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Cerebral small vessel disease is a major cause of vascular cognitive impairment and dementia. There are few treat-
ments, largely reflecting limited understanding of the underlying pathophysiology. Metabolomics can be used to
identify novel risk factors to better understand pathogenesis and to predict disease progression and severity.
We analysed data from 624 patients with symptomatic cerebral small vessel disease from two prospective cohort
studies. Serum samples were collected at baseline and patients underwentMRI scans and cognitive testing at regular
intervals with up to 14 years of follow-up. Using ultra-performance liquid chromatography–mass spectrometry and
nuclear magnetic resonance spectroscopy, we obtained metabolic and lipidomic profiles from 369 annotated meta-
bolites and 54764 unannotated features and examined their association with respect to disease severity, assessed
using MRI small vessel disease markers, cognition and future risk of all-cause dementia.
Our analysis identified 28 metabolites that were significantly associated with small vessel disease imaging markers
and cognition. Decreased levels of multiple glycerophospholipids and sphingolipids were associated with increased
small vessel disease load as evidenced by higher white matter hyperintensity volume, lower mean diffusivity nor-
malized peak height, greater brain atrophy and impaired cognition. Higher levels of creatine, FA(18:2(OH)) and
SM(d18:2/24:1) were associated with increased lacune count, higher white matter hyperintensity volume and im-
paired cognition. Lower baseline levels of carnitines and creatinine were associated with higher annualized change
in peakwidth of skeletonizedmeandiffusivity, and 25metabolites, including lipoprotein subclasses, amino acids and
xenobiotics, were associated with future dementia incidence.
Our results showmultiple distinctmetabolic signatures that are associatedwith imagingmarkers of small vessel dis-
ease, cognition and conversion to dementia. Further research should assess causality and the use of metabolomic
screening to improve the ability to predict future disease severity and dementia risk in small vessel disease. Theme-
tabolomic profiles may also provide novel insights into disease pathogenesis and help identify novel treatment
approaches.
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Introduction
Cerebral small vessel disease (SVD) accounts for a quarter of all is-
chaemic strokes and is the most common pathology underlying
vascular cognitive impairment anddementia.1 SVD is characterized
by typical radiological features seenonbrainMRI including lacunes,
whitematter hyperintensities (WMH), cerebralmicrobleeds, diffuse
ultrastructural changes that can be detected using diffusion tensor
imaging (DTI) and brain atrophy. Despite its importance, there are
few effective treatments for delaying disease progression. A major
reason for this is limitedunderstandingof thediseasepathogenesis.
Furthermore, although it is a major cause of dementia, only a pro-
portion of patients with radiological SVD progress to cognitive im-
pairment.2 Once effective treatments become available, predicting
whichpatients are at elevated riskwill become clinically important,
and better markers of disease progression are therefore required.3

Metabolomics, the high-throughput identification and quantifi-
cation of small molecules in biological samples, offers the potential
to both identify novel disease mechanisms and develop better pre-
dictivemarkers.4 Metabolomics assays surpass standard chemistry
techniques for the purposes of comprehensive metabolome meas-
urement5 since they are capable of precise analysis of hundreds or
even thousands of metabolites.6 This allows detailed characteriza-
tion of metabolic phenotypes, enabling characterization of meta-
bolic arrangements underlying disease pathogenesis, discovery of
new therapeutic markers and identification of novel biomarkers
to diagnose and monitor disease.6 Metabolomics has been applied
successfully in a number of cardiovascular and neurological dis-
eases,7,8 but there have been few studies in SVD.

Ultra-performance liquid chromatography–mass spectrometry
(UPLC–MS) and nuclear magnetic resonance (NMR) spectroscopy
are effective analytical techniques for detecting and measuring
chemical constituentswithin blood samples. In this analysiswe ob-
tained baseline metabolomics profiles from 624 patients with
symptomatic MRI-confirmed SVD and up to 14 years of follow-up.
We examined associations betweenmetabolites and disease sever-
ity, assessed using both MRI disease markers and cognitive para-
meters. We also evaluated relationships between metabolites and
future risk of all-cause dementia.

Materials and methods
Data sources

Weanalysed individual participant data from two studies involving
patients with symptomatic SVD: (i) St George’s Cognition and
Neuroimaging in Stroke (SCANS), a longitudinal study of cognitive
impairment in 121 patients with moderate to severe symptomatic

SVD2,9; and (ii) the Radboud University Nijmegen Diffusion Tensor
andMagnetic Resonance Imaging Cohort (RUN-DMC), a prospective
cohort study from the Netherlands of 503 individuals aged between
50 and 85 years with symptomatic SVD.10 SCANS participants had
multimodal MRI and cognitive tests performed at baseline and at
Years 1, 2 and 3, as well as 5-year follow-up for dementia, and
RUN-DMC participants had MRI, cognitive, and clinical assess-
ments performed at baseline and at Years 5, 9 and 14, with 14 years
of follow-up for dementia. Both studies recorded information from
each participant on a range of demographics and vascular risk fac-
tors, including sex, age, ethnicity, bodymass index, smoking status,
diabetes status, systolic and diastolic blood pressure, hypertension
status and hypercholesterolaemia status. Follow-up data on de-
mentia incidence was available for all 121 patients from SCANS
and 501 patients from RUN-DMC.

In SCANS, SVD was defined as a clinical lacunar stroke syn-
drome with MRI evidence of an anatomically corresponding lacu-
nar infarct, and with confluent regions of WMH graded ≥2 on the
modified Fazekas scale.2 Exclusion criteria included if the patient
had any stroke mechanism other than SVD (extra or intracranial
large artery stenosis.50%, cardioembolic source, non-lacunar sub-
cortical infarcts .1.5 cm in diameter as these are often caused by
emboli or cortical infarcts), any cardioembolic cause of stroke diag-
nosed using Trial of Org 10172 in Acute Stroke Treatment (TOAST)
criteria,11 or if they had a history of major neurological or psychi-
atric disorders (with the exception of depression). In RUN-DMC, in-
clusion criteria were: (i) age between 50 and 85 years; and (ii)
cerebral SVD on neuroimaging, defined as the presence of either
WMH or lacunes.10 Exclusion criteria included the presence of de-
mentia, parkinsonism, an intracranial space occupying lesion,
non-SVD related WMH (e.g. multiple sclerosis) or life expectancy
of ,6 months. Both studies also excluded individuals with known
monogenic SVD.

Metabolomics data

Serum samples collected at baseline from 624 participants from the
SCANS and RUN-DMC cohorts were analysed using UPLC–MS and
proton 1H NMR spectroscopy. Full analytical details, following pre-
viously described sample preparation, analytical and quality con-
trol (QC) procedures,12–17 are provided in the Supplementary
material. For each assay, samples were analysed in a randomized
order demonstrating no correlation or other relationship with
study design variables, precluding any confounding effect of ana-
lysis order. To facilitate quality assessment and preprocessing,
a pooled QC sample was prepared by combining equal parts of
each study sample and analysed periodically among study sam-
ple analyses. For UPLC–MS only, a series of QC sample dilutions
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was created (10× 100%, 5× 80%, 3× 60%, 3×40%, 5× 20%, 10× 1%)
and analysed at the start and end of each set of sample analyses.

NMR and UPLC–MS assays were applied to maximize coverage
of a broad range of metabolite classes including lipophilic, hydro-
philic, small and macromolecular analytes and processed to in-
clude both global profiling and targeted extraction datasets
(Table 1). Global profiling provides a comprehensive analysis of all
measurable metabolites in a sample but results in datasets with
large numbers of variables per analyte, the identities of which are
typically unknown. In contrast, by targeted extraction of a prede-
fined set of metabolites, pre-annotated datasets are immediately
more interpretable but are limited in coverage to thosemetabolites
in the predefined set.

UPLC–MS was applied with two chromatographic techniques:
hydrophilic interaction chromatography (HILIC), for the separation
of hydrophilic analytes (i.e. polar and charged metabolites) and
reverse-phase chromatography (RPC) for the separation of lipophil-
ic analytes (i.e. complex and neutral lipids). When coupled to posi-
tive and/or negative mode ionization the following datasets were
produced: lipid positive (lipid RPC+), lipid negative (lipid RPC−)
andHILIC positive (HILIC+). NMR assays comprised a standard one-
dimensional (1D) NMR profile experiment withwater presaturation
using the 1D-Nuclear Overhauser Effect Spectroscopy presat pulse
sequence for characterization of small and macromolecular meta-
bolites and an additional spin-echo experiment using the 1D
Carr–Purcell–Meiboom–Gill (CPMG) presat pulse sequence for sat-
uration of macromolecules signals.

For generation of global profiling UPLC–MS datasets, untargeted
peak detection was performed using Progenesis QI (Waters Corp.).

For targeted extraction, peakPantheR (Peak Picking and
ANnoTation of High-resolution Experiments in R)15 was used to fit
predefined UPLC–MS signals with semi-automated (manually vali-
dated) extraction of known chemical species across the three as-
says. For NMR, targeted extraction was performed using the in
vitro diagnostics platform (IVDr) from Bruker Biospin
(www.bruker.com) generating quantified measurements of both
lipoprotein subclasses (BI-LISA) and small molecules (BI-QUANT).

For all datasets, preprocessing and QCwas performed using the
nPYc-Toolbox16 according to previously published criteria.12,14

Metabolite intensity values on the lipid RPC+ and lipid RPC− plat-
forms were corrected for run order and batch-related intensity
drifts by applying locally estimated scatterplot smoothing (LOESS)
regression fitted to the pooled QC samples. Run order and batch
correction were not necessary for the metabolites measured on
the HILIC+ platform. Only features/metabolites measured with
high analytical quality [relative standard deviation (RSD) in pooled
QC,30%, dilution series Pearson correlation to dilution factor.0.7,
RSD in study samples .1.1 × RSD in pooled QC] were retained. For
the global profiling datasets this resulted in 5729 features for
HILIC+, 4336 features for lipid RPC− and 7407 features for lipid
RPC+. For the targeted extraction UPLC–MS datasets, a total of 250
unique and known chemical species passed QC across the three as-
says (29 on HILIC+, 31 on lipid RPC− and 190 on lipid RPC+). For
NMR global profiling data, after removal of uninformative spectral
regions, 18 646 features were available in both standard 1D and
CPMGNMR datasets. Quantification using the Bruker BI-QUANT al-
gorithm resulted in automated quantification of 27 small mole-
cules, of which 14 passed the feature selection criteria; the

Table 1 Metabolites analysed using each metabolic profiling assay

Technology
platform

Metabolic
profiling
assay

No. features
(global
profiling
datasets)

No. annotated
metabolites (targeted
extraction datasets)

Metabolome/lipidome coverage Participants, n

UPLC–MS HILIC+ 5729 29 Hydrophilic metabolites including carnitine, betaine,
warfarin, caffeine, cotinine, metform, TMAO, proline,
creatine, cytosine

SCANS: 83
RUN-DMC: 376
Total: 459

Lipid RPC− 4336 31 Lipophilic metabolites including bilirubin, fatty acids,
lysophosphatic acids, lysophosphocholines,
lysophosphoethanolamines

SCANS: 101
RUN-DMC: 447
Total: 548

Lipid RPC+ 7407 190 Lipophilic metabolites including carnitines, cholesteryl
esters, ceramides, cholesterol, diglycerides,
lysophosphocholines, lysophosphoethanolamines,
monoacylglycerols, phosphocholines,
phosphethanolamines, sphingomyelins,
triglycerides

SCANS: 101
RUN-DMC: 456
Total: 557

NMR Standard 1D 18646 14 (IVDr BI-QUANT) Small molecule metabolites including creatinine,
TMAO, alanine, creatine, glutamine, histidine,
isoleucine, tyrosine, valine, lactic acid, acetoacetic
acid, glucose

SCANS: 115
RUN-DMC: 494
Total: 609

105 (IVDr BI-LISA) Lipoprotein subfractions including subtypes of
cholesterol, phospholipids, triglycerides and
apolipoproteins

SCANS: 105
RUN-DMC: 430
Total: 535

CPMG 18646 N/A Small molecule metabolites SCANS: 111
RUN-DMC: 451
Total: 562

Overall 54764 369 SCANS: 121
RUN-DMC: 503
Total: 624

CPMG = Carr–Purcell–Meiboom–Gill; IVDr BI-LISA = Bruker IVDr Lipoprotein Subclass Analysis; IVDr BI-QUANT=Bruker IVDr automated quantification of small molecule

metabolites; TMAO = trimethylamine-N-oxide.
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remaining 13 metabolites were not detected or were not present in
sufficient concentrations to bemeasured accurately. Application of
the BI-LISA algorithm resulted in automated quantification of 105
lipoprotein subclasses. Across all assays, discrepancies in final
sample numbers available for analysis (Table 1) result from insuffi-
cient sample volume for data acquisition, sample compromised
during acquisition or sample exclusion owing to data not meeting
stringent QC criteria (Supplementary material). To ensure approxi-
mately normal distributions, a generalized log transformation was
applied to all features/metabolites and the values were rescaled
using mean centring and dividing by the standard deviation of
each metabolite across participants.

MRI and clinical end points

Our primary MRI end point was baseline mean diffusivity normal-
ized histogram peak height measured within normal appearing
white matter voxels (MDNPH), a DTI marker that has previously
been shown to be correlated with, and predictive of, the degree of
cognitive impairment.2,18 A reduction in MDNPH corresponds
with increasing mean diffusivity. Secondary MRI end points that
we examined were baseline cerebral microbleed count, lacune
count, WMH (expressed as the percentage of WMH volume out of
the total brain volume), total brain volume and peak width of ske-
letonized mean diffusivity (PSMD), an alternative DTI marker that
has been shown to be robust and highly sensitive.19 Our primary
clinical end point was conversion to dementia, which was diag-
nosed using the fifth edition of the Diagnostic and Statistical
Manual of Mental Disorders (DSM-5) definition for major neurocog-
nitive disorder. Secondary clinical end points that we examined
consisted of: (i) cognition, assessed by a global cognition score as
well as scores for the executive function and processing speed do-
mains; and (ii) disability, assessed by the Barthel index, which is
used to measure performance on Activities of Daily Living (ADL).
We orientated each outcome so that higher values corresponded
to increased cognitive decline (e.g. we analysed brain atrophy as
the inverse of total brain volume).We analysed cerebralmicrobleed
and lacune counts both as continuous and binary variables (i.e.
presence or absence of microbleeds or lacunes). A further
end point that we included was a simple MRI score that accounted
for presence of microbleeds, number of lacunes and WMH volume
(Fazekas score), which has been shown to improve prediction of de-
mentia in SVD patients.9 To obtain comparable effect sizes across
outcomes, values for each outcome were rescaled using mean cen-
tring and dividing by the standard deviation (SD) across partici-
pants. A description of these end points is provided in
Supplementary Table 1.

Statistical analyses

We performed cross-sectional analyses examining the association
of baseline MRI markers, cognition and disability data per 1-SD
higher metabolite levels measured at baseline. We constructed lin-
ear regressionmodels for continuous outcomes and logistic regres-
sion models for binary outcomes, with adjustment for cohort,
baseline age and sex. We also conducted these analyses with fur-
ther adjustment for diabetes status, hypertension status and
hypercholesterolaemia status to determine whether the associa-
tions of metabolites with imaging markers and cognition were
modified by relevant risk factors.

To evaluate the relationship of metabolites with changes in MRI
parameters and cognition over time, we calculated an annualized

change in values for each outcome on the basis of the difference
in values between the baseline and latest time point divided by
the amount of follow-up time that had elapsed. We then ran linear
regressionmodels examining the association of annualized change
inMRImarkers, cognition and disability per 1-SD highermetabolite
levels.

We also performed longitudinal analyses to determine whether
metabolites measured at baseline predict long-term conversion to
dementia, for which we constructed Cox proportional hazards re-
gressionmodels adjusted for cohort, age and sex to assess the asso-
ciation of conversion to dementia per 1-SD higher metabolite
levels.

Analyseswere conducted using R v.4.1.1 (R Core Team, 2021). To
account formultiple testing comparisons,we used a false discovery
rate (FDR) threshold of q, 0.05 to identify significant associations
for each outcomemeasure. Two-sided P-values and 95% confidence
intervals are presented.

Sensitivity analyses

We conducted several sensitivity analyses to further examine the
independent nature of the associations. First, we conducted ana-
lyses at baseline separately within each cohort for significantly as-
sociated metabolites to compare the magnitude and direction of
associations across cohorts. Second, we conducted analyses strati-
fied by age to compare associations of metabolites with MRI mar-
kers and cognition in younger (,65) and older (≥65) populations.
Third, we conducted a subgroup analysis in participants with
scores of ≥2 on the Fazekas scale to evaluate whether there were
any differences in the magnitude of the associations in individuals
with more severe forms of SVD.

Data availability

The rawmetabolomics data described in this study were generated
at the Medical Research Council National Institute for Health
Research (MRC-NIHR) National Phenome Centre. Derived data sup-
porting thefindings of this study are available from the correspond-
ing author on request.

Results
Patient characteristics

In this study, we analysed individual participant data from 624 pa-
tients with symptomatic SVD. Most participants were male (58%)
and white (91%), with a mean (SD) age of 66.5 (9.2) years
(Supplementary Table 2). Compared to participants from
RUN-DMC, SCANS participants were on average 4.4 years older,
came from more diverse ethnic backgrounds (23% Caribbean and
6% African in SCANS), had higher rates of hypertension and hyper-
cholesterolaemia and had more severe SVD as indicated by in-
creased WMH volume.

Associations with baseline imaging parameters

We obtained measurements for 369 annotated metabolites and
lipoprotein subclasses measured on five different metabolomics
platforms that used both UPLC–MS andNMR (Table 1).We analysed
the association of these metabolites with MDNPH and conversion
to dementia, as well as with a range of MRI markers and indicators
of cognition and disability (Supplementary Table 1).
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In cross-sectional analyses adjusted for relevant demographic
(cohort, baseline age and sex) and vascular risk factors (diabetes,
hypertension and hypercholesterolaemia status), 28 metabolites
were associated with baseline imaging parameters and cognition
indicative of increased SVD load (Fig. 1, Table 2 and
Supplementary Table 3). Higher levels of creatine, FA(18:2(OH))
and SM(d18:2/24:1) were associated with higher lacune count and
WMH volume and impaired cognition. Conversely, lower levels of
glycerophospholipids (n=5), sphingolipids (n=16), HDL-4_ApoA2
and cholesterol were associated with reduced SVD load (i.e. lower
MDNPH, lacune count, WMH volume, PSMD and improved
cognition).

In analyses adjusted for demographic factors alone, lower serum
levels of 34 sphingolipids (including sphingomyelins and ceramides)
were associated with lower MDNPH, higher WMH volume, greater
brain atrophy and impaired cognition (Supplementary Fig. 1A and
Supplementary Table 4). Lower levels of 30 glycerophospholipids (in-
cluding phosphatidylcholines and lysophosphatidylcholines) were
also associated with lower MDNPH, greater brain atrophy and im-
paired cognition. Higher levels of seven amino acids and nucleotides

(N1-acetylspermidine, N-acetylputrescine, isoleucine, creatinine,
creatine, cytosine and 5′-methylthioadenosine) were associated
with lower MDNPH, higher WMH volume and greater brain atrophy
(Supplementary Fig. 1B and Supplementary Table 4). Lower levels
of bilirubin were associated with impaired cognition. Higher levels
of caffeine were associated with greater brain atrophy but also
with improved cognition.

Longitudinal analyses of progression of MRI
parameters and cognition and of incident dementia

We also analysed the association of metabolites at baseline with
annualized change in levels of imaging markers and cognition
(Fig. 2 and Supplementary Table 5). Lower levels of four carnitines
and creatinine were associated with higher annualized change in
PSMD, and lower levels of 23 lipoprotein analytes in intermediate-
density (IDL), low-density (LDL) and very low-density lipoprotein
cholesterol (VLDL) and total plasma were associated with higher
annualized change in impaired executive function. Higher levels

Figure 1 Association of MRImarkers and cognition parameters at baseline per 1-SD highermetabolite levels with further adjustment for relevant risk
factors. Beta estimates and P-values were obtained from linear or logistic regression models adjusted for cohort, baseline age, sex, diabetes status,
hypertension status and hypercholesterolaemia status. Colours showmagnitude and direction of P-value for association of metabolite with each out-
come (red indicates positive association and blue indicates inverse association). Asterisks indicate significance: *P, 0.05; **FDR q, 0.05.
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Table 2 Summary of associations of metabolites with MRI/DTI markers and cognition parameters at baseline with adjustment for
vascular risk factors

Metabolite category/name Association with MRI/DTI

markers

Association with cognition

Amino acids

Creatine Lacune count**

Lacune presence*

log WMH*

Lower global cognition*

Lower executive function*

Lower processing speed*

Fatty acyls

Unsaturated fatty acids: FA (18:2(OH)) Lower MDNPH*

log WMH**

PSMD*

Lower global cognition*

Lower executive function*

Glycerophospholipids

Diacylglycerophosphocholines: PC (16:0/20:5),

PC(16:0/18:1)_1, PC (14:0/18:2)

(Microbleed presence*)

(Lacune count**)

(Lacune presence*)

(log WMH*)

(Lower global cognition**)

(Lower executive

function**)

(Lower processing speed**)

Monoacylglycerophosphocholines:

LPC (20:5/0:0), LPC (0:0/20:5)

(Lower global cognition*)

(Lower executive

function**)

(Lower processing speed*)

Sphingolipids

Ceramide phosphocholines

(sphingomyelins):

SM(d18:2/24:0), SM(d18:2/23:0),

SM(d18:2/22:0), SM(d18:1/24:0),

SM(d18:1/23:0), SM(d18:1/22:0),

SM(d16:1/24:0), SM(d16:1/22:0)

(Lower MDNPH*)

(Microbleed presence*)

(Lacune count**)

(Lacune presence*)

(log WMH**)

(Brain atrophy**)

(PSMD**)

(Lower global cognition**)

(Lower executive

function**)

(Lower processing speed**)

SM(d18:2/24:1) (log WMH*) Lower global cognition**

Lower executive function*

Lower processing speed**

Hexosylceramides: HexCer(d16:1/24:0) (Lower MDNPH*)

(Lacune count*)

(log WMH*)

(Lower global cognition**)

(Lower executive

function**)

(Lower processing speed*)

N-acylsphingosines (ceramides):

Cer(d41:1)/Cer(d18:1/23:0)/Cer(d17:1/24:0),

Cer(d19:1/24:0), Cer(d18:2/24:0), Cer(d18:1/25:0),

Cer(d18:1/24:0), Cer(d16:1/24:0), Cer(d16:1/22:0)

(Lower MDNPH**)

(Microbleed presence*)

(Lacune count**)

(Lacune presence*)

(log WMH**)

(Brain atrophy*)

(PSMD**)

(Lower global cognition**)

(Lower executive

function**)

(Lower processing speed**)

Sterol lipids

Cholesterol (Microbleed presence*)

(Lacune presence*)

(log WMH**)

(PSMD*)

Xenobiotics

Paraxanthine (Lacune count*)

Brain atrophy*

(Lower global cognition**)

(Lower executive function*)

(Lower processing speed**)

Caffeine (Lacune count*)

Brain atrophy**

(Lower global cognition**)

(Lower executive function*)

(Lower processing speed**)

HDL

Analytes within HDL:

HDL-4_Apo-A2

(Microbleed presence*)

(Lacune count*)

(Lacune presence*)

(Lower global cognition*)

(Lower processing speed**)

Associations were obtained from linear or logistic regression models adjusted for cohort, baseline age, sex, diabetes status, hypertension status and hypercholesterolaemia

status. Asterisks indicate significance: *P, 0.05; **FDR q,0.05. Inverse associations of metabolites with MRI/DTI markers and cognition are enclosed in parentheses to indicate

negative beta coefficients.
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of creatine and glucose were associated with increased annualized
change in number of lacunes.

When accounting for long-term follow-up in time-to-event ana-
lyses, future incidence of dementiawas associatedwith 25metabo-
lites, including lower levels of valine, caffeine and VLDL analytes,
and higher levels of urocanate, lipoprotein analytes in high-density
lipoprotein cholesterol (HDL) and LDL, and creatine (Fig. 3 and
Supplementary Table 6). These associations were suggestive (P,
0.05) but not statistically significant (FDR q, 0.05) after correcting
for multiple testing.

Sensitivity analyses

Analyses conducted separately within each cohort showed that the
directions of association were mostly consistent between SCANS
and RUN-DMC, but there were some differences in the magnitudes
of the associations (Supplementary Fig. 2 and Supplementary
Table 7). Lower levels ofmultiple glycerolipids (triglycerides and di-
glycerides) were associated with lower MDNPH and impaired

cognition in SCANSparticipants,with no evidence of an association
in RUN-DMC participants. Lower levels of multiple glyceropho-
spholipids and sphingolipids were associated with lower MDNPH
and impaired cognition in both SCANS and RUN-DMC, but the spe-
cific lipids that reached statistical significance within each lipid
class varied. Lower levels of many of these sphingolipids were
also associated with increased WMH volume, greater atrophy and
higher PSMD in RUN-DMC participants, but not in SCANS
participants.

Analyses stratified by age showed stronger associations of me-
tabolites with imaging markers and cognition in older individuals
(Supplementary Fig. 3 and Supplementary Table 8), though the sub-
stantial reduction in power resulted in fewer significantly asso-
ciated metabolites overall. We found that four sphingomyelins
[SM(d18:2/24:0), SM(d18:2/23:0), SM(d18:1/24:0), and SM(d18:1/
23:0)] were inversely associated with the presence of lacunes and
WMH volume in older individuals, whereas these associations
were all attenuated in younger individuals. Additionally, caffeine
was significantly associated with brain atrophy in older individuals

Figure 2 Association of annualized change in MRI markers and cognition parameters per 1-SD higher metabolite levels. Annualized changes in out-
comeswere calculated as the differences in values between the baseline and latest timepoints divided by the amount of follow-up time. Beta estimates
and P-values were obtained from linear or logistic regressionmodels adjusted for baseline age, sex and cohort. Colours showmagnitude and direction
of P-value for association ofmetabolitewith each outcome (red indicates positive association and blue indicates inverse association). Asterisks indicate
significance: *P,0.05; **FDR q, 0.05.
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but there was no significant association in younger individuals.
Many of the other metabolites from the 28 that were statistically
significant in the overall analysis adjusted for vascular risk factors
were no longer significant in the analyses stratified by age after cor-
rection for multiple testing.

An analysis of individuals withmore severe forms of SVD, as in-
dicated by scores of ≥2 on the Fazekas scale, did not result in any
metabolites that were significantly associated with imaging mar-
kers or cognition after FDR correction, which is probably due to
the substantial decrease in power (Supplementary Fig. 4 and
Supplementary Table 9). The strongest associations, which were
still significant at P, 0.05, were with microbleeds, lacunes and
the simple SVD score, which is not surprising since the Fazekas
score (a grading of the volume of WMH) is one of the criteria that
are used to calculate the SVD score alongside microbleed count
and lacune count.

Analyses of global profiling datasets

To provide a more global overview, in addition to analyses con-
ducted on the targeted extraction datasets, analyses were also con-
ducted on the unannotated, global profiling datasets. These
analyses also revealed statistically significant associations with a
number of features. From a total of 54 764 measured features, after
correcting for multiple testing using an FDR threshold of q,0.05,

we identified 1362 features associatedwith lowerMDNPH, 2474 fea-
tures associatedwith increasedWMHvolume and 1533 features as-
sociatedwith executive function (Supplementary Tables 10 and 11).
Despite the larger number of features measured using NMR, a
greater proportion of the significant associations were with fea-
tures derived from UPLC–MS datasets, resulting from increased
depth of coverage (UPLC–MS assays weighted to lipids, NMR
weighted to small molecules) and the higher degree of redundancy
in the NMR global profiling data (multiple features derived from the
same underlying metabolite). Similar to the analyses conducted in
the smaller set of annotated metabolites, there were no significant
associations of features withmicrobleed count or conversion to de-
mentia in the global profiling datasets.

Discussion
In this comprehensive metabolomics profiling study of over 600 in-
dividuals with MRI-confirmed SVD, we identified 28 metabolites
(creatine, an unsaturated fatty acid, five glycerophospholipids, 17
sphingolipids, cholesterol, paraxanthine, caffeine and a lipopro-
tein) that are significantly associated with SVD imaging markers
and cognition, and 25 metabolites (lipoprotein subclasses, amino
acids and xenobiotics) that are significantly associated with pro-
gression to dementia. We found that decreased levels of multiple

Figure 3 Adjustedhazard ratios for dementia per 1-SDhighermetabolite levels.Analyseswere adjusted for baseline age, sex and cohort. Filled squares
indicate associations that were significant at P, 0.05.
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glycerophospholipids, sphingolipids and sterol lipids are asso-
ciated with increased SVD load as evidenced by higher WMH vol-
ume, lower MDNPH and greater atrophy, as well as with impaired
cognition. We also found that higher levels of creatine,
FA(18:2(OH)) and SM(d18:2/24:1) are associated with higher lacune
count, WMH volume and cognition.

The associations with glycerophospholipids and sphingolipids
were particularly notable. Previous metabolomics studies have
shown associations of lower levels of ceramide ratios with fewer
number of cerebralmicrobleeds20 and increased risk of incident de-
mentia,21 and another study showed associations of ceramides and
sphingomyelins with SVD.22 In the present study, lower levels of
serum sphingomyelins and ceramides were associated with lower
MDNPH, higher WMH volume and PSMD, increased number of la-
cunes, greater brain atrophy and impaired cognition in baseline
analyses even after further adjustment. Only one sphingomyelin
had a statistically significant association with executive function
when assessing the annualized change in metabolite levels, sug-
gesting that the absolute levels of the metabolites at baseline are
more relevant in evaluating their effects on SVD and cognition
than how those levels change over time.

Demyelinating diseases such as multiple sclerosis cause neu-
roinflammation, which can result in damage to the myelin sheath.
Inflammation has also been proposed to play a role in the progres-
sion of SVD,23 and metabolites could be implicated in the causal
pathway. Previous studies have shown that patients with multiple
sclerosis and other demyelinating diseases have increased levels of
sphingomyelins and ceramides in CSF.24,25 However, these cera-
mides and sphingomyelins have also been implicated in non-
neurological conditions such as heart failure,26 so further research
is needed to disentangle these associations and better understand
the underlying pathophysiology.

Several magnetic resonance spectroscopy studies of acute
stroke patients have reported reduced levels of creatine in areas
of cerebral infarction.27,28 However, in our study we found that in-
creased levels of creatine in circulating serum were associated
with increased number of lacunes andWMH volume, cognitive im-
pairment and increased risk of incident dementia. One possible ex-
planation is that SVD damage causes the release of creatine
through damage to neurons or glial cells, which is therefore de-
pleted in the brain and increased in the circulating blood.

Linoleic acid [FA(18:2(OH))] is an essential omega-6 fatty acid ob-
tained from plant sources. Diets rich in linoleic acid and other
omega-6 fatty acids inhibit the metabolic formation of omega-3
polyunsaturated fatty acids, which can lead to a deficit of eicosa-
pentaenoic acid (EPA)29 and is associated with reduced brain vol-
ume, impaired cognition and accelerated progression to
dementia.30 Our study showed that increased levels of linoleic
acid were associated with lower MDNPH, higher WMH volume
and PSMD, and impaired cognition.

We observed a significant inverse association of cholesterol
with WMH volume. A previous study employing Mendelian ran-
domization demonstrated evidence that genetically elevated levels
of HDL-C are associated with lower WMH volume and lower risk of
SVD,31 confirming our findings.

Another finding fromour studywas that increased caffeine con-
sumption (i.e. higher levels of caffeine, and its primary metabolite
paraxanthine) was associated with lower total brain volume but
improved cognition, particularly processing speed and decreased
risk of dementia. Numerous systematic reviews have demon-
strated the positive benefits of caffeine consumption,32 but studies
have also shown that coffee consumption is associated with

increased risk of Alzheimer’s disease,33,34 although there is no evi-
dence of a causal relationship of coffee consumption with SVD or
other ischaemic stroke subtypes.35 One explanation for ourfindings
is that caffeine can be associated with short-term improvement in
cognitive functioning but that long-termconsumption is associated
with chronic brain atrophy.

We found that VLDL analytes were associated with lower risk of
incident dementia, which confirms findings from a previous ana-
lysis of eight prospective cohort studies, which found that in-
creased levels of VLDL lipoprotein subclasses were associated
with lower risk of dementia.36

Our findings have several important clinical implications. First,
they may provide novel insights into pathogenic mechanisms
underlying SVD; it is possible that modifying levels of specific me-
tabolites could help reduce the risk of cognitive decline and demen-
tia in patients with SVD. Dietary interventions or novel therapies
could improve long-term outcomes for SVD patients. Second, ame-
tabolomics panel based on these associations could be developed
for clinicians to predict those patients who are most likely to pro-
gress to more severe forms of dementia and offer personalized
treatment. Third, exploration of the broader metabolic profiles de-
rived from our investigation show promise for the discovery and
identification of additional markers yielding greater mechanistic
insight to the relevant phenotypes.

A key issue is whether metabolites predict future risk, rather
than merely cross-sectionally associations with markers of SVD
(i.e. whether the associations are causal). A major strength of
our study is that we also included prospective longitudinal data
to determinewhethermetabolites at baseline predicted future de-
mentia risk. This provides some evidence supporting causality. It
would be beneficial to conduct further studies with a longer
follow-up period and a larger sample size to help address this
question more fully. Other approaches such as Mendelian ran-
domization, which uses genetic variants as instrumental vari-
ables in an approach akin to a randomized trial,37 would be
useful to assess causality, but we lacked sufficient power in this
study to perform these analyses.

The strengths of our study include the fact that themetabolites,
indicators of cognitive function and brain MRI markers were mea-
sured together at baseline, with MRI and cognitive data also avail-
able at multiple timepoints, and with long-term prospective
follow-up of 5–14 years. Second, the metabolites were measured
using a robust, highly accurate, validated analytical approach
with QCmeasures. Third, we conducted sensitivity analyses separ-
ately within each cohort as well as stratified by age and in a subset
of individuals withmore severe forms of SVD. Although themagni-
tude of the associations attenuated in these subgroup analyses, this
may have been simply due to loss of power. Fourth, to examine
whether adjustment for vascular risk factors may have increased
bias or decreased the level of precision in the estimates, we also
conducted analyses adjusted only for baseline demographic
factors.

The differences in the magnitudes of the associations between
cohorts is probably because RUN-DMC had a larger population
and a wider range of disease, whereas SCANS was a much smaller
population and was more homogeneous, with all patients having
moderate or severe SVD on MRI. MRI features of SVD can coexist
with other stroke pathologies.38 In SCANS, strict exclusion criteria
were used to exclude large artery stenosis and cardioembolic
sources of stroke, whereas in RUN-DMC only MRI criteria were ap-
plied and coexistent large artery atheromatous disease was not
excluded.
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Our study also has limitations. First, even though this is one of
the largest metabolomics studies on SVD so far, the sample sizes
of the studies were still modest, which reduced the power to detect
associations andpreventedus from fully addressing the question of
causality. Second, the large number of statistical tests conducted
meant that some associationsmay have been biologically and clin-
ically meaningful but did not reach the threshold for statistical sig-
nificance after correction for multiple testing. However, we applied
an FDR correction to reduce the likelihood of identifying false posi-
tives. Third, the metabolites we identified could be on the causal
pathway for cognitive decline or dementia, but secondary to tissue
damage caused by demyelination.39 We were unable to evaluate
this because patients in SCANS were not assessed for multiple
sclerosis andmyelin losswas notmeasured, so furthermechanistic
and longitudinal studies are needed. However, even if changes in
metabolite levels do not directly cause cognitive decline or demen-
tia, they could still be useful predictors of these conditions. Fourth,
the metabolites were measured in blood serum rather than CSF,
which is considered better suited to measurement of sensitive bio-
markers of neurological and cognitive decline,40 although studies
have shown similar changes in affected pathways for metabolites
measured in blood and CSF.41 However, serum biomarkers are clin-
ically useful as serum ismuch less invasive to collect frompatients.
Fifth, we did not examine ratios of metabolites, which can reveal
additional insights intometabolic pathways42 and should be exam-
ined in follow-up analyses. Sixth, two different methods were used
to analyse the DTA data. PSMD and MDNPH are both DTI markers
used to quantify mean diffusivity from the DTI scan, but they
calculate it in different ways. PSMD is calculated from the DTI
skeleton using track-based spatial statistics rather than the entir-
ety of the white matter, as is the case for MDNPH. The differences
in how PSMD and MDNPH were calculated could explain some of
the differences in the associations that were observed for these
DTI markers. Finally, the study was conducted in patient popula-
tions with symptomatic SVD andmay not be generalizable to other
contexts.

In conclusion, we provide consistent evidence thatmultiple ser-
ummetabolites are associated with SVD severity on MRI, cognitive
decline and incident dementia in patients with cerebral SVD.
Further research should be conducted to identify whether these as-
sociations are causal and could be used to improve the ability of
clinicians to predict the rate of progression and severity of onset
of lacunar stroke and dementia, and for researchers to develop no-
vel treatment approaches for patients at increased risk of these
conditions.
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