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Abstract: The genus Curcuma is part of the Zingiberaceae family, and many Curcuma species have
been used as traditional medicine and cosmetics in Thailand. To find new cosmeceutical ingredients,
the in vitro anti-inflammatory, anti-oxidant, and cytotoxic activities of four Curcuma species as well
as the isolation of compounds from the most active crude extract (C. aromatica) were investigated.
The crude extract of C. aromatica showed 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging
activity with an IC50 value of 102.3µg/mL. The cytotoxicity effect of C. aeruginosa, C. comosa, C. aromatica,
and C. longa extracts assessed with the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide
(MTT) assay at 200 µg/mL were 12.1 ± 2.9, 14.4 ± 4.1, 28.6 ± 4.1, and 46.9 ± 8.6, respectively.
C. aeruginosa and C. comosa presented apoptosis cells (57.7 ± 3.1% and 32.6 ± 2.2%, respectively) using
the CytoTox-ONE™ assay. Different crude extracts or phytochemicals purified from C. aromatica
were evaluated for their anti-inflammatory properties. The crude extract of C. aromatica showed
the highest potential to inhibit NF-κB activity, followed by C. aeruginosa, C. comosa, and C. longa,
respectively. Among the various purified phytochemicals curcumin, germacrone, curdione, zederone,
and curcumenol significantly inhibited NF-κB activation in tumor necrosis factor (TNF) stimulated
HaCaT keratinocytes. Of all compounds, curcumin was the most potent anti-inflammatory.

Keywords: Curcuma aromatica; sesquiterpene; anti-inflammatory; luciferase assay; cytotoxicity

1. Introduction

The genus Curcuma is part of the family Zingiberaceae and over 120 species have been identified [1].
Many Curcuma species have been used as traditional medicine for the treatment of various diseases [2], or
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as ingredients for coloring in cosmetics as well as enhancing food flavors [3–6]. Previous phytochemical
investigations of Curcuma species resulted in the isolation and identification of sesquiterpenoids
and diarylheptanoids as major constituents and many of them showed promising pharmacological
activities including anti-inflammatory activity, cytotoxicity against cancer cell lines, and antioxidant
activities [5–9].

C. aromatica is widely used in Thai and Chinese traditional medicine for anti-tumor therapy [6],
blood stasis [10], throat infections [3], to eliminate body waste, and to promote wound
healing [11]. It showed various pharmacological activities such as antioxidant, anti-inflammatory,
and anti-carcinogenic activities [12]. The rhizome extract of this plant is well-known as a rich source
of sesquiterpenes [5,13]. C. comosa has been used in Thai traditional medicine for the alleviation of
postpartum uterine pain [14]. This plant showed various biological properties such as antioxidant,
anti-inflammatory, insecticidal [15], and inhibitory effects on cell proliferation [16]. Sesquiterpenoids [8]
and diarylheptanoids [15] were isolated as major compounds from the rhizome of C. comosa. The rhizome
of C. aeruginosa has been traditionally used for the treatment of asthma, cancer, fever, inflammation,
and skin diseases [17]. Pharmacological activities such as antioxidant, anti-inflammatory, and
cytotoxic activities have been reported for extracts of this species. [18]. The phytochemical profile of
the rhizome of C. aeruginosa is characterized by the presence of diarylheptanoids, curcuminoids, and
sesquiterpenoids [17,19,20]. C. longa is commonly known as turmeric and its rhizome is used as food
and in traditional medicine for the treatment of inflammation, infections or tumors, as carminative, and
as diuretic [21–23]. In this study, we compared in vitro anti-inflammatory and anti-oxidant activity,
and cytotoxicity of four Curcuma species namely, C. aromatica, C. comosa, C aeruginosa, and C. longa. In
addition, over a dozen compounds were isolated from C. aromatica rhizome and its phytochemical
profile was compared to that of the other three Curcuma species by means of Ultra-Performance Liquid
Chromatography–High Resolution Mass Spectrometry (UPLC-HRMS) analysis.

2. Materials and Methods

2.1. Plant Material

The rhizome of C. aromatica (N: 20.1924◦, E: 99.4854◦), C. comosa (N: 20.1922◦, E: 99.4852◦), and C.
longa (N: 20.1927◦, E: 99.4855◦) were collected from Doi Tung, Chiang Rai Province, Thailand in May
2016, while the rhizome of C. aeruginosa was purchased from Mae-Ca-Chan local markets, Chiang Rai
Province, Thailand in June 2016. Plant authentication was verified by Mr. Martin Van de Bult and
voucher specimens (MFU-NPR0192, MFU-NPR0193, MFU-NPR0194, and MFU-NPR0195, respectively)
were deposited at the Natural Products Research Laboratory of Mae Fah Luang University.

2.2. Chemicals

L-Ascorbic acid, 2,2′ -azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS),
2,2-diphenyl-1-picrylhydrazyl (DPPH), 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide
(MTT), sodium dodecyl sulfate (SDS), and dimethyl sulfoxide (DMSO) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). All chemicals and solvents used in this study were of
analytical grade.

2.3. Extraction

The rhizomes of the four Curcuma species were cleaned, chopped, and air-dried at room
temperature for three days. The air-dried rhizomes (1 kg) of each plant were macerated in EtOAc
(3 × 10 L) at room temperature. The extracts were filtered and evaporated under reduced pressure
to obtain the EtOAc extracts of C. aromatica (21.67 g), C. comosa (24.49 g), C. aeruginosa (20.21 g), and
C. longa (19.76 g). Additionally, dried powder (100 g) of each plant was extracted with 80% ethanol
(3 × 500 mL) at room temperature. Removal of the solvent under reduced pressure yielded the crude
ethanolic extracts of C. aromatica (2.2 g), C. comosa (2.5 g), C. aeruginosa (2.0 g), and C. longa (2.1 g).
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2.4. Fractionation and Isolation

The EtOAc extract of C. aromatica was selected for fractionation and isolation, based on the fact
that it showed the most promising biological activities. The EtOAc extract was subjected to quick
column chromatography (QCC) over silica gel, eluting with a gradient system of n-hexane/EtOAc
(100% hexanes to 100% EtOAc) to give 13 fractions (A-M). Fraction B (1.45 g) was further separated
by CC over Sephadex LH-20 (100% MeOH) to give compound 1 (4.5 mg). Fraction C (2.26 g) was
separated by CC (1:4 CH2Cl2/n-hexane) to give fraction CP21-B5 (443.3 mg), which was further purified
by CC over Sephadex LH-20 (100% MeOH) to give compound 7 (15.4 mg). Fraction E (540.1 mg)
was separate by CC (1:3 CH2Cl2/n-hexane) to give nine fractions (CP6-01 to CP6-09). Compound 4
(9.9 mg) was obtained from fraction CP6-06 (263.0 mg) by repeated CC over Sephadex LH-20 (1:4
CH2Cl2/MeOH), while compound 5 (7.0 mg) yielded from fraction CP6-08 (108.5 mg) by repeated
CC (1.5:8.5 CH2Cl2/n-hexane). Fraction F (4.05 g) was fractionated by CC (1:19 EtOAc/n-hexane) to
give fraction CP30-02 (75.1 mg), which was further purified by CC (1:99 acetone/n-hexane) to afford
compound 6 (5.2 mg). Compound 2 (217.4 mg) was obtained from fraction G (654.7 mg) by CC (2:3
CH2Cl2/n-hexane). Fraction H (3.13 g) was submitted to CC (1:49 EtOAc/n-hexane) to give fraction
CP32-A (1.12 g), which was further purified by RP-18 (7:3 MeOH/H2O) to afford compounds 3 (79.3 mg)
and 15 (55.8 mg). Fraction I (957.2 mg) was subjected to CC (1:1 CH2Cl2/n-hexane) to give fraction
CP7-2 (198.2 mg), then purified by CC (15:1:34 CH2Cl2/EtOAc/n-hexane) to give compound 8 (9.6 mg).
Fraction J (1.30 g) was subjected to CC over Sephadex LH-20 (100% MeOH), followed by CC (3:7
CH2Cl2/n-hexane) to afford compounds 12 (3.1 mg) and 13 (3.1 mg). Fraction K (2.77 g) was fractionated
by CC (1:4 EtOAc/n-hexane) to give fraction CP35-BC (1.03 g), then repeated CC (1:49 acetone/n-hexane
and 1:9 CH2Cl2/n-hexane) to afford compound 9 (6.8 mg). Fraction L (2.07 g) was subjected to CC (1:99
acetone/CH2Cl2) to give compound 11 (31.1 mg) and six fractions (CP17-02 to CP17-07). Compound 14
(31.1 mg) was obtained from fraction CP17-05 (215.7 mg) by CC (1:49 acetone/CH2Cl2). Compound
10 (5.1 mg) was obtained from fraction CP17-06 (1.56 g) by CC over Sephadex LH-20 (100% MeOH)
followed by CC (1:1:3 acetone/EtOAc/n-hexane).

2.5. Characterization of Curcuma Extracts by UPLC-HRMS

Crude extracts of the four Curcuma species, prepared with 80% ethanol/20% water were analyzed
by Ultra-Performance Liquid Chromatography–High Resolution Mass Spectrometry (UPLC-HRMS)
together with 8 of the 15 purified compounds isolated from C. aromatica, in order to determine whether
these compounds were present in C. longa, C. comosa and C. aeruginosa too. Liquid chromatography
analysis was performed on an Acquity® UPLC System (Waters, Milford, MA, USA). Detection was
carried out on an LTQ-Orbitrap® XL hybrid mass spectrometer equipped with an Electrospray
Ionization (ESI) source (Thermo Scientific, Waltham, MA, USA) for accurate mass. Separation was
achieved on an Acquity UPLC® Peptide BEH C18 column (2.1 × 100 mm, 1.7 µm, Waters corporation®,
Wexford, Ireland) using a gradient containing water with 0.1% (v/v) formic acid (A) and acetonitrile
(B). The gradient elution was performed as follows: 0–2 min eluent B 2%; 2–18 min eluent B 2–100%;
18–20 min eluent B 100%; 21–25 min column equilibration-eluent B 2%. A flow rate of 0.4 mL/min
was employed for elution. The column was maintained at 40 ◦C, the samples at 7 ◦C, and the flow
rate was set to 0.4 mL/min. The 80% ethanol extracts (10 µL at 300 µg/mL) were injected. All samples
were analyzed in the full scan m/z range of 115–1000, in negative and positive mode at a resolving
power of 30,000 and data-dependent MS/MS events were acquired. In both modes the data-dependent
acquisition was simultaneously performed using a collision induced dissociation C-trap (CID) with
normalized collision energy at 35 V and a mass resolution of 10,000. In negative mode capillary
temperature was set to 350 ◦C and the source voltage was 2.7 kV. Tube lens and capillary voltage were
respectively tuned at −100 V and −30 V. In positive mode capillary temperature was set to 350 ◦C and
the source voltage was 3.50 kV. Tube lens and capillary voltage were respectively tuned at +120 V
and +40 V. In both modes the arbitrary units were used for sheath gas, auxiliary gas, and sweep gas
was nitrogen at (40, 10, 0 arbitrary units, respectively). The control of the system and the spectral
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interpretation was performed using the XcaliburTM (Version 2.2, Thermo Scientific, Waltham, MA,
USA) software.

2.6. DPPH Radical-Scavenging Activity Assay

The antioxidant activity was determined by the DPPH radical scavenging assay as described
previously, with slight modifications [24]. In brief, 100 µL of extracts and compounds at different
concentrations were mixed with 100 µL of 60 µM DPPH methanol solution in a 96-well microplate.
The solution was incubated at room temperature in darkness for 30 min, then absorbance was measured
at 517 nm. Ascorbic acid was used as positive control. The DPPH radical scavenging activity was
expressed as the concentration at 50% inhibition (IC50), which was calculated by plotting percent
inhibition against concentration of the sample.

2.7. ABTS Radical Cation Scavenging Assay

The ABTS radical cation scavenging activity of extracts and compounds was determined using
the method described previously [24] with some modifications. The ABTS·+ solution was prepared
from the reaction of equal volumes of 7 mM of ABTS and 2.45 mM potassium persulfate in a dark
place at room temperature for 16 h before use. Prior to the assay, the ABTS·+ solution was adjusted to
the absorbance of 0.70 ± 0.05 at 734 nm with EtOH. Twenty microliters of extracts and compounds
at different concentrations were mixed with 180 µL of ABTS·+ solution in a 96-well microplate and
incubated at room temperature for 5 min. Next, the absorbance was measured at 734 nm. Ascorbic
acid was used as positive control. The ABTS radical cation scavenging activity was expressed as
the concentration at 50% inhibition (IC50), which was calculated by plotting percent inhibition against
concentration of the sample.

2.8. Cell Culture

HaCaT keratinocyte cells with a stable transfected NF-κB luciferase reporter gene cassette
has previously been described [25]. Cells were cultured in Dulbecco’s modified eagle’s medium,
supplemented with 10% fetal bovine serum, 2% of sodium bicarbonate (7.5% solution), 1% of sodium
pyruvate (100 mM), and 1% of penicillin–streptomycin (10,000 units/mL). The cells were incubated in
a humidified 37 ◦C, 5% CO2 incubator.

2.9. MTT Assay

Adverse anti-proliferative or toxic effects of various extracts and purified phytochemicals
compounds on HaCaT cells were evaluated by MTT colorimetric assay. Cells were seeded into
96-well plates at 2 × 104 cells/well and incubated under the abovementioned conditions for 24 h.
The extracts or pure compounds at different concentrations were added for another 24 h, after which
10 µL of MTT reagent (5 mg/mL) was added to each well and incubated for 4 h. Cells were lysed
with 90 µL 10 mM HCl solution containing 10% SDS and OD value was measured at 595 nm with
the Envision Plate Reader (Perkin Elmer, USA). Withaferin A was used as positive control.

2.10. CytoTox-ONE™ Cytotoxicity Assay

Cell cytotoxicity was measured by determining membrane integrity of HaCaT cells following
treatment with crude extracts or purified phytochemicals by means of the CytoTox-ONE™ Assay
according to the manufacturer’s instructions (Promega, WI, USA). In brief, cells were plated at 2 × 104

cells/well in 96-well plates and incubated under the above-mentioned conditions for 24 h. Extracts or
pure compounds at different concentrations were added to the cells and left to incubate for 24 h at
37 ◦C and 5% CO2. After incubation, the assay plates were transferred to 22 ◦C for 5 min, 100 µL of
the CytoTox-ONE™ reagent was added to all wells and incubated at 22 ◦C for 10 min. After that, 50 µL
of stop solution was added to all wells and plates were shaken at 500 rpm for 10 s. The fluorescence
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signal was measured with an excitation wavelength of 560 nm and an emission wavelength of 590 nm
with the Tecan GENios Microplate Reader (Tecan Trading AG, Männedorf, Switzerland). Withaferin
A was used as positive control. The triplicate wells without cells were used as negative control to
determine background fluorescence. Vehicle control was triplicate cells with untreated cells, the same
solvent used to deliver the test compounds. In addition, 2 µL of lysis solution was used as maximum
LDH release control.

2.11. Luciferase Assay

NFκB-luciferase-dependent reporter assays were performed in HaCaT cells stably expressing
p(NFκB)350-luc as previously described [25]. In brief, cells were plated at a density of 105 cells/well
in 24-well plates and grown overnight. Cells were subsequently treated with a dose range of crude
extracts or purified compounds for 2 h, followed by TNF stimulation (2 ng/mL) for 6 h. Finally,
cells were lysed in 1 X lysis buffer (25 mM Tris-phosphate (pH 7.8), 2 mM DTT, 2 mM CDTA, 10%
glycerol, and 1% Triton X-100) and 25 µL of lysate was assayed for luciferase activity by adding 50 µL
of luciferase substrate (1 mM luciferin or luciferin salt, 3 mM ATP, and 15 mM MgSO4 in 30 mM
HEPES buffer, pH 7.8). After 10 s of mixing, bioluminescence was measured for 1 s using the Envision
multilabel reader (Perkin Elmer, Waltham, MA, USA). Withaferin A was used as positive control.

2.12. Data Analysis

All analyses were performed in triplicate and data were expressed as means ± standard deviation
(SD) from at least three independent biological experiments. The results were analyzed by one-way
analysis of variance (ANOVA) with the Dunnett test, significant difference (p < 0.05) using IBM SPSS
Statistics, version 23 (IBM Crop.).

3. Results and Discussion

3.1. Isolation of Compounds

The EtOAc extract of C. aromatica was fractionated by column chromatography to afford 15 known
compounds (Figure 1). The compounds were identified as germacrone (1) [25], curdione (2) [26],
dehydrocurdione (3) [25], furanodienone (4) [27], zederone (5) [28], curzerenone (6) [27], curzeone
(7) [29], comosone II (8) [30], gweicurculactone (9) [31], curcumenol (10) [25], isoprocurcumenol (11) [32],
zedoarondiol (12) [33], vanillin (13) [34], curcumin (14) [35], and β-sitosterol (15) [36] by comparison of
their spectroscopic data with those reported in the literature. Sesquiterpenes 7 and 8 were isolated
from the rhizome of C. aromatica for the first time, while all remaining sesquiterpenes were similar to
previous reports [5,13].
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3.2. Characterization of Curcuma Extracts by UPLC-HRMS

Eight of the purified compounds, germacrone (1), curdione (2), dehydrocurdione (3), zederone (5)
curcumenol (6), zedoarondiol (12), curcumin (14), and β-sitosterol (15), were analyzed by UPLC-HRMS,
together with the 80% EtOH extracts of C. aromatica, C. longa, C. comosa, and C aeruginosa (Figure S1,
Supplementary Material). Except for compounds 12 and 15, all compounds were detected in ESI+

mode, while 5 and 13 could be detected in ESI+ and ESI− mode. Table 1 shows the retention time and
MS data obtained for the purified compounds. In addition, it is indicated whether these compounds
could be detected in the crude extracts. Compounds 12 and 15 were not clearly detected in either of
the detection modes, possibly due to poor ionization properties or their low abundance.

As expected, all six detected compounds were found in the crude extract of C. aromatica, since
the compounds were purified from this Curcuma species as described in Sections 2.1 and 3.1 Also C.
longa was found to contain these six compounds. Five out of six compounds could be identified in
the 80% EtOH extracts of C. aeruginosa; only curcumin (13) was found to be absent in this Curcuma
species. The C. comosa extract did not contain curcumin either, nor did it contain curcumenol. Our
results about the phytochemical composition of different Curcuma species are in line with results
reported by other groups [26,27].
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Table 1. Chromatographic and spectral data, obtained with Ultra-Performance Liquid Chromatography–High Resolution Mass Spectrometry (UPLC-HRMS)analysis.

ESI+ ESI− Present in Extract

Compound Mol.
Formula

RT
(min)

Measured
m/z Ion Calculated

m/z
∆

(ppm)
MS

fragments
Measured

m/z Ion Calculated
m/z

∆

(ppm)
MS

fragments
C.

aromatica
C.

aeruginosa
C.

comosa
C.

longa

Germacrone (1) C15H22O 13.8 219.1751 [M + H]+ 219.1749 0.91 n.d. x x x x
Curdione (2) C15H24O2 11.8 237.1858 [M + H]+ 237.1855 1.26 n.d. x x x x

Dehydrocurdione (3) C15H22O2 10.9 235.1703 [M + H]+ 235.1698 2.13 n.d. x x x x
Zederone (5) C15H18O3 11.2 247.1339 [M + H]+ 247.1334 2.02 245.1180 [M − H]− 245.1178 0.82 x x x x

Curcumenol (6) C15H22O2 11.1 235.1701 [M + H]+ 235.1698 1.28

217.1593;
199.1486;
189.1642;
177.1277

n.d. x x x

Curcumin (13) C21H20O6 11.1 369.1345 [M + H]+ 369.1338 1.90
285.1129;
245.1814;
175.0756

367.1181 [M − H]− 367.1182 −0.27 217.0504,
173.0608 x x
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3.3. Antioxidant Activity

The antioxidant radical scavenging activity of extracts were evaluated using DPPH and ABTS
assays (Table 2), and purified compounds were tested in the DPPH assay as shown in Figure 2.
Regarding antioxidant activity, the C. aromatica extract showed the most promising IC50 values
(102.4 ± 1.9, 127.0 ± 1.9 µg/mL), followed by C. longa (134.9 ± 1.5, 170.8 ± 1.6 µg/mL), C. comosa
(137.7 ± 5.2, 171.9 ± 1.9 µg/mL), and C. aeruginosa (187.4 ± 22.1, 217.9 ± 1.8 µg/mL). Ascorbic acid
was used as positive control, with IC50 values of 1.80 ± 0.01 and 5.2 ± 0.8 for DPPH and ABTS
assay, respectively. In addition, curcumin exhibited strong antioxidant activity with 68.9% ± 0.6%
percent inhibition of at 25 µg/mL, whereas other compounds showed moderate activities, see Figure 2.
Since curcumin was only detected in C. aromatica and C. longa and not in C. comosa and C. aeruginosa,
the activity of the first two extracts may in part be attributed to the presence of curcumin. However,
since C. comosa showed antioxidant activity similar to C. longa, and C. aeruginosa showed significant
antioxidant activity too, curcumin cannot be the only active compound and other constituents might
also contribute too to overall antioxidant activity.

Table 2. Antioxidant activities of EtOH extract from the rhizome of C. aromatica, C. longa, C. comosa, and
C. aeruginosa.

Sample Antioxidant (IC50, µg/mL)

DPPH ABTS

C. aromatica 102.4 ± 1.9 127.0 ± 1.9
C. longa 134.9 ± 1.5 170.8 ± 1.6
C. comosa 137.7 ± 5.2 171.9 ± 1.9
C. aeruginosa 187.4 ± 22.1 217.9 ± 1.8
Ascorbic acid 1.80 ± 0.01 5.2 ± 0.8

Note: Values are the mean ± SD, n = 3; DPPH: 2,2-diphenyl-1-picrylhydrazyl; ABTS:
2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt.
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3.4. Cell Viability and Cytotoxicity

Cell viability and cytotoxicity of crude extracts and pure compounds were assessed by MTT assay
and the CytoTox-ONE™Homogeneous Membrane Integrity Assay using HaCaT keratinocyte cells,
respectively. The MTT colorimetric assay estimates the number of viable cells based on the ability of
mitochondrial enzymes to reduce the tetrazolium dye MTT to a purple colored formazan [37], whereas
the CytoTox-ONE™ assay is a fluorometric-based method to detect loss of membrane integrity of
dying cells. MTT results showed that exposure to 200 µg/mL of C. aeruginosa, C. comosa, C. aromatica,
or C. longa extract inhibited the growth of cells, with relative percentages of cell viability being
12.1 ± 2.9, 14.4 ± 4.1, 28.6 ± 4.1, and 46.9 ± 8.6, respectively (Figure 3a). Interestingly, CytoTox-ONE™
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showed a slightly different outcome with estimated cell death being lower compared to the MTT
results. Treatment of HaCaT cells with 200 µg/mL concentrations of C. aeruginosa and C. comosa
extract resulted in 57.7 ± 3.1% and 32.6 ± 2.2% cell death respectively, while no cytotoxicity could be
observed with C. aromatica and C. longa treatments at the same concentration (Figure 4a). This suggests
that all extracts mainly affect mitochondrial reduction capacity and cell proliferation, and that only
C. aeruginosa and C. comosa extracts negatively impact membrane integrity at concentrations above
100 µg/mL [38–40]. In contrast, none of the purified phytochemicals inhibit cell viability (MTT) or
cytotoxicity (CytoTox-One™) at concentrations 1–20 µM, whereas a reference cytotoxic anti-cancer
compound withaferin A [28] dose dependently kills the HaCaT cells, as shown in Figures 3b and 4b.
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Figure 4. Disruption of membrane integrity measured by the release of lactate dehydrogenase (LDH)
(CytoTox-ONE™). (a) Relative cytotoxicity (%) of four Curcuma species in HaCaT cells. (b) Relative
cytotoxicity (%) of pure compounds isolated from C. aromatica and the reference cytotoxic anti-cancer
compound withaferin A in HaCaT cells.

3.5. Anti-Inflammatory Activity

HaCaT NF-κB reporter gene cells were left untreated or pretreated for 2 h with various
crude extracts or its purified phytochemicals, followed by 3 h combination treatment with
the pro-inflammatory stimulus TNF. After 5 h treatment, cells were lysed and corresponding luciferase
reporter gene activity was measured in lysates in presence of ATP/luciferin reagent (Promega, WI,
USA) by measuring the total emitted bioluminescence (relative light units, RLU) during 30s (Envision
multiplate reader, Perkin Elmer). As expected, and as shown in Figure 5a, the proinflammatory NF-κB
activator TNF strongly increases luciferase gene expression in HaCaT NF-κB reporter cells, as compared
to the control samples without TNF. Upon combination treatment of the different extracts with TNF,
we observed dose dependent decrease of luciferase gene expression for all four extracts, suggesting
anti-inflammatory effects on NF-κB activity. C. aromatica showed the strongest anti-inflammatory
NF-κB effects, followed by C. aeruginosa, C. comosa, and C. longa, respectively.
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Figure 5. Anti-inflammatory effects of four Curcuma species and pure compounds isolated from C.
aromatica measured in HaCaT NF-κB reporter gene cells. (a) Dose dependent effects of crude extracts of
Curcuma species on basal and inflammation induced NF-κB reporter gene (luciferase relative light units)
expression. (b) Dose dependent effect of pure compounds isolated from C. aromatica and the reference
NF-κB inhibitor compound (withaferin A) on basal and inflammation induced NF-κB reporter gene
(luciferase relative light units) expression. (c) Dose dependent effect of pure compounds isolated from
C. aromatica and the reference NF-κB inhibitor compound (withaferin A) on basal and inflammation
induced NF-κB reporter gene (luciferase relative light units) expression.

Next, stable phytochemicals isolated in sufficient quantities isolated from C. aromatica were further
evaluated for their NF-κB inhibiting activity in TNF stimulated HaCaT keratinocytes, as compared to
the reference inhibitor compound withaferin A [41]. As shown in Figure 5b, curcumin was found to be
the most potent NF-κB inhibitor, although less potent the reference NF-κB inhibitor withaferin A, in
line with previous research [11,41]. C. aromatica, which contains curcumin, indeed was the most potent
NF-kB inhibiting extract. Thus, it’s traditional use in the prevention and treatment of inflammatory
diseases may be justified. However, the other three extracts, of which C. longa contains curcumin,
whereas C. comosa and C. aeruginosa do not, show a comparable activity. This suggests that besides
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curcumin, additional constituents may be responsible for NF-κB inhibition in C. comosa and C. aeruginosa
extracts. Indeed, germacrone, curdione, zederone, and curcumenol show moderate inhibition of NF-κB
reporter gene expression in TNF stimulated HaCaT keratinocytes too. In addition, zedoarondiol and
β-sitosterol show strong NF-κB inhibition, although they may be low abundant, since UPLC-HRMS
analysis failed to detect significant amounts in the four extracts.

4. Conclusions

Sesquiterpenes are major bioactive constituents in the rhizome extract of C. aromatica. Of the four
Curcuma species, C. aromatica, with its secondary metabolite curcumin, showed the highest antioxidant
activity and most potent anti-inflammatory properties with the lowest toxicity. Besides curcumin, we
purified additional anti-inflammatory bioactives in C. aromatica, C. aeruginosa, C. comosa, and C. longa,
such as germacrone, curdione, zederone, curcumenol, zedoarondiol, and β-sitosterol present, which
deserve further investigation.

In conclusion, our results suggest that the rhizome of C. aromatica holds promise to be developed
as a safe cosmeceutical or functional skin care products for anti-aging and to reduce inflammatory
skin irritation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/5/799/s1,
Figure S1: UPLC-HRMS chromatograms of four Curcuma extracts.
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