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We investigate the attack of the nitrogen dioxide radical (NO• ) to the guanine—cytosine2

(GC) base pair and the subsequent tautomeric reactions able to induce mutations,

by means of density functional theory (DFT) calculations. The conducted simulations

allow us to identify the most reactive sites of the GC base pair. Indeed, the computed

relative energies demonstrate that the addition of the NO• radical to the C8 position of2

the guanine base forms to the most stable adduct. Although the initial adducts might

evolve to non-canonical structures via inter-base hydrogen bonds rearrangements, the

probability for the proton exchange to occur lies in the same range as that observed for

undamaged DNA. As a result, tautomeric errors in NO2-attacked DNA arises at the same

rate as in canonical DNA, with no macroscopic impact on the overall stability of DNA. The

potential mutagenic effects of the GC–NO• radical adducts likely involve side reactions,2

e.g., the GC deprotonation to the solvent, rather than proton exchange between guanine

and cytosine basis.

Keywords: guanine–cytosine, NO2 radical, induced mutation, proton transfer reaction, tautomeric equilibria, rare
tautomers, computational chemistry, density functional theory

1. Introduction

Free radicals are naturally present in the biological medium as intermediates of the cellular
metabolism. Although necessary to keep the normal biochemical activity, these highly reactive
species tend to react, when present in excess, with a wide panel of biomolecules including DNA
(Cadet et al., 2010). Accordingly, free-radical-induced DNA damage (mutations) might eventually
initiate degenerative diseases, cardiovascular problems and cancers (von Sonntag, 2009). The reac-
tive nitrogen oxide species (RNOS) family is a representative example of the double role played
by free radicals (Lonkar and Dedon, 2011). Indeed, it has been established that mammalians cells
endogenously produce RNOS as critical biological mediators (Ignarro, 1990). However, intracel-
lular amounts of RNOS can overpass the tolerable limit by exposure to external chemical agents,
such as cigarette smoke or air pollution (Pacher et al., 2007), and physical agents like high-energy
radiations (Douki and Cadet, 2008).

One of the most important RNOS is the nitrogen dioxide radical, which is mainly present
under its monomer NO•

2 form in physiological conditions (Augusto et al., 2002). Like any
free radical, NO•

2 might react by electron transfer, hydrogen atom abstraction and/or rad-
ical addition to unsaturated bonds (Galano, 2007; Cerón-Carrasco et al., 2010). As for a
reaction with DNA is concerned, the latter mechanism involves the addition of the radical
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to one of the unsaturated bonds of the guanine–cytosine (GC)
base pair. There are, in particular, five possible reactive positions
in the GC pair: C4, C5, and C8 in the guanine [C4(G), C5(G),
and C8(G)] and C5 and C6 in the cytosine [C5(C) and C6(C)].
The atomic numbering is shown in Figure 1. Previous experi-
mental and theoretical evidences indicated that C8(G) is the most
reactive site for OH• radical attack (Fortini et al., 2003; Shukla
et al., 2004; Jena and Mishra, 2005; Shukla and Mishra, 2007;
Zhang and Eriksson, 2007; Bergeron et al., 2010; Cerón-Carrasco
and Jacquemin, 2012). Agnihotri and Mishra have also shown
that NO•

2 quickly reacts with the guanine radical cation (G•+)
at this same position (Agnihotri and Mishra, 2009, 2010, 2011),
which might lead to DNA damage through the formation of an
intermediate 8-nitroguanine structure (Misiaszek et al., 2005).
The reaction of NO•

2 radical with the undamaged (neutral and
closed-shell) GC pair has been, however, much less explored, so
additional work is required to understand the biological action of
such radical once inside the cellular medium.

In this work, we use an state-of-the-art theoretical approach
within the density functional theory (DFT) framework to inves-
tigate the possible mutagenic effects induced by the NO•

2 radical.
In particular, we study the formation of non-canonical Watson
and Crick structures arising from activation of the tautomeric
equilibria in the GC base pair. These equilibria involve proton
transfer (PT) between the guanine and cytosine basis yielding
the so-called rare tautomeric forms that have been proposed as
a plausible source of genetic errors (Löwdin, 1963; Florián and
Leszczyński, 1996; Dannenberg and Tomasz, 2000; Gorb et al.,
2004; Kumar and Sevilla, 2010; Villani, 2010a; Jacquemin et al.,
2014). In undamaged DNA, GC base pairs naturally exchange
the position of the H1, H4 and H4′ protons (see Figure 1),
eventually disrupting the standard hydrogen-bond pattern that
maintain the double helix bounded and thus inducing genetic
errors during the cell replication (Villani, 2010b). Consequently,
the tautomeric equilibria can be altered by external agents

FIGURE 1 | Chemical structure and atomic numbering of the canonical
GC base pair. Both N9 in G and N1 in C are the connections to the lateral

backbone in DNA. In an isolated GC base pair, these positions are occupied

by two hydrogen atoms. Arrows show the possible displacements of the

protons H1, H4, and H4′ during the tautomeric reactions.

facilitating PT reactions (Khanduri et al., 2011). The main goal of
this contribution is therefore to determine whether NO•

2 radical
contributes to themutagenic processes by shifting PTmechanism
toward rare-tautomeric GC structures.

2. Methods

Since all the structures under study correspond to radical forms,
the bullet superscript is hereafter omitted in the text in order to
lighten the notation. We employ two different chemical mod-
els. In an early stage, a single GC base pair is used to determine
the relative stabilities of all possible GC–radical adducts. More
specifically, the NO2 radical is added to all possible reactive sites
of the GC base pair through the two possible binding modes,
e.g., ONO–CX and O2N–CX, where CX stands for the attacked
carbons: C4(G), C5(G), C8(G), C5(C), and C6(C). The resulting
adducts are next fully solvated with eleven water molecules, as
illustrated in Figure 2, in order to mimic the solvent effects of a
single solvated GC pair (Kumar et al., 2008). All these structures
are optimized without symmetry constraints at the M06-2X/6-
311G(d,p) level (Zhao and Truhlar, 2008a,b). The vibrational
frequencies are computed at the same level of theory to con-
firm the absence of imaginary frequencies so that real minima
are obtained. The total energies of all stationary points are then
improved using the same exchange-correlation functional with
the more extended atomic basis set, 6-311++G(d,p). Also, the
well-known polarisable continuum model (PCM) is additionally
used to account for solvent effects beyond the explicitly-treated
first hydration shell (Tomasi et al., 1999, 2005).

The isolated GC–radical adducts might form indeed over-
distorted structures compared to real DNA, since the stacking
effect is neglected. Consequently, the single base pair model
is next refined by sandwiching the most stable adduct into at
double-stranded B-form trimer d(5′-GGG-3′)d(3′-CCC-5′), as
shown in Figure 3. This model includes both nucleotides moi-
eties and sugar-phosphate backbone chains (Chen et al., 2009,
2011; Cerón-Carrasco et al., 2011). Since phosphates are nega-
tively charged at physiological pH, the neutrality of the systems
can be ensured by either adding counterions, e.g., Na+ or K+, or
protonating the phosphate groups. Since the backbone does not
significantly affect PT reactions inDNA (Close andØhman, 2008;

FIGURE 2 | Chemical structure for two of the single GC–radical adduct
models: O2N–C8(G) and ONO–C6(C).
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Chen et al., 2009), we go for the latter procedure to have a neutral
system and consequently facilitate the convergence of the calcu-
lations. The GC-radical adduct is therefore located between two
GC base pairs, which correctly mimic the π-stacking interactions
in real DNA (Chen et al., 2009). We should underline that the
stacked DNA model includes five water molecules in the vicinity
of N3(G), O6(G), N7(G), O2(C), and N4(C) atoms (see atomic
numbering in 1), and not eleven as in the single GC–radical
adduct. These five sites correspond to the solvent exposed het-
eroatoms in DNA, so five water molecules are enough to provide
a suitable representation of the hydrogen-bonds network formed
between the base pair and the first hydration shell of the stacked
structure (Schneider and Berman, 1995; Auffinger and Westhof,
2000; Makarov et al., 2002).

Due to the size of the DNA fragment (ca. 200 atoms), we
use the hybrid ONIOM approach (Dapprich et al., 1999), which
allows us to split the system into different regions, called lay-
ers. In this system, the layer of interest (defined as high layer) is
the central GC–NO2 radical adduct plus the five explicit water
molecules. This layer is treated at the same level that the iso-
lated model, i.e., by using M06-2X/6-311G(d,p) for the optimiza-
tion and PCM-M06-2X/6-31++G(d,p) for single-point energy
calculations (Vreven et al., 2001; Mo et al., 2004). The two bor-
der GC base pairs that confine the central GC-radical adduct
form the medium layer, which is described at the less demand-
ing M06-2X/6-31G(d) level, while the lateral sugar-phosphate
backbone (low layer) is simulated with the semiempirical PM6
method (Stewart, 2007). In this computation protocol, only the
high layer is optimized whereas the rest of the system is frozen in
the space. Such partial optimization procedure retains the charac-
teristic double helix form of DNAwhile allowing relaxation of the
central base pairs during the proton transfer reaction. Analytic
calculations of the vibrational frequencies confirm the nature of
the obtained structures to be minima (no imaginary frequencies)
or transition states (a single imaginary frequency corresponding
to the stretching of the transferred protons). All calculations are
carried out with Gaussian09 (Frisch et al., 2009).

FIGURE 3 | The ONIOM model for the DNA-embedded GC-radical
adduct. The high layer for the ONO-C8(G) adduct is represented as ball and

sticks whereas the confining base pair of the medium layer are shown as tube,

and the lateral back-bone placed in the low layer are displayed as wireframe.

3. Results and Discussion

Although previous experimental and theoretical evidences sug-
gest that the C8(G) is the preferred site for adding radicals to the
GC base pair (Kumar et al., 2011), we have calculated the rela-
tive stabilities of all possible GC–radical adducts to provide an
accurate picture of the NO2 radical reactivity. The relative ener-
gies obtained for the located adducts are listed inTable 1, with the
reference value being taken as the most stable GC–radical adduct:
ONO–C8(G). As observed, there are two main radical-attacking
sites: C8(G) and C6(C). It wasn’t possible to optimize GC-radical
adduct at other positions, with the only exception of ONO–C5(C)
at a significantly higher energy (11.76 kcal.mol−1). This finding
is consistent with previous results obtained by Zhang and Eriks-
son using DFT calculations to determine the reactivity of the OH
radical with the neutral closed-shell GC base pair (Zhang and
Eriksson, 2007). These authors concluded that the two most sta-
ble binding sites for the GC–OH mutation are C8(G) and C6(C)
(Zhang and Eriksson, 2007). In contrast, there are two possible
binding modes (O2N– and ONO–) in the present case. Inspec-
tion of Table 1 reveals that the attack of the NO2 radical could
proceed equally through the nitrogen or the oxygen atom. This
is a remarkable result: the binding mode does not significantly
affect the final stability of the generated adduct since the reported
difference is negligible (<0.40 kcal.mol−1).

Aiming to characterize better the structural changes induced
by the radical, we also include in Table 1 the interbase distances
and the partial atomic charges of the protons involved in the
intramolecular hydrogen bonds. Although there are slight dif-
ferences (ca. 0.1 Å) in the interbase separation, adding the NO2

radical does significantly alter the GC geometry. The structures
of the two most stable GC–radical adducts, namely O2N–C8(G)
and ONO–C8(G), are shown in Figure 4. The side views show a
clear bent structure as a result of the radial addition. Such depar-
ture from planarity can be quantified through the dihedral angle
formed by C6(G)C2(G)C2(C)C4(C) (see atomic numbering in
Figure 1), which has a value of around 1◦ for undamaged GC,
but close to 10◦ in both GC–radical adducts. This is a logical con-
sequence of the selected model, which mimics the reactivity of a
single GC base pair in solution but does not reproduce the DNA
environment, and in particular the π-stacking constrain.

More intriguing are the results shown in Table 1 for
the atomic charges. As observed, the O2N– biding mode
results in larger (more positive) atomic charges for the

TABLE 1 | Relative energy (1E/kcal.mol−1), theoretical interbase bond
distances (in Å) and Mulliken atomic charges (in |e| ) for the single
GC–radical adducts.

Adduct 1E Distance Charge

O6–N4 N1–N3 N2–O2 H4 H1 H2

ONO–C8(G) 0.00 2.908 2.907 2.839 0.34 0.49 0.38

O2N–C8(G) 0.15 2.894 2.890 2.838 0.38 0.56 0.36

O2N–C6(C) 7.69 2.843 2.912 2.891 0.41 0.57 0.35

ONO–C6(C) 8.08 2.859 2.920 2.878 0.34 0.47 0.32

ONO–C5(C) 11.76 2.871 2.935 2.876 0.34 0.52 0.35
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transferred proton during the tautomeric reaction, e.g., H4
and H1, compared to its ONO– counterpart. Although
limited, these changes might affect the stability of the induced
mutation since the atomic charges are directly related to the

FIGURE 4 | Top and side views of the optimized structure for the
O2N–C8(G) and ONO–C8(G) adducts.

proton acidity and, consequently, to the tendency of forming
tautomers.

The single GC base pair model provides the first clues for the
attack of the NO2 radical to DNA, but the more refined model is
required for biological analysis because (i) bend structures imply
energetic penalties once inside DNA due to the π-stacking inter-
actions; and (ii) the location of the radical could be modified
by the chemical environment of DNA, e.g., by the interaction
with other base pairs and/or later sugar-phosphate backbone.
Consequently, the two most stable adducts, O2N–C8(G) and
ONO–C8(G), are “docked” into the DNA fragment shown in
Figure 3. In contrast with the single GC model in which both
binding modes are practically isoenergetic, the ONO–C8(G)
adduct is now 3.23 kcal.mol−1 more stable than the O2N–C8(G)
adduct in DNA, which confirms the importance of accounting for
all key interactions.

In addition to the optimal geometry of the canonical GC–
radical adducts, we have computed the energetic profiles corre-
sponding both to the transfer of protons H1 and H4, directly
exchanged between the basis, and to the tautomeric equilibria
arising from the movement of the H4′ (see Figure 1). The lat-
ter equilibrium implies a water-assisted mechanism in which the
surrounding water molecules catalyze the process by accepting
and donating protons (see Ref. Jacquemin et al., 2014 for details).

FIGURE 5 | Chemical structures of the canonical rare
tautomeric form optimized for the O2N–C8(G) and ONO–C8(G)
adducts: H1+H4 and H1+H4′. For the sake of clarity only the

central GC–radical adduct and the surrounding water molecules are

displayed as balls and sticks, while the rest of the system is

shown has wireframe.
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The optimized rare tautomeric structures are shown in Figure 5,
and their relative energies and equilibrium constant are given in
Table 2. We should note that all the attempts tried to optimize
products arising from a single-PT reaction, that is, to optimize
rare tautomers where only one proton (H1, H4 or H4′) is shifted
from its position, failed as the geometry optimization quickly
restored the original canonical structure. However, we were able
to localize the products for H1+H4 andH1+H4′ double-PT with
bothO2N–C8(G) andONO–C8(G) adducts, which structures are
shown in Figure 5. As discussed above, the O2N–C8(G) binding
mode results in more acidic H4 and H1 protons, compared to the
ONO–C8(G) adduct, eventually favouring the tautomeric equi-
libria by ca. 3 kcal.mol−1. The associated equilibrium constants
(Keq) can be estimated from the relative energies obtained using
the expression

Keq = e−1E/RT (1)

where R is the ideal gas constant and T is the temperature
(298.15 K). Keq provides a measure of the mutation frequency,
which can be directly compared to the computed value for the
radical-free DNA. Taking the undamaged-DNA as a reference for
the impact of H1+H4 and H1+H4′ reactions, one notices that
the latter is unlikely to occur due to the low Keq values, which
are of the order of 10−16 and 10−13 for the O2N–C8(G) and
ONO–C8(G) adducts, respectively. However, the energies listed
in Table 2 hint that the O2N–C8(G) adduct stabilizes the H1+H4
mutation by ca. 2 kcal.mol−1, slightly shifting the equilibrium
toward the rare tautomeric form (Keq = 7.27×10−08). Despite of
such a difference, all rare tautomers are in the range of observed

TABLE 2 | Relative energy (1E/kcal.mol−1) and equilibrium constants
(Keq) at 298 K calculated for the H1+H4 and H1+H4′ tautomeric equilibria
of undamaged-DNA, O2N–C8(G) and ONO–C8(G) adducts.

Adduct Undamaged-DNA ONO–C8(G) O2N–C8(G)

1E Keq 1E Keq 1E Keq

Canonic 0.00 0.00 0.00

H1+H4 11.23 5.75× 10−09 12.96 3.11× 10−10 9.73 7.27× 10−08

H1+H4′ 17.37 1.80× 10−13 20.71 6.50× 10−16 17.48 1.52× 10−13

frequency for the spontaneous mutation, experimentally mea-
sured as ranging from 10−8 to 10−10 (Topal and Fresco, 1976).
Interestingly, there is a certain dissimilarity between NO2 and
OH. The latter clearly shifts the PT reactions toward the rare tau-
tomeric forms of the GC base pair, and its degenerative effects are
therefore governed by the transition states along the PT reactions,
which in turn determines their lifetimes (Zhang and Eriksson,
2007; Cerón-Carrasco and Jacquemin, 2012). In contrast, NO2

does not affect the PT reactions, so it is not necessary to compute
the transition states to conclude that they make no impact in the
global mutation when present in DNA during cell replication.

Since the canonical O2N-C8(G) and ONO-C8(G) adducts are
shown to be the most stable structures at an early stage of the
radical attack, we decided to compute the spin densities surfaces
for both forms to determine the localisation of the unpaired elec-
tron. Such calculations were performed by single-point full QM
calculations at the M06-2X/6-311G(d,p) level. As illustrated in
Figure 6, the spin density is distributed in the guanine as well
as in the radical, in agreement with previous results obtained
for the OH radical (Cerón-Carrasco and Jacquemin, 2012). This
finding indicates that the subsequent mutagenic steps will be
take place at this region rather than at further sugar-phosphate
backbones moieties or at other DNA basis. It becomes there-
fore necessary to perform additional dynamics calculations with
larger models (Loos et al., 2009; Ambrosek et al., 2010; Cauët
et al., 2010; Dupont et al., 2011; Garrec et al., 2012; Cerón-
Carrasco et al., 2013; Dupont et al., 2013; Patel et al., 2013) for the
O2N–C8(G) and ONO–C8(G) adducts to further investigate the
damage mechanism initiated by GC-NO2 structures. Our results
indicate that such adducts should evolve by side mechanisms dif-
ferent than PT between guanine an cytosine, e.g., deprotonation
to the solvent (Agnihotri and Mishra, 2011).

4. Concluding Remarks

We have performed theoretical calculations to determine the
reaction mechanism between the NO2 radical and the neu-
tral closed-shell guanine–cytosine base pair. The reported data
demonstrate that the carbon C8 of the guanine moiety is the
preferential site to form the GC-radical adduct. The NO2 radical
equally reacts with the single GC base pair through either its
nitrogen or its oxygen atom, with the latter yielding the most

FIGURE 6 | Spin density distributions of the canonical radical adducts (isovalue = 0.002 a.u.) computed at M06-2X/6-311G(d,p) level for the three base
pairs DNA fragment.
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stable adduct when a more realistic DNA-embedded model is
used. This finding confirms the importance of using a well-
balanced chemical model to obtain valuable conclusions. For the
radical addition to DNA, the π-stacking interaction not only
constrain the planarity of the attacked base pair, but also accom-
modates better the ONO– binding mode compared to its O2N–
counterpart. We have assessed the possible evolution of these
adducts through proton transfer reactions between guanine and
cytosine basis, which is one of the sources of genetic errors in
DNA. The associated equilibrium constants lie in the same range
as the one observed for spontaneous mutation. We conclude
that the initial ONO–C8(G) does not promote rare tautomeric
forms by proton exchange, at least not at a rate larger than
that in undamaged DNA. The NO2-induced genetic damage is
expectedly to be initiated by other side reactions.
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