For the EI3/1 model we observed a similar IRE of 0.75 and a similar ODI

value (0.76), indicating that the strength of inhibition during learning did not influence the

emergence of receptive field diversity nor the input encoding quality.

If the feed-forward input to the inhibitory population is random and fixed during learning

(fix ff inh model), the receptive fields of the excitatory population are less diverse, and the

reconstruction error increases (0.91). A fixed inhibitory connection to the excitatory popula-

tion (fix fb inh model) leads to a slightly higher reconstruction error (0.97) and a less diverse

receptive field orientations (ODI of 0.33). This demonstrates that the plasticity of both the

inhibitory feedback connections and the excitatory feed-forward connections to the inhibitory

population leads to a better input representation, as a consequence of a higher receptive field

diversity. Using fixed inhibitory feed-forward and feedback connections lead to a similar result

then having only fixed feedback inhibitory connections (see S1 Fig).

To verify that the influence of plastic inhibition is the cause for a more receptive field diver-

sity, and not a mechanisms of the chosen excitatory learning rule, we replaced the learning

rule from [20] with the triplet STDP learning rule from [56]. We add a spike-traced based

homeostatic mechanism (as suggest in [56]) to realize receptive field learning and tested fixed

feed-forward, fixed feedback and non-plastic inhibition in the same way as for our original

model. We observed the same reduction of orientation diversity with an increase in the IRE by

fixed feed-forward and/or feedback inhibition (see S14 Fig). Together, these results indicate

that the diversity of receptive fields contributes to the average reconstruction accuracy. Fur-

ther, after learning, the effect of active inhibition on the encoding quality is negligible. This is

important, as inhibition is essential for receptive field diversity, but it may contribute to a loss

of information if the neural code becomes too sparse by the suppression of too many feature-

coding neurons [35]. This is crucial for a robust input representation, where a very sparse

representation (or local code) is less robust against noise [50]. We already showed in two pre-

vious studies with similar neural networks, how inhibition can increase the robustness against

the loss of information in the input (what can be understood as noise) [57, 58]. Additional, we

measured the resulting image reconstruction error with white noise added on a natural scene

and observe a higher robustness against noise in models with plastic inhibition (see S15 Fig).

Discussion

Our model suggests that a single underlying mechanism—the interaction of excitatory and

inhibitory plasticity—can explain the stable emergence of reliable and efficient input encoding.

We have shown that in particular, the combination of plastic inhibitory feedback and plastic

feed-forward inhibition has an influence on shaping the receptive fields. Our simulation

results are supported by recent physiological findings that inhibitory plasticity influences the

mode of operation of excitatory neurons (for example the excitability) [9, 10, 59, 60], or influ-

ences the occurrence of LTP and LTD [11, 59, 61].

Previous models based on STDP rules, which have demonstrated the emergence of V1 sim-

ple cells, made several simplifications in terms of the learning dynamics [8, 12, 13], or consid-

ered plasticity only for a subset of projections [14, 15]. These assumptions make it difficult to

investigate the influence of plastic feed-forward and feedback inhibition on network dynamics

and input encoding. For example, the observation of response decorrelation is a direct conse-

quence of the chosen learning mechanism [8, 13]. Other learning rules have been designed to

optimize the mutual information between input and output [12]. This suggests that a more
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detailed model of V1 circuit development is necessary to understand the dynamics between

excitation and inhibition during learning. To advance our understanding of this process, we

investigated a spiking network model of V1 simple cell development, based on two phenome-

nological learning rules implemented at all synaptic projections.

Feed-forward and feedback inhibitory plasticity improves orientation

diversity and representational efficiency

Our results show that plastic inhibitory feedback as well as plastic feed-forward inhibition

influence the development of V1 simple cells, lead to a higher orientation diversity, and

improve representational efficiency. Inhibitory plasticity has been reported in numerous phys-

iological studies [4, 9, 10, 62, 63, 64]. Previous model studies suggest a role for inhibitory plas-

ticity in controlling the balance between excitation and inhibition [21, 65], or in enabling

stability in recurrent networks [65, 66]. However, there is ongoing discussion about the neces-

sity and role of inhibitory plasticity during learning a functional sensory code book [59, 66,

67], and this issue has received limited attention in model studies so far.

In a model based on a combination of STDP and inhibitory STDP learning rules, Litwin-

Kumar and Doiron [65] showed that inhibitory plasticity is necessary for stable learning in a

network with recurrent excitatory connections. Their study used a generic cortical network

receiving non-plastic input from a set of 20 artificially stimuli, which in turn resulted in the

formation of 20 assemblies representing the input stimuli. They emphasized that inhibitory

plasticity acted to equilibrate firing rates in the network, such that different assemblies (each

coding for one stimulus) received different amounts of inhibition, preventing dominant activ-

ity of single assemblies. Our results of a feature-specific strength of inhibition generalize their

finding of firing rate heterogeneity induced by iSTDP from an “assembly code”, in which dif-

ferent stimuli rarely overlap, to the quasi-continuous space of natural visual stimuli. This sup-

ports the necessity of the interaction of inhibitory and excitatory plasticity during the

development of the visual cortex.

Emergence of a self-organized balance of excitation and inhibition

Based on natural scene stimuli, we observed in our model that the inhibitory input current to a

neuron is proportional to the excitatory input, when the currents are averaged across the dura-

tion of a stimulus. However, as we did not observe an equal strength between these currents,

excitation is dominant in our network. This indicates a detailed and loose balance (for defini-

tion see, Hennequin et al. (2017) [68]) between excitation and inhibition in our network.

While a detailed balance has been reported in rat auditory cortex [69], it is still under discus-

sion if a more loose or tight balance exists in the primary visual cortex of higher mammals

[70]. Recent model studies suggest a tight balance between inhibition and excitation [71] or

rather an inhibitory dominated network for stable learning in a network with recurrent excit-

atory synapses [14, 15, 65]. However, most of these models investigate excitation-inhibition

balance in a single-neuron setup [71], or set a subset of synaptic connections fixed [14, 15, 65].

Interestingly, we observed that the ratio between excitation and inhibition changes in our net-

work for different contrast levels of sinusoidal grating stimuli, up to a 1 : 1 balance for the high-

est contrast level for the EI2/1 model. This shows that the balance between excitation and

inhibition is input-specific.

Inhibition implements a gain control mechanism and shapes tuning curves

Previous physiological studies found that parvalbumin-expressing (PV) interneurons have a

divisive impact on the gain function of pyramidal neurons in the visual cortex, to implement a
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contrast gain control mechanism [72, 73, 74]. In our model we observed that the ratio between

excitatory and inhibitory currents influences the response of the neuron towards its input.

Consequently, feedback inhibition implements a gain control mechanism for the excitatory

neurons.

Savin et al. [12] proposed a rapid intrinsic plasticity mechanism to adapt the neuronal gain

function to optimize the information transmission between input stimuli and neuronal output.

They suggested that the emergence of V1 simple cell receptive fields depends on the interplay

between the adaption of the neuronal gain function and the synaptic plasticity [12]. By con-

trast, in our network, changes in neuronal gain curves are caused by feedback inhibition,

which adapts at the fast time scale of synaptic plasticity to maintain a given target rate.

In our model, when blocking inhibition after learning, we observed an increase not only in

the baseline activity, but also in the orientation bandwidth (OBW). This demonstrates a sharp-

ening of tuning curves by inhibition, similar to the observation in [75], where inhibitory syn-

apses in cat primary visual cortex were blocked with gabazine. Interestingly, PV cells seem not

to affect the sharpening of tuning curves [72, 73], whereas somatostatin-expressing neurons

(SOM) sharpen neuronal responses [73]. This demonstrates the influences of the different

inhibitory neuron types [16], which must be taken into account in future models.

Shift in the E/I balance leads to the spontaneous emergence of contrast

invariant tuning curves

As a consequence of the contrast gain mechanism by inhibition, our model shows the sponta-

neous emergence of contrast invariant orientation tuning [45, 47, 48]. Early modeling studies

have proposed feed-forward inhibition to implement a push-pull inhibitory mechanism for

the emergence of contrast-invariant tuning curves [45, 46]. Despite the fact that our network

contains feed-forward inhibition, we did not observe a push-pull inhibitory effect, in other

words, anti-correlation of excitation and inhibition [76]. To be more specific, a direct compar-

ison of the excitatory and inhibitory input current for the contrast invariance task shows a

simultaneous increase and decrease of excitation and inhibition, caused by the detailed balance

in our network (see S7 Fig). We have observed that for the EI2/1 model, inhibitory input cur-

rents increase more rapidly than excitatory currents at higher contrast levels and non-pre-

ferred orientations. This results in a shift from a two-to-one ratio of excitation to inhibition to

a one-to-one ratio between excitation and inhibition, and implements a contrast-dependent

modulation of the neuron’s gain curve. In contrast to that, we observed for the EI3/1 model a

proportional growth of the excitatory and inhibitory input currents for higher input contrast

(see S8 Fig), leading to an increase of the OBW. This shows that the emergence of contrast-

invariant tuning curves is an inherent effect of the ratio between excitation and inhibition in

our network, and suggests that contrast invariance emerge at a specific E/I ratio. A contrast-

dependent shift in the balance between excitation and inhibition has been reported in the

visual cortex of awake mice [77]. Although the influence of inhibition on the neuronal gain

function for the emergence of contrast invariance is in line with previous assumptions [48,

78], recent studies have proposed that changes in the neuronal gain are caused by response

variability in the afferent thalamic path [79, 80]. An alternative proposal holds that fixed

unspecific inhibition leads to contrast invariance [44]. We confirmed this by shuffling all syn-

aptic weight to and from the inhibitory population. In this condition, we observed contrast-

invariant tuning (see S10 Fig). Our results extend these previous theories by showing that spe-

cific inhibition, as emerging through inhibitory plasticity and given sufficient inhibitory

strength, is a sufficient condition for contrast invariance as well.
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Sparseness and metabolic efficiency benefit from E/I balance

We observed that in the EI2/1 model, the standard deviation of the membrane potential

increases for non-preferred orientations. Together with the observed asynchronous spiking

behavior, we conclude that the balance of inhibition and excitation leads to a more irregular

spiking behavior. Previous work suggests that a more irregular activity and irregular mem-

brane potential behavior is related to improved metabolic efficiency in terms of efficient input

encoding [71]. Our observations agree with these findings, because the efficiency of informa-

tion transmission in our network mainly benefits from the ratio between excitatory and inhibi-

tory currents in the stable network.

An established approach in terms of input encoding efficiency is the concept of sparse cod-

ing [81, 82, 83]. However, in recent years, it has been discussed how the level of sparseness

reported in physiological experiments is influenced by animal age and the level of anesthesia

[84], and the benefit of highly sparse codes for information processing has been questioned

[35, 50, 85]. Overall, the intermediate sparseness values observed in our model are in agree-

ment with experimental findings [1, 84].

Structured connectivity caused by inhibitory and excitatory plasticity

Previous physiological studies have shown that inhibitory interneurons are connected in a

nonspecific manner to other cells in their surrounding [86]. However, recent studies observed

that inhibitory PV cells develop strong connections to excitatory cells with similar orientations

[60], and that neurons with similar preferred orientations have a higher probability for recur-

rent connections [34, 87].

We observed a similar connectivity pattern in our network, namely, the appearance of

strong connectivity between co-tuned neurons. King et al. [13] also obtained a structured con-

nectivity between co-tuned excitatory and inhibitory cells in a spiking network. While they

achieved this goal by designing a suitable learning rule for the synaptic projections involving

inhibitory neurons, we observed the appearance of strong connectivity as an emergent prop-

erty of our model architecture based on detailed phenomenological rules.

Stable learning despite limitations of simultaneous excitatory and

inhibitory plasticity

Previous studies have mentioned the difficulty to achieve a certain level of inhibition in a net-

work with inhibition and plastic excitatory synapses [68, 88]. We next discuss the behavior of

the selected learning rules more in detail to show some of the difficulties during the interaction

of excitatory and inhibitory plasticity, and discuss the limitations of our modeling approach.

For the excitatory learning rule, it has been shown in [20] that a lower input firing rate

leads to bigger receptive fields, as a compensatory effect of the homeostatic mechanism. This

mechanism is controlled by the long-term postsynaptic membrane potential in relation to a

reference value and implements a local homeostatic mechanisms to influence the synaptic

plasticity. If the membrane potential is too low, less long-term depression (LTD) in relation to

long-term potentation (LTP) occurs, and the weights will increase. Otherwise, if the mem-

brane potential is too high, a higher amount of LTD will occur to decrease the weights. Conse-

quently, for a lower input firing rate, more weights will increase, saturating at their maximum,

to achieve a specific postsynaptic activity.

The homeostatic mechanism of the inhibitory rule [21] strengthens the inhibition if the

postsynaptic activity is too high, with respect to a target firing rate (ρ), or decreases the weight

otherwise. In our network, the postsynaptic membrane potential is a result of the difference
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between the incoming excitatory and inhibitory current, such that a reduction in the mem-

brane potential through inhibition is comparable to a reduction through less presynaptic

spikes. The operation of both homeostatic mechanisms on the postsynaptic activity leads to a

competition between weight changes at excitatory and at inhibitory synapses and should lead

to bigger receptive fields, or, in the worst case, to a saturation of all synapses to their maximum

value (see S2 and S3 Figs).

However, we observed the emergence of stable receptive fields and stable connections

between the populations. Additionally, our results show a reduction in the mean activity,

caused by inhibition, without causing bigger receptive fields. We assume that in contrast to a

reduction in the input, what leads to a proportional reduction on the postsynaptic neuron, the

inhibitory current leads to a more irregular, or fluctuating, behavior of the membrane poten-

tial [89]. To allow LTP at excitatory synapses, the membrane potential must be higher than θ+

(= −45.3mV), which is slightly above the steady-state spiking threshold (VTrest
¼ � 50:4mV).

But if the membrane potential is hyperpolarized by inhibition, it falls below the LTP threshold:

No LTP occurs, and the weights will not increase to the maximum. Additionally, we observed

that the interplay of the excitatory and inhibitory rules are mainly influenced by the magnitude

of learning rates. In particular, a higher excitatory or higher inhibitory learning rate led to the

saturation of all synapses, as an effect of the competition between both homeostatic mecha-

nisms. How fast the synaptic weight changes depends not only on the magnitude of learning

rates, but also on the number of spikes, that is, the number of learning events. Therefore, the

learning rates for the noInh model is smaller, to compensate the higher activity in the neuron

populations. Finally, the competitive pressure between learning rules is controlled by the post-

synaptic target activity in the inhibitory learning rule. Smaller values of ρ enhances the inhibi-

tory pressure on the post-synaptic neuron to achieve a lower firing rate and can also lead to an

unlimited growth of synaptic weights. This limited the amount of inhibition that can emerge

in the network and did not allow a one-to-one balance between excitation and inhibition in

our model, at least for natural scene stimuli. However, when presenting sinusoidal gratings of

high contrast, E/I balance shifted towards a 1:1 ratio in the EI2/1 model, suggesting that this

balance is stimulus-dependent.

Previous model studies reported that receptive fields can emerge without inhibition, by

maintaining the post-synaptic activity over intrinsic plasticity [12], implementing a BCM-like

behavior with a post-synaptic spike trace [56], or regulating the LTD-term [20]. As expected

by the chosen learning rules, our simulations with the noInh model confirm the emergence of

receptive fields without inhibition. Despite this, other model studies pointed out the role of

local homeostatic mechanisms on the emergence of selective receptive fields [8, 90, 91] in net-

works with inhibition, or proposed that inhibition increases the diversity of receptive fields by

implementing a competition between neurons [12, 13, 92]. In addition, our results show that

plastic inhibition increases the receptive field diversity in comparison to fixed inhibition. By

starting from unselective neurons, they develop a simple selectivity which pushes the correla-

tion-based inhibitory influence to force a decorrelation between neurons and increase orienta-

tion divergence. This shows that inhibitory plasticity not only maintains the postsynaptic

activity, but also implements a selective competition between neurons during a highly dynam-

ical phase of development. Previous experimental studies mentioned different phases during

the cortical maturation [93, 94, 95], discussed the role of inhibition for the beginning of a criti-

cal period [93, 94], or showing a temporal decrease of inhibition to enable synaptic plasticity

[95]. One of the best studied examples of critical period in the visual cortex is the onset of ocu-

lar dominance (OD) plasticity [94, 95, 96]. It has been discussed earlier that inhibitory inter-

neurons (especially PV+) are important for the regulation of OD plasticity [94, 95] and the
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strength of inhibition itself changes during this critical period [95, 97], like a rapid downregu-

lation of inhibitory cell activity [95, 98]. Our study about the role of inhibition for learning

provides an excellent starting point for studies that aim to look at different critical periods in

development.

Conclusion

To the best of our knowledge, our simulations are the first demonstration of the parallel emer-

gence of fundamental properties of the primary visual cortex such as sparse coding, contrast

invariant tuning curves and high accuracy input representation, in a spiking network with

spike timing-dependent plasticity rules. A central finding of our study is that the emergence of

representational efficiency (such as tuning diversity) requires plasticity at feed-forward and

feedback inhibitory synapses. Further, the emergence of a high tuning diversity as a direct con-

sequence of inhibitory plasticity provides a verifiable prediction, via pharmacological or

genetic methods, which allow to suppress inhibitory plasticity during the development of V1

simple cells. Although previous research has shown that unspecific inhibition has an effect on

the gain-function of the excitatory cells, to improve the metabolic efficiency [99] or to cause

contrast invariance [44], our results demonstrate that the E/I ratio emerging from learning

increases the metabolic efficiency (in terms of bits per spike) in our network. This emphasizes

the role of inhibition in the shaping of neuronal responses [5, 43, 66] and in the development

of reliable and efficient input encoding.

Materials and methods

The first part of this section describes the network architecture including the neuron model

and learning rules. The model has been implemented in Python 3.6, using the ANNarchy sim-

ulator [100], with a simulation time step of dt = 1ms (Euler integration). The neuronal simula-

tor is available from https://bitbucket.org/annarchy/annarchy. The implementation of the

adaptive exponential integrate-and-fire neuron model and the voltage-based triplet STDP

learning rule proposed in [20] based mainly on the re-implementation in [101].

Network architecture

Our network model, which is inspired by the primary visual cortex and its inputs from LGN,

consists of three populations of spiking neurons (Fig 1A): An input layer representing LGN,

and excitatory and inhibitory populations of V1, each receiving feed-forward inputs from

LGN. The V1 populations are mutually interconnected via excitatory or inhibitory synapses,

respectively. The circuit therefore implements both feed-forward and feedback inhibition, in

agreement with anatomical findings [5]. Inhibitory interneurons receive additional recurrent

inhibitory connections. All projections follow an all-to-all connectivity pattern, excluding self

inhibitory feedback connections.

The LGN layer consists of 288 neurons showing Poisson activity and is split into ON- and

OFF-subpopulations. For the V1 excitatory population (144 neurons) and the inhibitory popu-

lation (36 neurons), we used adaptive exponential integrate-and-fire neurons (see Adaptive

exponential integrate-and-fire neurons in V1). The size of the inhibitory population was

chosen to match the 4:1 ratio between excitatory and inhibitory neurons found in visual and

striate cortex [16, 18, 19]. Researchers reported a much higher volume for the primary visual

cortex than the LGN [102], what suggests a much higher number of neurons. We verified tat

the mere size of V1 in our model does not influence our conclusions, by increasing the number

of excitatory and inhibitory cells by the factor of 2 and 10 using a sparse connectivity between

excitatory and inhibitory cells to guaranty a similar E/I balance than for the EI2/1 model. We
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measured the input reconstruction error and the orientation bandwidth on different contrast

levels and did not observe a high difference in comparison to the EI2/1 model (see S12 Fig).

All synaptic connections within our model are plastic and were randomly initialized. They

change their weight based on either the voltage-based STDP-rule proposed by Clopath et al.

[20] (excitatory connections) or the symmetric iSTDP-rule proposed by Vogels et al. [21]

(inhibitory connections; Sec. Synaptic plasticity).

Although networks of the visual cortex have lateral excitatory connections [86, 87, 103, 104]

as also discussed in different model studies [14, 15, 65], we did not insert plastic lateral excit-

atory connections in our model, as our model is already highly adaptive and further excitatory

connections may complicate the required set of learning rules. However, to observe the influ-

ence of lateral excitation, we inserted fixed excitatory connections with a connection probabil-

ity of 0.2 between the excitatory neurons and initialized the weight with an uniform

distribution. Despite the number of unstable learning approaches increased (see S13 Fig), we

did not observe a significant influence of the recurrent connections, by measuring the IRE and

OBW.

Network input

As network input, we used whitened patches from natural scenes [6, 105]. Each patch was cho-

sen randomly, with a size of 12 by 12 by 2 pixels [35]. The third dimension corresponds to the

responses of ON- and OFF-cells. To avoid negative firing rates, we mapped positive pixel val-

ues to the ON-plane, and the absolute value of negative pixels to the OFF-plane. Every patch

was normalized with the maximum absolute value of the corresponding natural scene. The fir-

ing rate of each Poisson neuron represents the brightness value of the input pixels. The firing

rate associated to the (rarely occurring) maximum pixel value was set to 125Hz. We stimulated

the network with 400.000 patches during training, with a presentation time of 125ms per

patch, corresponding to around 14h of simulated time. To avoid any orientation bias in the

input, the patch was flipped around the vertical or horizontal axis independently with 50%

probability [20].

Poisson neuron model in LGN

For modeling convenience, we generated Poisson activity in LGN neurons by injecting brief

voltage pulses, generated by a Poisson process, into a binary spiking neuron model, such that

each voltage pulse input triggered a spike. This simplified the numerical calculation of a spike

trace required for the learning rule, while preserving the precise timing of spikes drawn from a

Poisson process.

The spike trace �xi is updated whenever the presynaptic neuron i spikes, and decays expo-

nentially: Xi(t) = 1 if a spike is present at time t, and Xi(t) = 0 otherwise.

du
dt
¼ IPoisson ð1Þ

tx
d�xi

dt
¼ � �xi þ Xi ð2Þ

Adaptive exponential integrate-and-fire neurons in V1

For the neurons in the V1 excitatory and inhibitory layer, we used a variant of the adaptive

exponential integrate-and-fire model as described in [20]. In this model, the membrane
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potential u is influenced by the following additional dynamical variables: An adaptive spike

threshold, VT, a hyperpolarizing adaptation current, wad, and a depolarizing afterpotential, z.

Excitatory and inhibitory synaptic currents are denoted by Iexc and Iinh. For an explanation of

constant parameter values as used in [20], see Table 1.

The full equation for the membrane potential is

C
du
dt
¼ � gLðu � ELÞ þ gLDTe

u� VT
DT � wad þ z þ Iexc � Iinh ð3Þ

As the triplet voltage STDP rule is sensitive to the precise time course of the membrane volt-

age, including the upswing during a spike, the magnitude of weight changes depends on the

implementation details of the after-spike reset. To avoid long simulation times associated with

smaller time steps, we opted for the following simplified treatment of the spike waveform

which reproduced the results reported by Clopath et al. [20]: Whenever the membrane poten-

tial u exceeded the spike threshold, u was held at a constant value of 29mV for 2ms, and then

reset to the resting potential EL. We obtained highly similar results from an alternative imple-

mentation, in which the after-spike reset was immediately applied when the spike threshold

was crossed, with an additional update of the voltage traces by the amount expected from a

2ms-long spike.

Table 1. Parameters for the neuron model and excitatory synapses.

Global parameter values

Parameter (values from Clopath et al. [20]) Value Parameter Value

C, membrane capacitance 281pF τz, spike current time constant 40ms
gL, leak conductance 30nS tVT

, spike threshold time const. 50ms

EL, resting potential −70.6mV τx, spike trace time constant 15ms
ΔT, slope factor 2mV τwad, adaption time constant 144ms
VTrest

, spike threshold at rest −50.4mV Isp, spike current after spike 400pA

VTmax
, spike threshold after spike 30.4mV a, subthreshold adaptation 4nS

we
min, min. excitatory weight 0.0 b, spike-triggered adaption 0.805pA

τ−, time constant for �u � 10.0ms τ+, time constant for �uþ 7.0ms

θ−, plasticity threshold −70.6mV θ+, plasticity threshold (LTP) −45.3mV
Parameter (added) Value Parameter Value

tIexc , excitatory input time const. 1.0ms tIinh , inhibitory input time const. 10.0ms

Projection-specific parameters

Parameter (custom values) LGNtoE LGNtoI EtoI
t��u 750ms 750ms 750ms
we

max 5.0 3.0 1.0

winit (bounds of random [0.015, 2.0] [0.0175, 2.15] [0.0175, 0.25]

uniform distribution)

ALTP (EI2/1, EI3/1) 1.35 × 10−4 5.4 × 10−5 1.2 × 10−5

ALTD (EI2/1, EI3/1) 1.05 × 10−4 4.2 × 10−5 1.4 × 10−5

ALTP (noInh) 7.2 × 10−5 n/a n/a

ALTD (noInh) 5.6 × 10−5 n/a n/a

��uref 60.0mV2 55.0mV2 55.0mV2

Note that for the noInh model, learning rates were reduced to compensate for the increased firing rates in the absence of inhibition.

https://doi.org/10.1371/journal.pcbi.1009566.t001
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The reset value for the spike threshold is VTmax
, with exponential decay towards the resting

value VTrest
, with a time constant tVT

(Eq 4):

tVT

dVT

dt
¼ � ðVT � VTrest

Þ ð4Þ

The afterpotential z has a reset value of Isp and decays to zero (Eq 5). Further, the variable wad

is incremented by the value b and decays exponentially (Eq 6).

tz
dz
dt
¼ � z ð5Þ

twad

dwad

dt
¼ aðu � ELÞ � wad ð6Þ

The model proposed by Clopath et al. [20] assumed excitatory synaptic input in the form of

voltage pulses. For modeling convenience, we approximated this setting by current-based

excitatory synapses with a short time constant of 1ms. Inhibitory synaptic currents decayed

with a slower time constant of 10ms. Both synaptic currents are incremented by the sum of

synaptic weights of those presynaptic neurons which spiked in the previous time step:

tIexc
dIexc
dt
¼ � Iexc þ wexc

i

X

i2Exc

dðt � t0iÞ

tIinh
dIinh
dt
¼ � Iinh þ winh

j

X

j2Inh

dðt � t0jÞ

ð7Þ

where t0i denotes the spike time of presynaptic neuron i, and δ is the indicator function with δ
(0) = 1.

Synaptic plasticity

Voltage-based triplet STDP at excitatory synapses. Plasticity at excitatory connections

(LGN to Exc., LGN to Inh. and Exc. to Inh.) follows the voltage-based triplet STDP rule pro-

posed by Clopath et al. [20]. We here repeat the essential features of this plasticity model. The

neuronal and synaptic variables describing the development of the weight from a presynaptic

neuron with index i onto a given postsynaptic neuron are: Xi, the presence of a presynaptic

spike; �xi, the presynaptic spike trace (Eq 2); u, the postsynaptic neuron’s membrane potential;

and two running averages of the membrane potential, �uþ and �u � , defined as follows:

tþ
d�uþ
dt
¼ � �uþ þ u; ð8Þ

where �u � is defined analogously, with the time constant τ−. In addition, the learning rule

includes a homoeostatic term, ��u, which regulates the relative strength of LTD versus LTP, and

which measures the mean postsynaptic depolarization on a slower time scale:

t��u
d��u
dt
¼ ½ðu � ELÞ

þ
�
2
� ��u ð9Þ

Here, x+ = max(x, 0) denotes top-half rectification.
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The full learning rule is given as the sum of the LTP term and the LTD term:

dwi

dt
¼ ALTP �xiðu � yþÞ

þ
ð�uþ � y� Þ

þ
� ALTD

��u
uref

Xið�u � � y� Þ
þ

ð10Þ

where ALTP and ALTD are the learning rates for LTP and LTD, θ+ and θ− are threshold parame-

ters, and uref is a homeostatic parameter which controls the postsynaptic target firing rate. Clo-

path et al. (2010) [20] have shown that this learning rule results in BCM-like learning

dynamics [106], in which a sliding metaplasticity threshold leads to the development of

selectivity.

Following Clopath et al. [20], for the LGN efferent connections, we equalized the norm of

the OFF weights to the norm of the ON weights every 20s. The weight development is limited

by the hard bounds we
min and we

max. Parameter values for the excitatory synapses can be found

in Table 1.

Homeostatic inhibitory plasticity. Previous biological studies have observed spike tim-

ing-dependent plasticity of inhibitory synapses which differs from the well-known asymmetric

STDP window [64, 107]. We therefore chose to implement the phenomenologically motivated,

symmetric inhibitory STDP (iSTDP) rule proposed by Vogels et al. [21] at all inhibitory synap-

ses (Eq 11):

wðt þ dtÞ ¼

(wðtÞ þ Zð�xpost � rÞ if t ¼ tpre ðpresynaptic spikeÞ

wðtÞ þ Z�xpre if t ¼ tpost ðpostsynaptic spikeÞ
ð11Þ

Here, η is the learning rate, and ρ is a constant which controls the amount of LTD relative to

LTP. Further, [21] have shown that this learning rule has a homeostatic effect, and the parame-

ter ρ controls the postsynaptic target firing rate. The variables �xpre and �xpost are spike traces for

the pre- and postsynaptic neurons, defined in analogy to Eq 2, with time constants τpre and

τpost. In this plasticity rule, near-coincident pre- and post-synaptic spiking causes potentiation

of weights, irrespective of their temporal order. By contrast, isolated pre- or postsynaptic

spikes cause depression of weights. As for the excitatory learning rule, weights are bounded by

wi
min and wi

max. For parameter values, see Table 2.

Choice of parameter configurations. As our main goal is to determine the influence of

inhibitory strength both on the formation of selectivity and on the dynamics of stimulus cod-

ing, we simulated our network using different parameter and network configurations. First,

we used the above presented network, where the strength of the inhibitory feedback is con-

trolled by the homeostatic parameter ρ. With ρ = 0.4 for the feedback inhibitory synapses, we

achieved a ratio of excitation to inhibition (E/I-ratio) of approximately 2 : 1 on patches of

Table 2. Parameters for inhibitory synapses.

ItoE and ItoI ItoE ItoI

τpost 10.0ms
τpre 10.0ms
wi initial 0.0

wi
min 0.0

wi
max 0.7 0.5

η 10−5 10−5

ρ (EI3/1) 0.7 0.6

ρ (EI2/1) 0.4 0.6

https://doi.org/10.1371/journal.pcbi.1009566.t002
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natural scenes (abbreviated as EI2/1). On one hand, a lower ρ would strengthen the inhibitory

feedback, but caused unstable behavior during learning. On the other hand, a higher ρ would

weaken the inhibitory feedback of the model. Because of this, we were unable to achieve a 1 : 1

E/I ratio for natural scene patches. With ρ = 0.7 we achieve a E/I-ratio of approximately 3 : 1

on natural scene input (abbreviated as EI3/1), this led to similar but weaker characteristics for

most of the experiments (Fig 1B).

Second, we simulated a purely excitatory feed-forward network without any inhibitory

activity (abbreviated as noInh), as the learning rule proposed by Clopath et al. [20] is capable

of learning distinct shapes of receptive fields given different initial weights.

Further, to control for the dynamical effects of inhibition in the steady state following

receptive field development, we simulated the effects of deactivating the inhibitory synaptic

transmission in the EI2/1 model after learning (abbreviated as blockInh). All three model varia-

tions are based on the same network architecture, consisting of the same number of neurons

in each population and the same number of synapses, except that inhibitory weights differ in

their strength or are deactivated. The different parameters for learning the models are shown

in Table 1. We took the parameters for the adaptive integrate and fire neuron from Clopath

et al. [20]. Based on the original parameter mentioned in Clopath et al. [20] and Vogels et al.

[21], the parameters for both learning rules were found empirically to enable a stable emer-

gence of receptive fields in multiple runs, initialized with different weight values (see S11 Fig).

To test the stability and the reproducibility of our results, we performed 20 runs of each

model with randomly initialized synaptic weights.

To evaluate how inhibitory plasticity interacts with plastic excitation, we deactivated the

plasticity for specific synapses for three model variations. First, we deactivated the plasticity

only in the inhibitory feedback connections (fix fb inh). Second, the plasticity was deactivated

in both excitatory connections the inhibitory population (fix ff inh). We further deactivated

the plasticity in the connections from the excitatory to the inhibitory population and for the

lateral inhibition. Additionally, we trained one model variation where all connections were

plastic, to validate that the learning is successful with pre-trained, shuffled weight matrices. To

ensure that the same average amount of excitatory or inhibitory current is conveyed by the

fixed synapses, we used shuffled weight matrices from previous simulations of the EI2/1 model

for the respective synapses. No parameter changes were needed. To test the stability and repro-

ducibility, we performed five runs of each variation.

Analysis methods

Receptive field mapping. Over the course of learning, the excitatory input weights from

LGN to V1 develop based on the pre- and postsynaptic activity. It is therefore possible to

obtain a good approximation of the neurons’ receptive fields (RFs) by taking the weight matrix

and reverting the ON-OFF mapping. To do this, we subtract the OFF-synapses from the ON-

synapses and receive the receptive field. This is possible as either the ON- or the OFF-synapses

can be activated by the input, so that the weights will also follow this distribution.

In addition to the visualization based on weight matrices, the receptive fields can also be

revealed by probing the neurons with random stimuli. This approach has been successfully

used in physiological research, in form of the spike triggered average (STA) [108, 109, 110]. In

this method, a neuron’s receptive field is defined as the average of white noise stimuli,

weighted by the stimulus-triggered neuronal activity. We applied this method on the learned

neural network. We presented noise patches drawn from a normal distribution with μ = 15,

σ = 20 as input image to the network, and converted these to Poisson spike trains (cf. Sec. Net-

work input). Negative pixel values were set to zero, and the presentation time per patch was
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125ms. For each neuron, we recorded the number of spikes per stimulus and calculated the

average across all stimuli, weighted by the number of postsynaptic spikes (Eq 12).

STA ¼
1

N

XN

n¼1

sðtnÞ ð12Þ

Here, s(tn) is the input stimulus at time point tn, when the nth spike has occurred, and N is the

total number of postsynaptic spikes. Accordingly, stimuli evoking more spikes are higher

weighted than stimuli evoking few or no spikes.

As we observed a high similarity between each neuron’s STA and its ON-OFF receptive

field, we concluded that the overall receptive field shape was not significantly influenced by

inhibition. Thus, for simplicity, the feed-forward weight vectors can be used for further

evaluations.

Receptive field similarity. As mentioned above, the feed-forward weight vector approxi-

mates the receptive field of a neuron. To measure the similarity between two receptive fields,

we calculate the cosine between their feed-forward weight vectors (Eq 13).

cosð�i;jÞ ¼
Wi �Wj

jWijjWjj
ð13Þ

A value near + 1 indicates high similarity, values around zero describe orthogonal weight vec-

tors, and values near −1 indicates inverted weight vectors (i.e., maximally overlapping RFs

with opposite directional preference).

Tuning curves and orientation selectivity. The orientation selectivity is a well-studied

characteristic of simple cells in V1 of mammals [17, 111, 112] and thus, also a topic of interest

for models of the visual cortex [e.g., 113], [114], [115]. One possibility to quantify the orienta-

tion selectivity of a neuron is to measure its tuning curve [116]. For simple cells in the primary

visual cortex, the orientation tuning curve describes the magnitude of responses evoked by a

stimulus presented at different angles. In many biological studies, the tuning curves have been

measured based on two-dimensional sinusoidal gratings [36, 75, 76, 116]. Therefore, we mea-

sured the responses to sinusoidal grating stimuli, rotated in steps of 8˚, with different spatial

phases from 0rad to πrad, a different spatial frequencies from 0.05 up to 0.15cycles/pixel, cen-

tred to the input space and with a presentation time of 125ms.
Because of Poisson activity in the input layer, neuronal activity shows trial-to-trial fluctua-

tions. Hence, we repeated every presentation 50 times, and calculated the mean across all 50

repetitions (or 6.25s presentation time). In contrast to the natural scene input used for train-

ing, the maximum input firing rate was set to 85.7Hz. This was suitable to obtain sufficiently

high activity levels.

To estimate tuning curve sharpness, we calculated the orientation bandwidth (OBW) for

every neuron. The OBW is defined as the half-width of the tuning curve, at an activity level of
1ffiffi
2
p (approx. 70.7%) of the maximum [116]. Higher OBW values correspond to a broader tuning

curve, and vice versa. Other definitions use the height at half-maximum, which does not

change the overall result of this evaluation.

Orientation diversity. To quantify the diversity of receptive field orientations, we calcu-

lated a histogram over the measured preferred orientations to measure the distribution and

the incidence of a specific orientation (P(o) where o is the index to a specific orientation)

Then, we calculated the Kullback-Leibler divergence (Eq 14) between this distribution and an
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idealized uniform distribution of orientations (Q(o)).

DKLðPkQÞ ¼
X

o¼1

PðoÞlog
PðoÞ
QðoÞ

� �

ð14Þ

ODI ¼ exp� DKLðPkQÞ ð15Þ

To calculate the orientation diversity index (ODI), we used the exponential function on the

calculated Kullback-Leibler divergence. A value closer to one indicates a more uniform distri-

bution of the measured orientations and thus a higher orientation diversity, whereas a value

closer to zero indicates a less uniform distribution and thus a lower orientation diversity.

Neuronal gain curves. A neuron’s gain function describes how neuronal activity is scaled

by variations in the magnitude of excitatory inputs [5, 75]. While an integrate-and-fire neuron

receiving only excitatory inputs has a relatively static gain function (also called transfer func-

tion), controlled by the parameters of the neuron model, additional inhibitory inputs can

modulate the effective input-to-output relationship. To characterize these inhibitory influences

on gain curves, we recorded the excitatory synaptic currents and spiking activity evoked by

sinus gratings (see Sec. Tuning curves and orientation selectivity), which we rotated from the

orthogonal towards the preferred orientation of each neuron. Further, we changed the contrast

of the input, by changing the pixels relative to the maximum input firing from 14.25Hz up to

100Hz. As before, we presented each stimulus orientation for 125ms, repeated 50 times (6.25s),
and determined gain curves based on the average spike count across these 50 repetitions. We

measured the spike count for each input degree and contrast strength and sorted the neuronal

activity to the corresponding excitatory input, in ascending order.

Measurement of E to I ratio. To determine the ratio between excitatory and inhibitory

input current, we measure both incoming currents for the excitatory population for 1.000 ran-

domly chosen natural scenes. Every scene was presented for 125ms and was repeatedly shown

for 100 times. We averaged the incoming currents over the input stimuli repetitions and sorted

for each neuron and stimuli the excitatory input currents ascending with the related inhibitory

currents. For better visualization, the currents are summarized into bins.

Sparseness. The sparseness value expresses the specificity of population codes and single

neurons, both in experimental studies [40, 81, 82, 83, 117] and in model simulations [8, 13,

35]. It quantifies either the fraction of neurons which respond to a single stimulus, called pop-

ulation sparseness, or the number of stimuli to which a single neuron responds, called lifetime

sparseness [83]. In the past, many different sparseness measurements are established [81, 118].

To measure the specificity of our network activity, we calculated the population sparseness

after Vinje and Gallant [82] (see Eq 16).

S ¼
1 �
ð
P

ri=nÞ
2

P
ðr2

i =nÞ
1 � ð1=nÞ

ð16Þ

where ri is the activity of the ith neuron to a specific input and n the number of neurons in the

neuron population.

By construction, sparseness values are bound between zero and one. If the neuron popula-

tion has dense activity, i.e., most neurons are active to an input stimulus, the sparseness level

approaches zero. By contrast, few active neurons of the population lead to a sparseness value

close to one. As input, we used 30.000 natural scene patches, and determined sparseness values

based on the firing rates of each neuron on each input patch.
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Image reconstruction error. The network’s coding performance following training can

be measured by the difference between input images and their reconstruction from network

activity. This method gives direct insight on how well visual input is represented by the net-

work as a whole. This aspect was often not considered in previous biologically motivated cir-

cuit models of the primary visual cortex. We used the root mean-square error between one

image of the natural scenes dataset from [6] and the reconstructed one [cf. 13, 119] (Eq 17),

termed image reconstruction error (IRE):

IRE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
kðIo � IrÞ

2

N

r

ð17Þ

where N denotes the number of image pixels. To obtain the reconstructed image Ir, we subdi-

vided the full image into patches of size 12 × 12, in an overlapping fashion (in increments of 3

pixels). We showed each patch 50 times for 125ms each, and recorded neuronal activities. We

weighted the activity of each neuron by its feed-forward weights to obtain a linear reconstruc-

tion of each image patch, which we combined to reconstruct the full image. This approach is

equivalent to calculating the IRE for individual patches, and calculating the root mean-square

of these individual IRE values. To ensure that pixel values of the reconstructed image were in

the same range as the original image, we normalized the reconstructed as well as the original

image to zero mean and unit variance [13, 119].

Mutual information. We measure the metabolic efficiency via the numbers of spikes

which are necessary to represent a specific input stimuli and the amount of information trans-

mitted via a spike. An information-theoretic approach to estimate this coding efficiency of the

network is based on the mutual information between stimulus identity and neuronal activity

[2, 120]. This measure allows to calculate the average information transmission per spike [117,

121]. To quantify information transmission, we calculated the mutual information, I(s, r),
between the stimulus identity and neuronal responses for each neuron, following Vinje and

Gallant [117]:

Iðs; rÞ ¼ HðrÞ � HðrjsÞ ð18Þ

In Eq 18, I(s, r) is the mutual information carried between stimulus and response for a time

bin of 125ms length, the duration of a single stimulus. For that purpose, we calculate the total

response entropy, H(r), and the conditional response entropy, also called stimulus-specific

noise entropy, H(r|s).

HðrÞ ¼ �
X1

j¼0

pjlog2ðpjÞ ð19Þ

Hðrjs ¼ kÞ ¼ �
X1

j¼0

pkj log2ðp
k
j Þ ð20Þ

The total response entropy is given by Eq 19. The variable pj is the number of time bins con-

taining exactly j spikes, divided by the total number of time bins, or stimuli. It follows from Eq

19 that the total response entropy is maximal if all spike counts occur with equal probability

(and, if they do, the number of possible spike counts increases the entropy). The noise entropy

for a specific stimulus (see Eq 20) describes the variability of the neuronal responses across

repetitions of a single stimulus k. Every stimulus was repeated 100 times. Similar to the total

response entropy, j is the number of spikes which occurred in response to a stimulus k. Here,

pkj is the number of repetitions of stimulus k to which exactly j spikes are emitted, divided by
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the overall number of repetitions of that stimulus. To calculate the overall noise entropy of a

neuron H(r|s), we averaged the noise entropy across all stimuli. Information per spike was

computed by dividing I(s, r) by the mean number of spikes per stimuli, or time bins.

Discriminability. To evaluate how well the network responses allow to distinguish

between any two input patches, in the presence of trial-to-trial (how much is the variance in

the firing rate of a neuron to specific input [122]) fluctuations induced by Poisson input, we

calculated the discriminability index, d0 [2, 120]. The d0 index measures the separation of two

random distributions, and is closely related to the performance of a linear classifier assuming

independent neuronal responses. Based on a random set of 500 natural scene patches, we cal-

culated the d0 by pairing the response on every patch to all other patches. For each pair of sti-

muli, s1 and s2, we presented each stimulus with N = 100 repetitions, and recorded the

network responses of all n = 144 excitatory neurons for each repetition, obtaining the n-

dimensional response vectors sðiÞ1 and sðiÞ2 , i = 1, . . ., N. We first calculated the mean activity of

each cell in response to each stimulus, across the N repetitions (denoted by s1 and s2). We next

projected each individual population response sðiÞ1 and sðiÞ2 onto the vector between these

means, by taking the dot product between each response and the difference s1 � s2 :

aðiÞs1 ¼ sðiÞ1 � ðs1 � s2Þ

aðiÞs2 ¼ sðiÞ2 � ðs1 � s2Þ for i ¼ 1; . . . ;N
ð21Þ

where as1 and as2 denote the projected responses. Next, we calculated the means and variances

of the projected responses as1 and as2 , denoted by (ms1
; s2

s1
) and (ms2

; s2
s2

). Finally, we calculate

the discriminability d0s1 ;s2 , as the ratio between the separation of the means and the variances of

the projected data:

d0s1 ;s2 ¼
ms1
� ms2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
ðs2

s1
þ s2

s2
Þ

r
ð22Þ

Note that we used the same sequence of patches for all model configurations to calculate the

discriminability, and every patch was presented for 125ms. Previous research found that the

variance of the response of a neuron to input stimuli is proportional to the mean [123]. Further

studies demonstrated that inhibition leads to less variance in the responses to one repeatedly

shown stimulus [51]. The discriminability (d0) increases if the response variance decreases by

the same response mean. Therefore, we can measure differences in the response variance.

Supporting information

S1 Fig. Image reconstruction error (IRE) for different fixed and plastic inhibitory connec-

tions. Excitatory synapses learned with the Clopath et al. [20] learning rule. The dark green

model (called base) is equal with the EI2/1 model. The other models are initialized with shuf-

fled weights of a previous successfully learned EI2/1 model. In the plastic inh model, all inhibi-

tory synapses are plastic, in the fix ff inh model is the feed-forward inhibition fixed, in the fix fb
inh model is the feedback inhibition fixed, and in the in the non plastic model are all inhibitory

connections fixed.

(TIF)

S2 Fig. Development of receptive fields. Input weights of five randomly chosen excitatory

cells. Bright values show input from the ON-LGN population and dark values from the

OFF-LGN population. ON and the OFF weights are subtracted from each other to show the
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receptive fields. A Emergence of stable receptive fields. B Examples of unstable receptive fields,

i.e when the differences between ON and OFF weights are zero (gray values) due to the

increase of both components to the maximum value.

(TIF)

S3 Fig. Dynamics of weights during the first 200, 000 stimulus presentations. First column

shows stable weight learning. Second column shows the unlimited growth of the weights

against the maximum weight value. A and B mean feed-forward excitatory weights from the

LGN population to one excitatory neuron. C and D inhibitory feedback weights from the

inhibitory population to one excitatory neuron. E and F mean input currents of the excitatory

population.

(TIF)

S4 Fig. Histogram of feed-forwards weights. Histogram of feed-forwards weights from the

LGN to the excitatory population A, and of the feed-forwards weights from the LGN to the

inhibitory population B from the EI2/1 model.

(TIF)

S5 Fig. Receptive fields and orientation distribution from the EI3/1 model. A Receptive

fields of randomly selected 64 excitatory neurons of the EI3/1 model. B Distribution of recep-

tive field orientation of all excitatory neurons of 20 model runs (EI3/1 model). C Receptive

fields of all 36 inhibitory neurons of the EI3/1 model. D Distribution of receptive field orienta-

tion of all inhibitory neurons of 20 model runs (EI3/1 model).

(TIF)

S6 Fig. Average discriminability. Average discriminability (d0) based on the responses to 500

randomly chosen natural scene patches. Discriminability benefits from tuning diversity of

receptive fields and from feedback inhibition.

(TIF)

S7 Fig. Orientation tuning as a function of input contrast, EI2/1 model. Mean spike count

(upper left), average membrane potential (upper middle), standard deviation (upper right),

mean excitatory input (lower left), mean inhibitory input (lower middle), and difference

between excitation and inhibition (lower right).

(TIF)

S8 Fig. Orientation tuning as a function of input contrast, EI3/1 model. Mean spike count

(upper left), average membrane potential (upper middle), standard deviation (upper right),

mean excitatory input (lower left), mean inhibitory input (lower middle), and difference

between excitation and inhibition (lower right).

(TIF)

S9 Fig. Normalized tuning curves. Tuning curves are normalized with the maximum spike

count on high contrast. A for EI2/1 model, B the EI3/1 model, Mean and standard deviation

calculated across the excitatory population.

(TIF)

S10 Fig. Mean orientation bandwidth of the excitatory population for different contrast

levels. Green: EI2/1 model. Orange: Deactivated inhibition, blue: Randomly shuffled feed-for-

ward and feedback inhibition.

(TIF)
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S11 Fig. Statistic over stable and unstable receptive fields. A Percent of runs in which stable

receptive fields or unstable (eliminated) receptive fields emerged during learning for different

values of η (learning rate) of the Vogels et al. [21] learning rule. Other parameters are taken

from the EI2/2 model configuration. B Percent of runs, where stable receptive fields or unsta-

ble (eliminated) receptive fields emerged during learning for different ρ (postsynaptic target

rate) of the Vogels et al. [21] learning rule. Other parameters are taken from the EI2/2 model

configuration. Please note, that ρ = 0.7 corresponds to the EI3/1 model.

(TIF)

S12 Fig. Different sized excitatory and inhibitory populations. A Image reconstruction

error (IRE) as a function of orientation diversity. B Orientation Bandwidth (OBW) for differ-

ent contrast levels. Data from the EI2/1 model (green), with twice the number of neurons (red)

and with ten times the number of neurons (blue). Note: The number of inhibitory neurons is

chosen to fit the 4 : 1 excitation to inhibition ratio.

(TIF)

S13 Fig. Weak lateral excitation. Recurrent weights are chosen randomly from a normal dis-

tribution with μ = 0 and different values of σ to control the maximum weight. Negative weight

values are set to zero. Blue indicates a maximum weight value of 0.075, olive green indicates a

maximum weight value of 0.05, red indicates a maximum weight value of 0.025 and orange

indicates a maximum weight values of 0.01. Dark green indicates the EI2/1, which is presented

for comparison. A Percentage of simulations where learning was successful (stable receptive

fields emerged) and not successful (all weights in the network run against the maximum

weight values). B Recurrent excitatory input current as a function of the excitatory current

over feed-forward synapses. C IRE as a function of the ODIe. D OBW for sinusoidal gratings

on different levels of contrast.

(TIF)

S14 Fig. IRE in a network, trained with the Pfister & Gerstner (2006) learning rule. Image

reconstruction error (IRE) as a function of orientation diversity. Excitatory synapses learned

with the Pfister & Gerstner (2006) [56] STDP learning rule. Points mark the mean values and

the whiskers the standard deviation across 10 model runs.

(TIF)

S15 Fig. Image reconstruction error (IRE) as a function of the strength of withe noise.

Noise is generated via a normal distribution and added to the natural scene input. The strength

is in relation to the maximum pixel value of the original input. Values showing the average

IRE of 20 runs for each model configuration, the shaded area represents the standard devia-

tion.

(TIF)
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