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Abstract 

Background:  Indian-origin rhesus (InR) are preferred for research, but strict export restrictions continue to limit 
their use. Chinese-origin rhesus (ChR), although easier to procure, are genetically distinct from InR and differ in their 
immune response to infectious agents, such as the Simian Immunodeficiency Virus. The most advanced malaria vac‑
cine, RTS,S (GlaxoSmithKline), is based on the circumsporozoite protein (CSP) of Plasmodium falciparum. The efficacy 
of RTS,S vaccine in the field remains low and short-lived; efforts are underway to improve CSP-based vaccines. Rhesus 
models can accelerate preclinical down-selection of the next generation of malaria vaccines. This study was used to 
determine if the safety and immunogenicity outcomes following vaccination with a CSP vaccine would differ in the 
InR and ChR models, given the genetic differences between the two sub-populations of rhesus.

Methods:  The FMP013 vaccine, was composed of nearly full-length soluble P. falciparum CSP produced in Escherichia 
coli and was adjuvanted with the Army liposomal formulation (ALFQ). Three doses of the vaccine were administered 
in InR and ChR (n = 6) at 1-month intervals and the antibody and T cell responses were assessed.

Results:  Local and systemic toxicity profile of FMP013 vaccine in InR and ChR were similar and they revealed that the 
FMP013 vaccine was safe and caused only mild and transient inflammatory adverse reactions. Following the first 2 
vaccines, there was a slower acquisition of antibodies to the CSP repeat region in ChR. However after the 3rd vaccina‑
tion the titers in the two models were comparable. The ChR group repeat-specific antibodies had higher avidity and 
ChR group showed higher inhibition of liver stage development activity compared to InR. There was no difference in 
T-cell responses to the FMP013 vaccine between the two models.

Conclusions:  A difference in the quality of serological responses was detected between the two sub-populations 
of rhesus. However, both models confirmed that FMP013/ALFQ vaccine was safe, highly immunogenic, elicited 
functional antibodies and T-cell responses. Overall, the data suggests that rhesus of Indian and Chinese origins can 
be interchangeably used to compare the safety and immunogenicity of next-generation of malaria vaccines and 
adjuvants.
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Background
Malaria infects over 200 million individuals every year, 
and despite the reduction in morbidity and mortality in 
the last 20 years, more than 400,000 deaths are reported 
annually [1, 2].

Plasmodium falciparum is one of the species that is 
most commonly associated with the severe and fatal form 
of malaria that is prevalent in sub-Saharan Africa [1]. 
RTS,S (GlaxoSmithKline Vaccines, Rixensart, Belgium) 
is a recombinant malaria antigen based on the circum-
sporozoite protein (CSP) of P. falciparum. The CSP por-
tion of RTS,S consists of 19 NPNA repeating units and 
the C-terminal region while the remainder of the pro-
tein is the hepatitis B surface antigen [3, 4]. While, the 
NPNA repeats are highly conserved across all P. falci-
parum strains, the C-terminal region contains polymor-
phic residues, which could be one of the reasons why a 
monovalent CSP vaccine, such as RTS,S, confers par-
tial protection against diverse parasite strains prevalent 
in endemic areas [5]. RTS,S is formulated in the potent 
adjuvant AS01B, that contains two immune-stimulators: 
monophosphoryl-lipid A and QS-21. Vaccination with 
RTS,S/AS01 induces high level of protection against con-
trolled human malaria infection however, in Phase 3 tri-
als, RTS,S/AS01 induces less than 50% protection against 
natural infection [6, 7]. In 2015, a paediatric formula-
tion of RTS,S/AS01E (Mosquirix™) received regulatory 
approval, and is in pilot studies in three African coun-
tries, to determine its effectiveness in malaria control 
when deployed by the public health system [8].

As a step towards improving the efficacy of RTS,S/
AS01, Walter Reed Army Institute of Research has devel-
oped a CSP-based antigen, FMP013, which is a soluble 
protein vaccine aimed at broadening the immunity to 
epitopes not present within the RTS,S construct as it also 
contains the N-terminal region along with junctional 
epitopes and minor repeats of CSP [9, 10]. FMP013 was 
formulated in a potent adjuvant, the Army Liposomal 
Formulation containing QS-21 (ALFQ). The immune-
stimulants present within ALFQ, 3D-PHAD™ (TLR-4 
agonist) and QS-21 (modulator of innate immunity) have 
been shown to be critical for the optimal immunogenicity 
of FMP013 vaccine in mice and rhesus models [10–12].

Since first reported in 1995, it took 15  years and mil-
lions of dollars to conduct the series of clinical trials 
that led to recently initiated pilot implementation of 
Mosquirix™, in Africa [13]. With limited resources and 
high regulatory costs, a next-generation malaria vaccine 
would need to rely heavily upon animal models to accel-
erate progression. Mouse models are excellent for under-
standing how innate and acquired immunity against the 
malaria parasite protects and there are transgenic para-
sites that allow the evaluation of protective efficacy of 

human malaria vaccines in mice [14]. Mouse models, 
although useful, are not a reliable predictor of human 
malaria vaccine outcomes as was shown in a mouse and 
rhesus comparative immunogenicity study using two 
CSP-based vaccines [15]. Rhesus model also has limita-
tions, as rhesus-specific immunological reagents are not 
well characterized; yet it is argued that for vaccine candi-
dates, such as CSP, rhesus ought to remain on the critical 
path of de-risking second-generation CSP formulations 
before transitioning to human vaccines trials [15]. His-
torically, the Indian origin rhesus (InR) has been a pre-
ferred model for research based on the published data 
[16, 17]. However, due to a 1978 ban on exporting rhesus 
[18], InR research in the United States, has relied exclu-
sively on purpose-bred colonies.

An alternative to InR are wild-caught and colony-bred 
rhesus of Chinese origin (ChR). ChR males are heavier, 
longer, and taller than InR males [19, 20], and they differ 
from InR in behaviour, physiology and temperament [19, 
21]. At the genetic level, these two populations have been 
differentiated by single nucleotide polymorphisms and 
mitochondrial DNA sequences [18, 22]. ChR populations 
are known to be more genetically diverse than InR [23] 
and this difference has been shown to affect some dis-
ease and vaccine outcomes between the two models. For 
example, simian immunodeficiency virus (SIV) infected 
ChR had higher CD4+ cell counts and lower viral loads 
than InR [23, 24]. ChR are believed to better mimic the 
slower progression of human immunodeficiency virus 
(HIV) infection in humans [25] and have become use-
ful models for HIV vaccine research [23, 26]. Among 
other factors, the difference in SIV infection profile has 
been correlated with a difference in the copy number of 
an HIV-suppressive chemokine CCL3L and a more Th1-
biased T cell response in ChR [27, 28].

In light of easier access and availability, malaria vac-
cine developers would need to increasingly rely on the 
ChR model. To determine if these observed differences 
in SIV infection profile also extended to malaria vaccine 
outcomes, the FMP013 vaccine adjuvanted with ALFQ 
was compared head-to-head in the InR and ChR models. 
Important differences were observed in antibody qual-
ity between the two models. While these immunological 
differences between the two models need to be factored 
into the design and interpretation of future rhesus trials, 
the data suggests that ChR and InR could be used inter-
changeably for malaria vaccine down-selection studies.

Methods
Rhesus
Adult rhesus macaques of Indian (InR) and Chinese 
(ChR) origin, were housed at the Walter Reed Army 
Institute of Research (WRAIR) animal facility, and used 
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under an IACUC-approved protocol. InR were colony 
bred in Alice, Texas, their ages ranged from 8 to 11 years 
old. The ChR, also in the 8–12  years age-range, were 
imported from China over several months from March 
2013 to November 2013. Capture sites or breeding sites 
of ChR were unknown. ChR were housed in separate 
rooms from the InR and all monkeys were tested sero-
negative for macacine herpesvirus 1, measles, simian ret-
rovirus, simian immunodeficiency virus (SIV), simian T 
cell leukemia virus, and tuberculin skin test. Additionally, 
all macaques were pre-screened for pre-existing antibod-
ies against P. falciparum CSP and antibodies against the 
immune-stimulator monophosphoryl lipid-A. Animals 
were pair-housed with same sex and conspecific origins, 
fed a commercial diet (Lab Diet 5038, Purina Mills Inter-
national), provided water ad  libitum, and supplemented 
with a variety of fresh fruits and vegetables. Environmen-
tal enrichment was provided in accordance with WRAIR 
Veterinary Service Program standard operating proce-
dures. Animal cages were cleaned daily and sanitized 
bimonthly. Automatic lighting was on a 12:12 h cycle.

Vaccines and adjuvant
The FMP013 was cGMP grade soluble Escherichia coli 
product containing the P. falciparum CSP N-terminal 
region, 19 NPNA and 3 NVDP repeats and the C-ter-
minal region [11]. Vaccine was adjuvanted with 1  mL 
of ALFQ containing: 200  µg 3D-PHAD™ (Avanti Polar 
Lipids, Alabaster, CA) and 100  µg QS-21 (Desert King, 
San Diego, CA) immune modulators [11]. The formu-
lation was mixed on a rotary platform for 1  h prior to 
administration.

Vaccination
Age, sex, and weight of the monkeys were approximately 
matched across groups (Additional file  1: Table  S1). Six 
ChR were all females and InR had 3 males and 3 females. 
Animals were sedated using Ketamine 11  mg/kg and 
Acepromazine 0.55  mg/kg. Once sedated the vaccine 
injection site was shaved, cleaned and disinfected with 
70% isopropyl alcohol. The InR and ChR (n = 6) received 
three vaccines of 40 µg FMP013, intramuscular in alter-
nating left and right thigh, on days 0, 28, and 60.

Safety and tolerability
Animals were sedated for all exams and blood collec-
tions. Heart rate, respiration, body weights, and rectal 
temperatures were recorded on days 1, 3, 7, 14, 28 (D1, 
D3, D7, D14, and D28) post vaccine. Injection sites were 
examined and compared to baseline at D1, D3, and D7 
post vaccine administration. For immunization site reac-
togenicity, a grading scale (1 = diffuse pink or mild swell-
ing or mild, 2 = diffuse red flush or moderate swelling or 

moderate, 3 = marked red flush) was used [29]. Blood 
samples were taken 2  weeks before the first dose and 
then on D1, D3, D7 for toxicology (Additional file  1: 
Table  S2A, B). Sera were collected for ELISA at 2  week 
following each vaccination. All samples were collected 
from the femoral vein using a Vacutainer™ tubes (Bec-
ton–Dickinson, Franklin Lakes, NJ).

ELISA
Direct and avidity ELISA were performed by the Interna-
tional Malaria Serology Reference Center (WRAIR, Silver 
Spring, MD) against the FMP013 and (NANP)6C repeat 
peptide [14]. Secondary antibody used was HRP conju-
gated goat anti-human. ELISA titer was defined as the 
serum dilution that resulted in optical density (OD) of 1.0 
as predicted by a four-parameter curve fitting equation 
(Biotek, Winooski, VT). Avidity ELISA was conducted 
similar to above using 4 M urea wash for 10 min follow-
ing the incubation of the primary antibody to remove 
low affinity antibodies. ELISA plates were developed and 
avidity index was calculated as the ratio of titers obtained 
after washing the plate with urea or with PBS [30].

ILSDA
Whole serum was tested by inhibition of sporozoite 
development assay, ILSDA [14]. Briefly, the P. falcipa-
rum NF54 strain sporozoites obtained from salivary 
gland dissections of infected Anopheles mosquitoes were 
mixed with a positive control monoclonal antibody NFS1 
or polyclonal rhesus serum at two dilutions (1:200 and 
1:300) and incubated at room temperature for 20  min. 
The sporozoite-antibody mixtures were then intro-
duced into the wells containing cryopreserved human 
hepatocytes (BioReclamation IVT, Baltimore, MD) and 
incubated at 37  °C for 3 h to allow sporozoites to infect 
hepatocytes. After the 3-h incubation period, hepato-
cytes were washed with fresh culture media to remove 
non-invaded sporozoites and cells were incubated at 
37 °C for 96 h. The RNA from the cells was harvested and 
quantitative real-time PCR (qRT-PCR) analysis on Pf 18s 
rRNA levels was used to determine the level of inhibition 
of liver stage development.

Fluorospot assay
Antigen-specific interferon (IFN)-γ, interleukin 2 (IL-2) 
and Tumour Necrosis Factor (TNF) cytokine-secreting T 
cells were quantified by Fluorospot (Ucytech Biosciences, 
Utrecht, Netherlands) following the manufacturer’s 
instructions. Monkey anti-CD3 mAb (Mabtech Inc., 
Cincinnati, OH) was used as an internal positive control. 
Each well contained 25  µL CD28 and CD49d (BD Bio-
sciences, San Diego, CA) cell stimulants, 25  µL of anti-
gen and 50 µL of cells (2.5 × 105/well). Antigen-specific 
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responses were stimulated with either recombinant 
FMP013 (10 µg/mL) or a CSP-peptide pool (16-mer pep-
tides overlapping by 11 AA; CSP AA 97-283; 1.25  µg/
mL). Plates were incubated at 37  °C, 5% CO2, for 40 to 
48  h. Fluorospot plates were analyzed using the Auto-
immun Diagnostica (AID) GmbH Fluorospot reader 
(Strassberg, Germany) equipped with filters for FITC 
(excitation 490 nm/emission 510 nm) and Cy3 (excitation 
550 nm/emission 570 nm).

Statistical analysis
Local reactions were scored on 0–3 scale and signifi-
cant increase above 0 was determined by a one-tailed 
one sample t-test. Systemic reactions were compared by 
ANOVA followed by Dunnett’s correction for multiple 
comparisons. ELISA data were log transformed and mul-
tiple comparisons were made by ANOVA with p-values 
corrected by Tukey’s method (GraphPad Prism soft-
ware, La Jolla, CA). Statistically significant difference in 
group means was indicated in figures as **** (p < 0.0001), 
*** (p < 0.001), ** (p < 0.01), or * (p < 0.05). Positive T-cell 
response was determined by an unpaired T-test against 
the respective pre-immune control.

Results
A nearly full-length soluble protein (FMP013) was used 
to design a study to compare toxicological, serological 
and cellular immunity outcomes of CSP vaccination in 
rhesus macaques originating from Indian and Chinese 
sub-populations.

Local reactogenicity
There was no sub-population specific difference between 
the InR and ChR with respect to the systemic and local 
reactions to the FMP013 formulated in ALFQ. Specifi-
cally, animal body weights remained stable throughout 
the study. There were no signs of ulcers or abscesses and 
only minimal, skin warmth, erythema and muscle indura-
tions were caused by three doses of FMP013 vaccine in 
InR or ChR (Fig.  1a, c, d). A mild and transient muscle 
swelling, was observed on D1, D3 after vaccination in 
both the InR and ChR, which resolved by D7 (Fig. 1b).

Systemic toxicity
Baseline body temperatures for all animals averaged 
between 100 and 102.6 °F and only one episode of fever 
in the ChR group (> 104 °F) was recorded out of 36 vac-
cinations, which resolved by D7 post vaccination. Blood 
biochemistry parameters as well as haematological 
parameters at baseline were comparable between the two 
sub-populations. On D1, D3 and D7 post vaccination 
no major changes in liver or kidney function tests were 

recorded in ChR and InR. A trend of increased creatine 
kinase (CK) on D1 post vaccination was seen in InR and 
ChR (Fig.  2a), which returned back to normal levels by 
D7. Blood cell count showed RBC, reticulocyte, and lym-
phocytes remained stable. Platelets trended to be higher 
by D7 post vaccination in both groups, although this rise 
was not significant and resolved prior to the next vaccine 
time-point. There was an increase in white blood cell, 
monocyte and neutrophil cell counts on D1 post vaccina-
tion (Fig. 2b–d). All cell count elevations were replicated 
by InR and ChR and these values returned back to nor-
mal by D7. Overall, InR and ChR showed no difference in 
local or systemic adverse events following three doses of 
FMP013 vaccine formulated in ALFQ.

Antibody titer and function
To compare the kinetics of induction of antibodies, group 
mean titers were compared between sub-populations 
over the course of vaccination. An ELISA against FMP013 
coat antigen (Fig.  3a) and the NPNA repeat peptide 
(Fig.  3b) showed that all animals seroconverted follow-
ing the first dose and subsequent vaccinations boosted 
titers. The titers against the FMP013 antigen were identi-
cal in the two sub-populations over time (Fig. 3a). How-
ever, there was a trend towards slower acquisition of 
antibodies in the ChR group against the NPNA repeat 
region (Fig.  3b). The InR group mean NPNA-specific 
titer at 2 weeks post first dose (19,036 vs. 7819), 4 weeks 
post first dose (20,468 vs. 7070) and 4  weeks post sec-
ond dose (36,631 vs. 18,201), were higher than the ChR 
group (Fig.  3b). These differences in titer were however 
not statistically significant, and NPNA titer in both mod-
els reached near equivalence after the third dose (38,571 
vs. 41,066). NPNA ELISA titers at 2  weeks post third 
dose were statistically equivalent between the two sub-
populations (Fig. 3c), but the NPNA-specific avidity was 
higher in the ChR model (Fig.  3d). P. falciparum does 
not infect rhesus macaques and there are no transgenic 
parasites available to challenge rhesus monkeys. Instead, 
an in  vitro inhibition of liver stage development assay 
(ILSDA) was used to compare antibody function. As was 
seen with avidity, the ILSDA activity, at 1:200 dilution, for 
FMP013 induced antibodies was higher in the ChR group 
than in InR (Fig. 3e). At 1:300 serum dilution the inhibi-
tion levels in both InR and ChR groups were < 5% (not 
plotted).

T‑cell activity
PBMCs collected at 4 weeks post 3rd vaccine were stimu-
lated with either the FMP013 protein or a CSP peptide 
pool that spans the repeats, N- and C-terminal regions 
(Fig.  4). InR and ChR both showed IFN-γ responses 



Page 5 of 10Martin et al. Malar J          (2019) 18:377 

above pre-immune controls which were elicited by the 
FMP013 vaccine. Likewise, FMP013 vaccine induced IL-2 
responses in both ChR and InR that could be recalled 
more readily by stimulating with the FMP013, but not the 
peptide pool, showing similar T-epitope usage by the two 
models. No TNF responses were observed. Overall, InR 
and ChR closely replicated the T-cell responses elicited 
by the FMP013 vaccine.

Discussion
Mouse, rabbit and rhesus models have been used to 
down-select and predict immunogenicity and functional 
outcomes of malaria vaccine candidates. While mouse 

and rabbit models have not been good predictors of 
malaria vaccine success in humans [31–34], the rhesus 
model played a key role in the development and improve-
ment of the most advanced malaria vaccine RTS,S/AS01. 
A preliminary study in InR led to switching the adjuvant 
for RTS,S to AS01B in humans [29, 35, 36]. Another rhe-
sus study in InR showed that priming RTS,S with a dose 
of adenovirus vectored CSP could augment CD4+ cel-
lular responses, which was subsequently reproduced in 
humans [37, 38]. There is evidence to suggest that HLA 
genotype may influence RTS,S-mediated protective effi-
cacy [39]. While InR have been most widely employed 
for vaccine studies, functional characterization of the 
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most common MHC class I allele among disparate ChR 
(Mamu-A1*02201), shows a significant overlap with the 
peptide binding repertoire of HLA-B7, the most fre-
quent supertype in human populations [40]. ChR may 
at least as good if not better than InR for testing malaria 
vaccines. Indeed, ChR are increasingly utilized to study 
human pathogenic viruses like Marburg, Ebola, influenza 
and HIV [27, 41–45].

In order to study if responses to a malaria vaccine CSP 
in the InR model differed significantly from the ChR sub-
population, a nearly full-length soluble protein (FMP013) 
adjuvanted with a liposomal adjuvant ALFQ was tested 
in the InR and ChR models. The two rhesus models had 
similar baseline haematology and biochemistry param-
eters; both models replicated a mild local and systemic 

adverse reaction to the vaccines, characterized by an 
elevation of CK (2000–5000 IU/L), transient neutrophilia 
and monocytosis. Elevation of CK has been indicated in 
striated muscle damage and co-elevation of neutrophils 
and monocytes are markers of systemic inflammation 
known to be associated with the administration of QS-21 
containing adjuvants [29, 46]. These observations estab-
lished that the FMP013/ALFQ vaccine was safe and that 
ChR and InR could closely replicate toxicological effects 
of vaccines.

FMP013 induced T-cell response and ELISA titer 
were similar in InR and ChR. However, vaccine-induced 
NPNA antibody titers increased more gradually in the 
ChR model and after the final vaccine dose, antibod-
ies in the ChR group had higher NPNA-specific avidity 
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and higher ILSDA activity than the InR model. Avidity of 
CSP antibodies has been associated with protection [30] 
and inhibition of sporozoite invasion by repeat-specific 
antibodies is believed to be critical for RTS,S mediated 
protection [47]. The observed differences in antibody 
responses between ChR and InR were not associated 
with the sex or weight of the animals. It cannot be com-
pletely rule out that the imported ChR used in this study 
had been naturally exposed to simian malaria and the 
observed difference in humoral response between InR 
and ChR was due to a pre-existing anti-malaria immunity 
in wild-caught ChR. It is notable that two independent 
HIV/SIV studies have also reported superior antibody 
titers and neutralizing activity were elicited in the ChR 
model [24, 45]. Due to the small sample size (n = 6), 
future studies with other CSP vaccines are needed to 
definitively establish if the two sub-populations of rhesus 
truly differ in their response to the repeat epitope of CSP.

The frontline CSP vaccine, RTS,S, is a particulate antigen, 
expressed in yeast and it contains only the major repeats 
and the C-terminal region of CSP. In contrast, FMP013 is 

nearly full-length, soluble protein, expressed in E. coli, and 
it contains key N-terminal and junctional epitopes that are 
not present in RTS,S [48, 49]. In mice and two sub-popula-
tions of rhesus, FMP013/ALFQ vaccine was found safe and 
it elicited antibody, T-cell responses that have been associ-
ated with RTS,S-mediated protection [10, 11, 35]. Positive 
outcome of a CHMI trial with FMP013/ALFQ vaccine can 
establish if epitope broadening can augment CSP vaccine 
efficacy [50]; if soluble proteins can still be considered a 
viable vaccine platform against malaria [51]; and provide 
the first evidence of safety and potency of a novel adjuvant 
ALFQ in humans [12].

Conclusions
As new paradigms of vaccinology emerge, rhesus model 
can play a pivotal role in accelerating and de-risk preclin-
ical selection of CSP-based vaccines, where comparison 
to a benchmark can be used to select improved vaccines. 
Based on comparisons to historical data on RTS,S/AS01, 
WRAIR Malaria Vaccine Branch has utilized an InR 
immunogenicity study to transition the FMP013/ALFQ 
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vaccine to a Phase I human trial [10]. Keeping in mind 
some differences in antibody quality reported here, InR 
and ChR macaques could be used inter-changeably as a 
valid model for conducting down-selection studies.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1293​6-019-3014-5.

Additional file 1: Table S1. Sex, weight and birthdate of all rhesus used 
within the study. Table S2A, B. Mean Blood Counts and Blood Chemistry 
data across each group on days 1, 3, 7 post vaccination.

Abbreviations
CSP: circumsporozoite protein; FMP013: falciparum malaria protein-013 com‑
prising of CSP; ALFQ: army liposomal formulation containing QS21; InR: Indian 
origin rhesus macaques; ChR: Chinese origin rhesus macaques; WRAIR: Walter 
Reed Army Institute of Research.

Pre
4w

p3
Pre

4w
p3

0.1

1

10

100

1000

Stimulant FMP 013
IFN-

Sp
ot

s 
pe

r 1
0

6
C

el
ls

P = 0.04
P = 0.02

Pre
4w

p3
Pre

4w
p3

0.1

1

10

100

Stimulant peptide pool
IFN-

InR
ChR

P = 0.06
P = 0.04

Pre
4w

p3 Pre
4w

p3
0.1

1

10

100

1000

Stimulant FMP 013
IL-2

Sp
ot

s 
pe

r 1
06

C
el

ls P = 0.004 P = 0.09

Pre
4w

p3 Pre
4w

p3
0.1

1

10

Stimulant peptide pool
IL-2

Pre
4w

p3
Pre

4w
p3

1

10

100

1000

Stimulant FMP 013
TNF-

Sp
ot

s 
pe

r 1
06

C
el

ls

Pre
4w

p3
Pre

4w
p3

1

10

100

1000

Stimulant peptide pool
TNF-

a b

Fig. 4  T-cell activity: at 4 weeks post 3rd vaccination T-cell responses induced by FMP013 vaccination were measured in InR and ChR by IFN-γ, IL-2 
and TNF-α Flourospot assay. Rhesus PBMCs were stimulated with either a FMP013 antigen or b a pool of peptides spanning the full length CSP 
sequence. Bars represent mean  +  SEM spots formed per million cells (n  =  6)
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