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A B S T R A C T

This study was conducted to determine if artificial neural networks (ANN) can be used to accurately predict in
vitro organogenesis of Bacopa monnieri compared with statistical regression. Prediction models were developed for
shoot and root organogenesis (outputs) on two culture media (Murashige and Skoog and Gamborg B5) affected by
two explant types (leaf and node) and two cytokinins (6-Benzylaminopurine and Thidiazuron at 1.0, 5.0, and 10.0
μM levels) with and without the addition of auxin (1-Naphthaleneacetic acid 0.1 μM) (inputs). Categorical data
were encoded in numeric form using one-hot encoding technique. Backpropagation (BP) and Kalman filter (KF)
learning algorithms were used to develop nonparametric models between inputs and outputs. Correlations be-
tween predicted and observed outputs (validation dataset) were similar in both ANN-BP (R values ¼ 0.77, 0.71,
0.68, and 0.48), and ANN-KF (R values ¼ 0.79, 0.68, 0.75, and 0.49), and were higher than regression (R values ¼
0.13, 0.48, 0.39, and 0.37) models for shoots and roots from leaf and node explants, respectively. Because ANN
models have the ability to interpolate from unseen data, they could be used as an effective tool in accurately
predicting the in vitro growth kinetics of Bacopa cultures.
1. Introduction

Bacopa monnieri (L.), commonly known as Brahmi, is a medicinal
Ayurvedic herb that has been used for improving memory and thinking
skills, insomnia, mental health, seizures, and anxiety [1]. These thera-
peutic benefits of B. monnieri underscore the necessity for its use in in-
dustrial formulations. Tissue culture propagation supplies clean,
identical, and compatible Brahmi plant material in a large-scale for
downstream processing [2, 3]. Lately, the use of machine learning (ML)
approaches such as artificial neural networks (ANN) to accurately predict
in vitro growth kinetics have gained importance in validating plant tissue
culture processes and helping the industry to scale up productions by
fine-tuning the automation process [4, 5].

In tissue culture, plant organogenesis is primarily controlled by the
presence of growth regulators, both in vitro and in vivo [6]. It is also
affected by the type of explant, the constitution of culture media, the type
of phytohormones such as auxins and cytokinins, and their interactions
[7]. Often, the combination of these factors causes the process of plant in
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vitro organogenesis to be nonlinear and nondeterministic growth pro-
gressions [7, 8]. Consequently, any optimization procedure in plant tis-
sue culture calls for numerous experiments which are often laborious and
time-consuming. Therefore, an initial study followed by modeling based
on the experimental data not only offer an easy and less expensive
alternative but also expedite any such optimization procedures [9, 10].
However, use of statistical models for optimization of every stage in in
vitro culture is challenging. Statistical models (e.g., non-linear multivar-
iate modeling, polynomial regression method etc.) have limitations in
discerning nonlinearity that exists in tissue culture processes [11]. For
instance, these approaches have limited complexity and are not as
appropriate for multifactorial and large datasets with complex relation-
ships as they often produce poor curve fit during model development
[12].

On the other hand, nonlinear, nonparametric machine learning (ML)
techniques are more efficient in handling large amounts of complex and
nondeterministic datasets with multiple independent versus multiple
dependent variables which are often observed in plant tissue culture
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studies [13, 14]. Furthermore, nonparametric methods bring distinct
advantages over statistical models, as they do not require a priori
knowledge of the research problem and distribution or relationship be-
tween the input and output variables and thus are effective in modeling
nonlinear plant tissue culture data [15, 16]. Modern ML methods come
with a powerful set of algorithms that can self-learn, analyze complexities
in datasets and predict, classify, estimate, simulate, the underlined trends
and behaviors. Therefore, these methods provide better understanding of
tissue culture processes and help us make correct decisions for optimi-
zation at every step [17, 18, 19].

Importantly, machine learning models have the ability to adapt
robustly to new, previously unseen data, drawn from the same distribu-
tion as the one used to create the model. It means, the predictive capa-
bility of ML models continued to be useful in making educated guesses
with data of same type from future plant tissue culture investigations
[20]. Since machine learning models have the inherent ability to handle
high biological variability and uncertainty associated with various bio-
logical processes, they could be of great use in the process analysis,
optimization, product development, and quality assurances in tissue
culture systems [9, 13, 21]. In addition, these models are non-invasive,
stress-free to use, time efficient and lead to similar results obtained by
means of other more invasive methods, thus offering a good alternative
to use in such studies [5, 22].

Artificial neural networks (ANN), a popular machine learning
approach, has led the modeling field in plant tissue culture for the past
several years [23]. Artificial neural networks are reliable fast-computing
techniques which yields accurate predictions even with incomplete and
noisy data regularly observed in nonlinear problems [24, 25]. Further-
more, ANN models can be established rapidly with limited experimental
data, and they could approximate any complex nonlinear systems [26].
However, the performance of an ANN model depends on various factors
including the type of network architecture, the transfer function, and the
learning algorithms used. Artificial neural networks trained with Kalman
filter (KF) and backpropagation (BP) algorithms reported to have strong
generalization capability compared to statistical models [27].

In general, ANN applications in plant tissue culture are diverse and
reported to have performed better than statistical regression models [21,
23]. For example, ANNs have been used in plant tissue culture to opti-
mize the culture conditions of melon [25], measure and predict physical
properties of embryogenic callus and number of somatic embryos in
Ajowan [28], predict the hyoscyamine content in Datura [29], optimize
in vitro shoot proliferation of wallflower [30], and prunus rootstocks
[31]. Despite significant advantages, the use of ANN in Bacopa’s plant
tissue culture has not been explored.

Therefore, in this study ANNmodels were developed to predict in vitro
shoot and root organogenesis of B. monnieri from leaf and node explants
as a function of culture media and plant growth regulators, and to
compare the prediction performances of ANN models with those of
regression models. To our knowledge this is the first study to use artificial
neural networks to predict in vitro organogenesis of B. monnieri.

2. Materials and methods

2.1. Media preparation, culture establishment, and organogenesis of
B. monnieri

Based on earlier research at the Biotechnology Laboratory at Fort
Valley State University, experiments were conducted to count the in vitro
shoot and root production from leaf and node explants of B. monnieri on
Murashige and Skoog (MS) [32] and Gamborg (B5) [33] culture media
affected by two cytokinins (6-Benzylaminopurine (BAP) and Thidiazuron
(TDZ) at 1.0, 5.0, and 10.0 μM levels) with and without the addition of
auxin (1-Naphthaleneacetic acid (NAA) at 0.1 μM). Culture media
preparation, growth regulator supplementation, explant preparation, and
inoculations were carried out as outlined in the publications [34, 35].
Explants were cultured on the shoot induction media for three weeks and
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followed by subculture on MS basal elongation medium for four weeks.
At the completion of elongation period, cultures were removed from
vessels and destructive counting was performed to count adventitious
shoots and roots in each explant. In this experiment, all cultures were
grown under uniform environmental conditions using growth chambers.
Therefore, factors such as temperature, photoperiod, humidity etc., were
not included in the model development.

2.2. Collection of data for model development

Data from experiments discussed in section 2.1 were used in the
development of models. Culture media and growth regulators data were
used as inputs while in vitro shoot, or root organogenesis data, were used
as outputs for developing prediction models. In total, there were four
datasets, one for each output. i.e., shoot output and root output from leaf
(leaf–shoots and leaf–roots) and node (node–shoots and node-roots) ex-
plants, respectively.

Because ANNs learning algorithms require data to be in numerical
form, categorical data (such as culture media, which can be MS or B5 in
this study) were converted into integer data using one-hot encoding
technique (where each input label was represented by a binary vector
(i.e., 0 or 1). Usually, this technique is suitable for categorical data in
which the categories are not related to each other [36]. On the other
hand, inputs with numeric data were presented as is to models.

Kurtosis and skewness were performed to understand where the most
information was lying (distribution) and evaluated the outliers in the
experimental data. While skewness is a degree of asymmetry observed in
a probability distribution that deviates from the symmetrical normal
distribution in data, Kurtosis refers to the degree of presence of outliers in
the data distribution [37]. In this study, all datasets except node-shoot,
had symmetrical skewness and flatter kurtosis (pytokurtic). However,
node-shoot dataset presented with a positively high skewness and high
peak kurtosis (leptokurtic) suggesting a higher probability of outlier
values in this dataset as compared to others.

2.3. Artificial neural networks software

Artificial neural networks models were constructed using Neural-
Works Predict® (version 3.2; NeuralWare, Carnegie, PA, USA) software.
Because the selection of a network configuration and its parameters is
usually accomplished empirically [38], use of commercially available
software such as Predict® is convenient for obtaining the best models
with ease.

2.4. Multilayer perceptron network models

Prediction models were built using a multilayer perceptron (MLP)
neural network with feedforward architecture (Figure 1), as it discerns
nonlinear data [39]. Furthermore, it has universal approximation and the
compact representation [20]. In a typical MLP, the input layer receives
the signal to be processed from inputs. The output layer makes a pre-
diction about the input, and the in between hidden layer, the true
computational engine, provides a possible solution using a transfer
function, in a feed forward approach [20, 39]. Usually, the software
builds neural networks incrementally using cascade learning [40].
Cascade learning, also known as cascade–correlation, is a supervised
learning algorithm, which begins with a nominal network and then trains
and adds hidden units one at a time, and always connecting all the pre-
vious units to the current unit [38]. The “cascade” part refers to the
stepwise mode of construction of the structure, and the “correlation” part
refers to the way in which the hidden units are trained by maximizing the
correlation between output of hidden units and the desired output of the
network across the training data [41].

In this study, ANN models were constructed using two learning al-
gorithms — a Kalman learning algorithm (ANN-KF) and an adaptive
gradient learning algorithm (Backpropagation; ANN-BP). The objective



Figure 1. Schematic representation of multilayer perceptron neural network
model. Inputs were culture media (MS and B5), BAP, TDZ and NAA and the
outputs were number of shoot and roots produced from leaf and node explants
of B. monnieri.

Table 2. Artificial neural networks (ANN) models’ architecture and regression
equations used to predict in vitro organogenesis responses as a function of culture
media (MS and BS) and growth regulators (BAP, TDZ, and NAA) from leaf and
node explants of B. monnieri.

Output (per
explant)

Architecture
(inputs-hidden
nodes-output)

Regression Models

ANN-
BP

ANN-
KF

Leaf–Shoots 7–9–1 7–3–1 Y ¼ 8.24 þ 0X1 - 0.58X2 þ 0.058X3 þ
0.05X4 þ 4.54X5

Leaf–Roots 7–9–-1 7–7–1 Y ¼ 3.37 þ 0X1 - 0.75X2 - 0.24X3 þ 0.04X4

þ 12.09X5

Node–Shoots 4–8–1 4–14–1 Y¼ 1.70 þ 0X1 - 0.72X2 þ 0.14X3 þ 0.18X4

þ 5.28X5

Node–Roots 9–13–1 9–9–1 Y¼ 4.67 þ 0X1 - 0.28X2 - 0.23X3 - 0.13X4 þ
7.40X5

Note: ANN-BP¼ Backpropagation algorithm; ANN-KF¼ Kalman filter algorithm;
Y ¼ shoot or root organogenesis; X1 ¼ B5 medium; X2 ¼ MS medium; X3 ¼ BAP;
X4 ¼ TDZ; X5 ¼ NAA.
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of these learning algorithms, during training phase, was to minimize the
error between predicted and measured outputs for producing an optimal
configuration [42].

2.5. Train, test, and validation datasets for ANN models

Out of 878 available records for each output (i.e., leaf–shoots, leaf–-
roots, node–shoots and node-roots), 618 were used to build prediction
models, and the rest of 260 records were used to validate the built
models. During the model building phase, the software split 618 records
further into train (432 records) and test (186 records) datasets so that the
two were statistically close to each other [38]. The objective of training
models was to produce a formula to capture key relationships between
inputs and outputs. Following, trained models were assessed for their
interpolation performances with test datasets.

Although, models were trained using train dataset, heuristics related
to their performance with test dataset were also used to guide choices for
building an optimal model [38]. Because of this reason, a good ANN
model mostly has similar performances with train and test datasets, but
to have it performwell with unseen dataset is important. Since validation
datasets were independent of the train and test datasets and had the
distribution like that of the train datasets, they were used to further
confirm the performances of ANNmodels. The number of records used in
training, testing, and validation of models is shown in Table 1.

2.6. Selection of an optimal ANN configuration

The network configurations for models were approached empirically,
and the model that performed well with validation dataset was selected.
To evaluate the performance of ANN models, several statistical indices
such as Pearson correlation (R), mean relative percentage residual
Table 1. Distribution of in vitro organogenesis data records of B. monnieri used in the

Output (per explant) Regression* ANN-BP

Training Set Testing Set

Leaf–Shoots 618/260 432 186

Leaf–Roots 618/260 432 186

Node–Shoots 618/260 432 186

Node–Roots 618/260 432 186

ANN-BP ¼ Backpropagation algorithm; ANN-KF ¼ Kalman filter algorithm.
* Model was developed using 618 records and validated with 260 records.
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(MRPR, %), bias factor, mean absolute relative residual (MARR, %), ac-
curacy factor, and standard deviation were calculated [41]. Since R
values measure the strength and direction of a linear relationship be-
tween predicted and observed outputs, they were used to select the best
models (highest R values were considered as best) [26].
2.7. Statistical regression models

Similar to the datasets used in developing ANN models, regression
models were also built (using MS Excel) with 618 records and validated
with 260 records. The objective of regression models was to assess the
quantitative impact of factors such as culture media, phytohormones and
their combinations on in vitro organogenesis of B. monnieri. Artificial neural
networks models are generalization of the standard linear and logistic
regression methods [43], and a comparison between these approaches for
prediction and data fit could lead to identification of better models.

The final architectures of ANNmodels and the equations of regression
are shown in Table 2. Generally, the number of inputs in the architecture
of ANN models does not tally with the number of inputs of the datasets
due to data analysis and transformation, variable selection, and algo-
rithm etc., used by Predict® during model development. Additionally,
box and whisker plots were made to compare the prediction perfor-
mances of ANN-BF, ANN-KF, and regression models and to visually
display the data distribution through their quartiles.

3. Results and discussion

3.1. Performance of models with leaf-shoots organogenesis

Prediction performances of models for in vitro shoot organogenesis
from leaf explants are shown in Table 3. Correlations between predicted
development of the artificial neural networks and regression models.

ANN-KF

Validation Set Training Set Testing Set Validation Set

260 432 186 260

260 432 186 260

260 432 186 260

260 432 186 260



Table 3. Pearson correlations between measured and predicted outputs from regression and artificial neural networks models (ANN-BP and ANN-KF).

Output (per explant) Regression ANN-BP ANN-KF

Validation Training Validation Training Validation

R SD R SD R SD R SD R SD

Leaf–Shoots 0.13 3.22 0.75 4.42 0.77 4.09 0.76 4.41 0.79 4.10

Leaf–Roots 0.48 1.82 0.72 1.89 0.68 1.92 0.72 1.90 0.68 1.93

Node–Shoots 0.39 1.59 0.69 1.56 0.71 1.66 0.72 1.00 0.75 1.69

Node-Roots 0.37 1.65 0.54 1.87 0.48 1.76 0.54 1.21 0.49 1.77

ANN-BP ¼ Backpropagation algorithm; ANN-KF ¼ Kalman filter algorithm.
R ¼ Pearson Correlation; SD ¼ Standard deviation.
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leaf-shoot and observed leaf-shoot outputs for regression model was 0.13
and for ANN-BP and ANN-KF models were 0.77and 0.79, respectively.
Also, better performances of ANN models with validation datasets than
with train datasets, signifying that these models have strong ability to
generalize and interpolate unseen patterns within the domain of training.

Plots of predicted values for in vitro shoot organogenesis from leaf
explants in Figure 2, indicate that ANN-BP and ANN-KF models very
tightly followed the trends set by measured values at all treatment levels,
while the regression model failed completely to follow the patterns of
measured values. For instance, the average shoot production from node
explants was highest (14.8) with B5 þ BAP 5.0 μM treatment, followed
by the second highest (13.3 shoots) with MSþ BAP 1.0μMþNAA 0.1 μM
treatment. Also, the lowest shoot organogenesis was observed in control
treatments of original experiment. These observed trends were accu-
rately predicted by ANN models with leaf-shoots dataset.

3.2. Performance of models with leaf-roots organogenesis

The results (Table 3) indicate that both ANN-KF and ANN-BP models
have identical prediction performances (R ¼ 0.68) for leaf-root organo-
genesis and are superior to the regression model (R ¼ 0.48). In this case,
ANN models had lower R values with validation dataset than with train
dataset, suggesting that these models may have become overfitted and
unable to generalize well to validation dataset. Overfitting occurs when
the model memorizes the noise and fits too closely to the data points
during its train phase. Also, it could occur if the training dataset has a
lower error rate, and the validation dataset has a higher error rate [24].
Figure 2. Trends in in vitro shoot production from leaf explants, in response to culture
as predicted by regression, artificial neural networks with backpropagation algorithm
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Comparison of plots for leaf-root prediction in Figure 3 indicated that
both ANN-BP and ANN-KF models closely followed the patterns set by
measured values at all treatment levels,while the regressionmodel failed to
identify these patterns at certain treatments levels (e.g., B5þ TDZ 10 μM).
3.3. Performance of models with node-shoots organogenesis

Pearson correlations between predicted node-shoots and observed
node-shoots values were better with ANN-BP (R ¼ 0.71) and ANN-KF (R
¼ 0.75) than with regression (R ¼ 0.39) models (Table 3). Better cor-
relations by ANN-KF over ANN-BP, suggesting that KF algorithm may
have efficiently handled the inherent variability or noise in the node-
shoots dataset.

Prediction plots in Figure 4 revealed that the patterns produced by
ANN-BP and ANN-KFmodels were similar to those of measured values and
are better than those of the regression model at majority of treatments.
However, all models failed to detect the trends of certain treatments that
exhibited large number of shoots (e.g., MS þ TDZ 5.0μM þ NAA 0.1 μM
and B5 þ BAP 1.0 μM). It is not unusual to ANN models to display better
generalization in predicting certain outputs and not others [44].
3.4. Performance of models with node-roots organogenesis

Prediction performances for node-root organogenesis were better
with ANN-BP (R ¼ 0.48) and ANN-KF (R ¼ 0.49) than with regression (R
¼ 0.37) model (Table 3). However, both ANN models revealed stronger
media (MS and B5) and combination of growth regulators (BAP, TDZ, and NAA)
(ANN-BP), and Kalman filter algorithm (ANN-KF) models on validation dataset.



Figure 3. Trends in in vitro root production from leaf explants in response to culture media (MS and B5) and combination of growth regulators (BAP, TDZ, and NAA)
as predicted by regression, artificial neural networks with backpropagation algorithm (ANN-BP), and Kalman filter algorithm (ANN-KF) models on validation dataset.
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performances (R ¼ 0.54) with the train dataset than with the validation
dataset, suggesting an overfit of the data points by these models.

Prediction performances of ANN-BP, ANN-KF, and regression models
were plotted against the measured values of node-root organogenesis
(Figure 5). Compared to the patterns produced by regression models, the
patterns produced by ANN models were better aligned with the measured
values of original experiment. For instance, the average root count was
high with treatment MS þ BAP 1.0μM þ NAA 0.1 μM and low with
treatments MSþ BAP 5.0 μM and B5þ TDZ 10 μM. These observed trends
were correctly reproduced by the ANN models with node-roots dataset.

Overall, both ANN-BP and ANN-KFmodels showed higher correlation
values for shoot organogenesis than for root organogenesis across the
datasets. Also, prediction performances of ANN models were better for
leaf-based organogenesis compared to node-based organogenesis, which
Figure 4. Trends in in vitro shoot production from node explants in response to cul
NAA) as predicted by regression, artificial neural networks with backpropagation a
tion dataset.
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suggests the possibility of higher levels of inherent variability in node
explants. It agrees with the trends observed in original experiment in
which the leaf-based organogenesis was stronger than the node-based
organogenesis. The reason could be due to differences in inherent vari-
ability between node and leaf explants as they differ in their structural
complexity and levels of endogenous phytohormones. Usually, endoge-
nous phytohormones regulate tissue differentiation in vitro and thus
varying levels would carry varying degrees of competence in explants for
organogenesis [45].

Despite high biological variabilities associated with plant material
and tissue culture process, ANNmodels were able to generalize well with
leaf-shoots and node-shoots validation datasets. Normally, data trans-
formation is needed for count data (such as number of roots or shoots
observed in this study) to improve normality for regression methods
ture media (MS and B5) and combination of growth regulators (BAP, TDZ, and
lgorithm (ANN-BP), and Kalman filter algorithm (ANN-KF) models on valida-



Figure 5. Trends in in vitro root production from node explants in response to culture media (MS and B5) and combination of growth regulators (BAP, TDZ, and NAA)
as predicted by regression, artificial neural networks with backpropagation algorithm (ANN-BP), and Kalman filter algorithm (ANN-KF) models on validation dataset.
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[11]. However, in the present study, better prediction performances were
observed in ANN models (without data transformation) than in regres-
sion models with shoot and root count data.

Comparison of statistical indices to evaluate prediction performances of
models (Table 4) showed that both ANN-BP and ANN-KF performed better
than regression models (Table 4). The mean relative percentage residual
(MRPR, %) values indicated an overprediction of the outputs by all models
with validation datasets. Regression models displayed greater amounts of
overpredictionascomparedtoANNmodels. For instance, regressionmodels
overpredicted the leaf–shoots outputs (validation dataset), on an average
80.51%(MRPR¼�80.51),whereasANN-BPandANN-KFoverpredictedthe
Table 4. Comparison of statistical indices between artificial neural networks and reg

Statistic Model Dataset Output (

Leaf–Sho

MRPR (%) Regression Validation -80.51

ANN-BP Training -6.08

Validation -15.20

ANN-KF Training -22.76

Validation -32.28

Bias factor Regression Validation 1.33

ANN-BP Training 0.92

Validation 0.99

ANN-KF Training 1.07

Validation 1.08

MARR (%) Regression Validation 104.89

ANN-BP Training 41.56

Validation 44.12

ANN-KF Training 46.41

Validation 49.94

Accuracy factor Regression Validation 1.82

ANN-BP Training 1. 46

Validation 1.44

ANN-KF Training 1.43

Validation 1.42

ANN-BP ¼ Backpropagation algorithm; ANN-KF ¼ Kalman filter algorithm.
MRPR ¼ Mean relative percentage residual; MARR ¼ Mean absolute relative residua
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same, on average 15.20% (MRPR¼ -15.20) and 32.28% (MRPR¼ -32.28),
respectively.However,withnode-shootsdataset, theoverprediction ratesof
models were markedly lower as compared to leaf–shoots outputs.

In general, overprediction by ANN models was found to be greater
with validation datasets than with train datasets. The bias factor calcu-
lations for ANN models were in contrast with MRPR (%) trends, with
most values being less than or closer to 1 (exception; leaf–shoot by ANN-
KF) indicate an underestimation of outputs by these models [46]. A bias
factor of 1 indicates that model has no bias, while bias factors of greater
than 1 and less than 1 indicates an overestimation and underestimation
of outputs by models, respectively [47].
ression models for each output.

by explant type)

ots Leaf–Roots Node–Shoots Node–Roots

-18.83 -14.73 -16.74

-6.76 0.46 -20.84

-19.53 -5.17 -27.36

-5.27 -0.14 -4.99

-0.35 -3.00 -9.48

1.02 1.10 1.06

0.97 1.00 1.01

0.94 0.93 1.02

0.98 1.00 1.00

0.90 0.86 0.93

36.71 28.09 26.82

7.62 3.88 10.75

25.07 13.01 21.84

7.57 3.95 10.41

25.38 12.58 21.61

1.35 1.26 1.21

1.08 1.04 1.08

1.28 1.16 1.20

1.08 1.04 1.08

1.30 1.15 1.20

l.
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The computed values of mean absolute relative residual (MARR, %)
and accuracy factor also showed that the prediction performances of ANN
models were better than regression. Both MARR (%) and accuracy factor
measures the average deviations of predicted outputs from observed out-
puts. In case of leaf–shoots with validation dataset, the MARR value of
49.94 for ANN-KF model indicate that the predicted outputs of this model
were 49.94% above or below the observed outputs. Likewise, an accuracy
factor of 1.42 for this model and dataset suggests that the predicted outputs
deviated on average 42% from observed outputs.

The discrepancy among different statistical indices for effectively
identifying prediction bias could be due to a difference in the normali-
zation of parameters or the methods of mathematical calculation (e.g.,
logarithm and exponential) [46]. Normalization of residuals is involved
in the computations of MRPR and MARR, while normalization of pre-
dicted values is included in the computation of bias and accuracy factor.
Because the normalized residuals have homogeneity of the variance,
MRPR and MARR are more reliable statistics than bias and accuracy
factor for assessing prediction performances of models [41].

Normally, the use of multiple statistical indices is recommended to
assess precision, bias, and accuracy of prediction performances of
models. In particular, these assessments are necessary for models dealing
with plant in vitro organogenesis because it is highly difficult to predict
due to inherent variability among explants combined with nonlinear
tissue culture processes [17].

Furthermore, plant tissue culture is very intricate, and finding the
factors such as culture media, type of explants, and plant growth regu-
lators that influence the processes of organogenesis cannot always be
well comprehended.

4. Conclusions

It is evident from this study that ANNmodels can predict in vitro shoot
and root organogenesis of B. monnieri better than regression models,
despite high variability associated with plant tissues and their complex
interaction with culture media and growth regulators. For instance,
Pearson correlations between predicted and observed outputs (on vali-
dation dataset) were similar in both ANN-BP (R values¼ 0.77, 0.71, 0.68,
and 0.48), and ANN-KF (R values¼ 0.79, 0.68, 0.75, and 0.49), and were
higher than regression (R values¼ 0.13, 0.48, 0.39, and 0.37) models for
shoots and roots from leaf and node explants, respectively. Also, com-
parison of prediction plots indicated that both BP and KF learning algo-
rithms had better precisions than regression models in all datasets. Since,
ANNmodels have the ability to interpolate unseen patterns, they offer an
effective tool for accurately predicting the in vitro growth kinetics of
B. monnieri. Furthermore, ANN approaches have the potential to replace
laborious and time-consuming experimental research.
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