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Introduction

Human milk oligosaccharides (HMOs) are a type of 
polysaccharide and the third largest component of 
human milk after lactose and lipids (1). They serve as 
prebiotics and play a significant role in brain development 

and in programming the immune system to reduce the 
incidence of allergies and autoimmune diseases (2,3). 
More than 200 different structures of HMOs have been 
identified in human milk. They primarily consist of 
monosaccharides such as D-glucose (Glc), D-galactose 
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(Gal), N-acetyl-D-glucosamine (GlcNAc), L-fucose (Fuc), 
and N-acetylneuraminic acid (Neu5Ac) (4), which form a 
series of complex oligosaccharides that can be classified into 
three major types based on their fucosylation or sialylation: 
(I) neutral nonfucosylated HMOs; (II) neutral fucosylated 
HMOs; and (III) HMOs containing sialic acid (5,6).

Sialyllacto-N-tetraose b (LSTb) is a type of sialylated 
oligosaccharide found in mammal milk. It comprises 
three monosaccharide units, including galactose, glucose, 
and lactose. There are individual differences in the 
concentrations and distributions of LSTb in breast milk 
(7,8). However, due to the low concentration of LSTb in 
milk, research on its effects is limited. Whether LSTb, 
similar to other HMOs, affects the development of the 
central nervous system is still poorly understood. 

Zebrafish have gained recognition as a popular model 
organism in neurobiology in recent years (9). Both adult and 
larval zebrafish have greatly contributed to neuroscience 
due to their remarkable physiological and genetic 
similarities to humans (10,11), as well as their amenability to 
gene manipulation and comparable central nervous system 
morphology (12). Zebrafish provide a stable platform 

that balances the intricacy of a vertebrate and its utility 
as a model organism. With the added benefits of optical 
transparency in developing fish facilitating the application 
of advanced imaging techniques, these complex mechanisms 
at the organism level can be effectively visualized (13). 

This study used the transgenic (Tg) zebrafish line 
(Hb9:GFP), which is commonly used to evaluate motor 
neurons of the central nervous system. We incubated the 
zebrafish with LSTb to gain insight into its influence 
on nervous system development. We present this article 
in accordance with the MDAR and ARRIVE reporting 
checklists (available at https://tp.amegroups.com/article/
view/10.21037/tp-24-247/rc).

Methods

Zebrafish husbandry

Specimens of the Tg zebrafish line (Hb9:GFP) were 
acquired from the Zebrafish Facility of Nantong University. 
Experiments were performed under a project license 
(No. S20210310-007) granted by the ethics committee 
of Nantong University, in compliance with institutional 
guidelines for the care and use of animals. A protocol 
was prepared before the study without registration. The 
zebrafish larvae were kept in a recirculation system under a 
14-hour light and 10-hour dark photocycle at 28±0.5 ℃ and 
a pH range of 7.0–7.5. Embryos at 8 hours post-fertilization 
(hpf) were co-incubated with 1 mg/mL of LSTb (DSM, 
Maastricht, the Netherlands) as the LSTb group. The 
control group was incubated according to the normal 
process.

Image observation of Tg zebrafish

Zebrafish larvae were placed in 0.7% low-melting-point 
agarose. Confocal imaging was carried out at 72 hpf. Embryos 
were anesthetized with egg water and 0.16 mg/mL of 
tricaine to acquire good pictures. Confocal imaging was 
accomplished using the TCS-SP5 laser scanning microscope 
(Leica, Wetzlar, Germany) and analyzed using Imaris 
(Oxfords Instruments, Abingdon, UK) and ImageJ (National 
Institutes of Health, Bethesda, MD, USA) software.

Zebrafish larva locomotor behavior test

In accordance with previously established methods (14), 
30 zebrafish larvae at 5 days post-fertilization (dpf) were 
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selected at random from groups and plated individually 
within each well of a 24-well plate. The DanioVision 
Observation Chamber (Noldus,  Wageningen, the 
Netherlands) was employed to facilitate the measurement 
and observation of the swimming behavior of the larvae. 
Prior to monitoring, the larvae were allowed to acclimate 
for a period of 30 min at 28 ℃. The Ethovision XT 13 
system (Noldus) was then used to complete the locomotor 
behavior test of the zebrafish larvae within 30 min. The 
software computed the locomotor behavior distance and 
spontaneous movement, with the average speed being 
derived for each group. 

RNA sequencing (RNA-seq) analysis

We performed RNA-seq at 72 hpf. Total RNA from 
zebrafish was extracted using TRIzol reagent (Thermo 
Fisher Scientific, Waltham, MA, USA) and reverse-
transcribed into complement DNA (cDNA) using the 
first strand of transcriptional cDNA synthesis kit (Roche 
Diagnostics, Mannheim, Germany). Library sequencing 
was performed using a HiSeq 4000 platform (Illumina, San 
Diego, CA, USA). Raw readings were filtered to exclude 
low-quality data, and high-quality raw data were used 
for downstream analyses. Differential expression analysis 
was completed with the DESeq2 (v. 1.6.3) R package. 
Differential gene expression changes of more than two-fold 
and q value ≤0.05 indicated a significant difference. Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis of the differentially 
expressed genes (DEGs) were completed.

Real-time polymerase chain reaction (real-time PCR)

Total RNA was extracted using TRIzol UP (TransGen 
Biotech, Beijing, China) and transcribed into cDNA 
using a HiScript II 1st Strand cDNA Synthesis Kit 
(Vazyme, Nanjing, China). The primer used was Slit2 
and Slit3 (Slit2 forward primer: GCTGTTCAGGCG 
T A G A A G A C T A C C ;  S l i t 2  r e v e r s e  p r i m e r : 
GTATACTGAGGGATGTGGTCTGGGA; Slit3 forward 
primer: TCCCAACTTGTCCTACCTGTAGTGT; Slit3 
reverse primer: ACCCACCGCATCATATATCCTCTGA).

Whole-mount in situ hybridization

The cDNA served as a template for cloning fragments of 
Slit2 to create antisense RNA probes for zebrafish Slit2 

and Slit3 at 24, 48, and 72 hpf. The Slit2 primers were 
determined via reverse transcription PCR (RT-PCR). 
Digoxigenin (DIG)-labeled RNA sense and antisense 
probes were generated from the linearized plasmids with 
a DIG RNA Labeling Kit (SP6/T7) (Roche Diagnostics). 
Whole-mount in situ hybridization was conducted as per 
previously reported procedures (15). 

Measurement and statistical analysis

The axonal number and length of caudal primary (CaP) 
neurons were measured using ImageJ software. The branch 
numbers within the distal 50 μm and axonal length were 
calculated. All data analysis and statistical comparisons were 
completed using GraphPad Prism 5 (GraphPad Software, 
La Jolla, CA, USA). Statistical significance was determined 
using the Student’s t-test. Data are presented as the mean ± 
standard deviation, and P values <0.05 were considered to 
be statistically significant.

Results

Effects of LSTb on the axonal growth of CaP neurons

LSTb treatment significantly increased the number 
of CaP axon branches per 50 μm at 72 hpf compared 
with that observed in the control group (18.05±0.8568 
vs. 12.00±0.5282) (Figure 1A,1B). The average length 
of the CaP axon in the LSTb group (229.4±4.219 μm) 
was significantly longer than that of the control group 
(183.9±2.119 μm) (Figure 1A,1C).

Locomotor behavioral changes induced by LSTb

As shown in Figure 2A, zebrafish larvae of the LSTb group 
exhibited more frequent behavioral trajectories at 5 dpf. In 
the LSTb group, the distance and speed of the zebrafish 
larvae notably increased (Figure 2B,2C).

Transcriptomic profiling of LSTb treatment

We identified 5,847 DEGs between the two groups, with 
2,201 genes being upregulated and 3,646 genes being 
downregulated (Figure 3A). According to GO annotations, 
central nervous system neuron differentiation was noted 
as the representative GO term enriched from DEGs in 
biological processes (BP) (Figure 3B). We also observed 33 
upregulated DEGs in GO term of central nervous system 
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Figure 1 Effects of LSTb on motor neurons in Tg zebrafish (Hb9:GFP). (A) Fluorescence images of the motor neuronal axons of Tg 
zebrafish (Hb9:GFP). The right images of the control group and LSTb group are partial enlargement of the red box in the left image. 
(B,C) Statistical analysis of number of branches and length of CaP. n=30 in each group. ****, P<0.0001 compared to control group. LSTb, 
sialyllacto-N-tetraose b; CaP, caudal primary; Tg, transgenic.

neuron differentiation. Among these 33 DEGs, Slit2 and 
Slit3 are classic genes for axon guidance (Figure 3C). To 
verify the reliability of RNA-seq, we conducted quantitative 
RT-PCR on the expression of Slit2 and Slit3 at 72 hpf. 
The expression of Slit2 and Slit3 was consistent with the 
that from the RNA-seq results, with significantly increased 
expression in the LSTb group (Figure 3D).

Expression of Slit2 in zebrafish

We analyzed the temporal and spatial expression patterns of 
Slit2 in embryos at 24, 48, and 72 hpf. Slit2 was ubiquitously 
expressed in the central nervous system, including the 
brain and spinal cord. Notably, Slit2 expression was more 
enhanced in the LSTb group compared with that in the 
control group after fertilization (Figure 4). This suggested 
that LSTb could promote the expression of Slit2 in the 
central nervous system.

Discussion

Sialylated HMOs (SHMOs) are a type of HMO that 
constitute about 20% of all HMOs (16,17). SHMOs play an 
important role in the growth and development of the brain 
and nervous system in infants (18,19) and serve as a source 
of nutrients for infant neurodevelopment. LSTb is a specific 
type of SHMO (molecular formula: C37H62N2O29; 
molecular weight: 998.9 g/mol) and consists of one 
lactosamine Galβ1-3/4GlcNAc, one lactose core Galβ1-
4Glc, and one Neu5Ac. The structural sequence of LSTb is 
Galβ1-3 (Neu5Acα2-6) GlcNAcβ1-3Galβ1-4Glc (Neu5Ac 
1 Gal 2 Glc 2).

The levels of LSTb in human breast milk are relatively 
low and can be affected by various factors. This includes 
regional differences, as shown by the modest LSTb level 
of 41±5 nmol/mL seen in Peruvian women (7). LSTb 
concentrations typically peak during lactation days 8 to 10 
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and then decrease (10.3390/nu15061408). Additionally, 
a negative correlation was found between maternal body 
mass index at 5 months and LSTb level (20). A study on the 
relationship between LSTb and infants revealed that LSTb 
levels were negatively associated with weight and head 
growth at 14 and 28 days postpartum (21). LSTb levels at  
6 months were also demonstrated to be predictive of 
cognitive development scores in infants (22). It is possible 
that LSTb levels could be linked to infant cognitive 
development through the proliferation or depletion of 
specific gut microbes (23,24).

The impact of LSTb on cognitive performance in infants 
differs from that of other HMO constituents. To investigate 
the effects of LSTb on central nervous system development, 

we opted to use Tg zebrafish and study motor neuron 
development. The results indicated that coincubation 
of zebrafish with LSTb increased both the number and 
length of CaP neuron branches, suggesting that LSTb 
indeed facilitates the growth of CaP neurons. CaP, a type 
of primary motor neuron, is closely related to locomotion. 
Thus, we conducted behavioral testing, which showed 
that immersion of zebrafish larvae in LSTb resulted in 
notable enhancements in swimming distance, tail-wagging 
movement, and average speed. RNA-seq was performed to 
understand how LSTb promotes CaP development, and 
the results showed that zebrafish larvae soaked in LSTb 
exhibited increased expression in 33 genes, with GO entries 
enriched in central nervous system neuron differentiation. 
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Slit2 and Slit3, classic genes related to axon guidance 
became the focus of our attention. Subsequent verification 
by PCR also showed that the expression of Slit2 and Slit3 
increased significantly after LSTb treatment. The whole-
mount in situ hybridization results also showed that the 
expression of Slit2 at different times after incubation with 
LSTb was stronger than that in the control group. Based 
on these findings, we speculate that LSTb promotes CaP 
neuron development through Slit2 and Slit3.

The Slit family is a group of secreted proteins that hold 
critical significance in guiding neuronal axons. Slit proteins 
consist of single peptides that contain about 1,500 amino 
acids. In vertebrates, the Slit family includes Slit1, Slit2, and 
Slit3 (25). In zebrafish, four genes have been characterized, 
namely Slit1a, Slit1b, Slit2, and Slit3 (26,27). Among the 
Slit proteins, Slit1 is mainly expressed within the developing 
nervous system, while Slit2 and Slit3 are present in other 
parts of the body, such as the kidney, lungs, heart and, 
immune cells, in addition to the nervous system (28-30). A 
study conducted in the late 1990s showed that Slit2 within 
the calf brain led to a fivefold increase in the number of 
branch points per axon and to 2.5-fold increase in axon 
length (31). Slit has been identified as a positive regulator of 
dorsal root ganglion axonal branching and elongation (32). 
Slits typically exert their biological function by binding to 
roundabout (Robo) receptors, and Slit-Robo signaling plays 
a role in various BP, including axon guidance and central 
nervous system development (33).

There are some limitations to this study that should be 

mentioned. Although the study examined the changes of 
structure of CaP neurons and motor ability, the effect of 
LSTb on motor neuron differentiation was not observed, 
and other types of neurons in the central nervous system 
and their corresponding functions were not taken into 
account. Additionally, we used zebrafish and did not 
investigate the higher functions of the central nervous 
system, such as learning and memory. Our findings 
indicated that LSTb, despite not being a major component 
of breast milk, can significantly impact the development of 
motor neurons. The mechanism behind this effect may be 
related to the increase in the expression of Slit2 and Slit3 
by LSTb. In order to further explore the impact of LSTb 
on the central nervous system, we plan to conduct more 
research using mammalian models in the future, providing 
more reliable experimental data and theoretical support for 
the addition of LSTb to infant formula.

Conclusions

The study provides evidence that LSTb, despite its low 
concentration in human milk, has a significant impact on the 
development and function of motor neurons in zebrafish. 
LSTb may modulate neurodevelopment by regulating the 
Slit2 and Slit3 genes that are critical for axonal growth and 
guidance. These findings contribute to our understanding 
of the role of HMOs in neurodevelopment and provide 
new avenues for further exploration of LSTb’s potential as a 
therapeutic agent for neurodevelopmental disorders.
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