
Database, 2022, 1–7
DOI: https://doi.org/10.1093/database/baac101
Original article

HCDT: an integrated highly confident drug–target resource
Jiaqi Chen  1,†, Zhengxin Chen1,†, Rufei Chen1, Dehua Feng1, Tianyi Li1, Huirui Han1, Xiaoman Bi1, 
Zhenzhen Wang1, Kongning Li1, Yongsheng Li  1, Xia Li  1,2,*, Limei Wang1,* and Jin Li  1,2,*

1Key Laboratory of Tropical Translational Medicine of Ministry of Education, Bioinformatics for Major Diseases Science Innovation Group, 
College of Biomedical Informatics and Engineering, Hainan Medical University, Haikou 571199, China
2College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
*Corresponding author: Tel: +86-451-86615922; Fax: +86-451-86615922; Email: lixia@hrbmu.edu.cn
Correspondence may also be addressed to Limei Wang. Tel: +86-898-66893770; Fax: +86-898-66893770; Email: wanglm@hainmc.edu.cn and Jin Li.
Tel: +86-898-66893770; Fax: +86-898-66893770; Email: lijin@hainmc.edu.cn
†These authors have contributed equally to this work and share first authorship.

Citation details: Chen, J., Chen, Z., Chen, R. et al.  HCDT: an integrated highly confident drug–target resource. Database (2022) Vol. 2022: article ID 
baac101; DOI: https://doi.org/10.1093/database/baac101

Abstract
Drug–target association plays an important role in drug discovery, drug repositioning, drug synergy prediction, etc. Currently, a lot of drug-related 
databases, such as DrugBank and BindingDB, have emerged. However, these databases are separate, incomplete and non-uniform with different 
criteria. Here, we integrated eight drug-related databases; collected, filtered and supplemented drugs, target genes and experimentally validated 
(highly confident) associations and built a highly confident drug–target (HCDT: http://hainmu-biobigdata.com/hcdt) database. HCDT database 
includes 500 681 HCDT associations between 299 458 drugs and 5618 target genes. Compared to individual databases, HCDT database contains 
1.1 to 254.2 times drugs, 1.8–5.5 times target genes and 1.4–27.7 times drug–target associations. It is normative, publicly available and easy for 
searching, browsing and downloading. Together with multi-omics data, it will be a good resource in analyzing the drug functional mechanism, 
mining drug-related biological pathways, predicting drug synergy, etc.
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Introduction
Drug discovery is a time-consuming, costly and risky process 
(1). According to a report published in 2021, the average 
time to develop a new drug from clinical trials to market 
was 7.5 years (2). With clinical development proceeding from 
Phase 1 to Phases 2 and 3, the average cost per study increased 
for all therapeutic areas. However, the average success rate 
for developing new drugs was only 2.01% (2, 3). The annual 
investment in drug development has gradually increased, even 
while the number of Food and Drug Administration-approved 
drugs has been declining since 1995 (4). Between 2009 and 
2018, the median cost of developing a new drug was $985 
million, while the average sum totaled $1.3 billion. In all ther-
apeutic areas, oncology and immunomodulatory drugs were 
the most expensive to develop, coming in at a median of $2.8 
billion and a mean of $4.5 billion (5).The cost of new drug 
development will continue to grow. Hence, it is urgent to find 
a new strategy to discover drugs (1).

Drug repositioning (6), also known as drug repurposing, 
uses the molecular structure, indications and adverse effects of 
a known drug to develop new functions beyond the drug test-
ing, safety review and clinical phases of the traditional drug 
development model. It reduces costs and time with low risk 
(1, 7). 

Using the structure, properties and target interactions to 
predict new functions of drugs is a key step in drug repo-
sitioning, and a key point is to know and understand the 
relationship between drugs and targets (8, 9). The associa-
tion between a drug and target gene can be determined by 
in vitro and in vivo studies, and a lot of drug-related databases 
have been constructed, such as ChEMBL (10), DrugBank 
(11) and DtoPdb (12). A variety of computational methods 
to predict drug–target association have been proposed, such 
as data mining (13), machine learning methods (14, 15), neu-
ral networks (13, 16) and collaborative matrix decomposition 
methods (9). Key information used in these methods is the 
known experimentally confirmed drug–target associations.

In some drug-related databases, the associations between 
drugs and targets have been experimentally validated, such 
as DrugBank, KEGG (17) and PubChem (18). However, 
in some databases, in addition to experimentally confirmed 
drug–target association, there are also computational pre-
dicted drug–target associations, such as BindingDB (19), 
STITCH (20) and ChEMBL. We can get quite different drug–
target associations when using different predicting methods or 
thresholds. Therefore, experimentally validated drug–target 
associations are more confident than the predicted ones and 
much useful in drug repositioning and other studies.
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Table 1. Database information and criteria

 Drug label  Gene label

Database SMILES
IUPAC 
name Inch

ATC 
codes

Binding 
affinity

Gene 
symbol

Entrez 
ID

Ensembl 
ID

UniProt 
ID Criteria

BindingDB
ChEMBL
GtoPdb
PubChem
TTD

√
√
√
√
√

√
√
√

√
√
√
√
√

√

√

√
√
√
√
√

√
√
√
√

√
√
√

√
√
√
√
√

Including criteria (i) binding affin-
ity, including at least one of Ki, 
Kd, IC50 or EC50 ≤ 10 μM; (ii) 
the presence of UniProt ID rep-
resentation of the protein and 
(iii) the protein being tagged as 
‘review’.

DGIdb
√ √ √ √

Fourteen of these experimentally 
validated database sources are 
screened for drug–target inter-
actions and eight are excluded. 
See the details in Supplementary 
Table S1.

DrugBank
√ √ √ √ √ √ √

Interactions with no clear target 
information are excluded.

PharmGKB
√ √ √ √ √ √

Only the data marked as 
‘associated’ are included.

CancerDR
√ √ √

CancerDR database is excluded 
as it is mainly used for the study 
of drugs and sensitive cell lines, 
but lacks the information of the 
corresponding target effects.

STITCH
SuperPred

√
√ √ √

√
STITCH and SuperPred are 

excluded, as the majority of 
drug–target association are 
based on computational pre-
diction, but not confirmed by 
biological experiments, which 
do not meet the high confident 
purpose of this study.

SIDER
√ √

SIDER database is excluded as 
it is used for the study of drug 
side effects but lacks target 
information.

KEGG
√ √ √ √ √ √ √

KEGG is excluded, as the drug–
target information is simply 
collected from ChEMBL, Drug-
bank and PubChem, without 
selection or integration.

The information in these databases varies a lot due to 
their different research purposes. SIDER and DrugBank 
focus on the drug structure and function, with less infor-
mation on target genes (11, 21). DGIdb focuses more 
on drug–target associations without specific information 
on corresponding drugs and targets (12). STITCH and 
SuperPred focus on the prediction of new drug functions 
(20, 22). PharmGKB contains too little information on exper-
imentally validated data, while BindingDB has too much 
information on predicted data to meet the data needs of 
researchers (19, 23). Meanwhile, there are different iden-
tifications for drugs and genes, and it makes extra burden 
for researchers when they acquire information from different
databases.

Here, we used unified standards for drugs and target genes, 
integrated the experimentally validated drug–target associ-
ations in the current popular drug-related databases and 
constructed a highly confident drug–target (HCDT (http://
hainmu-biobigdata.com/hcdt) database.

Materials and methods
Data collection and processing
We have collected 13 commonly used drug databases: Bind-
ingDB, ChEMBL, DGIdb, DrugBank, GtoPdb, PharmGKB, 
PubChem, TTD (24), CancerDR (25), STITCH, SIDER, 
SuperPred and KEGG (see details in Table 1). The drug-
related data are expected to contain simplified molecular 
input line entry system (SMILES), International Union of Pure 
and Applied Chemists (IUPAC) name, International Chemi-
cal Identifier (INCH), The Anatomical Therapeutic Chemical 
codes and binding affinity of the drug; for the gene data, it 
is guaranteed to contain one of the gene symbols, Entrez ID, 
Ensembl ID or UniProt ID, which can be mapped with the 
gene information in the HGNC database.

Five of these databases were excluded in the following 
steps: CancerDR database is mainly used for the study of 
drugs and sensitive cell lines but lacks the information of 
the corresponding target effects; in STITCH and SuperPred, 
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the majority of drug–target associations are based on com-
putational prediction, but not confirmed by biological exper-
iments, which do not meet the highly confident purpose of 
this study; SIDER database is used for the study of drug side 
effects but lacks target information; In KEGG, the drug–target 
information is simply collected from ChEMBL, DrugBank and 
PubChem, without selection or collation.

The left eight databases were selected as the original data 
sources for the HCDT database. To ensure the high confidence 
of drug–target associations, we used the following criteria: 
for databases with drug binding affinity information (Bind-
ingDB, ChEMBL, GtoPdb, PubChem and TTD), we retained 
only drug–target associations that met the following three cri-
teria (22): (i) binding affinity, including at least one of Ki, Kd, 
half maximal inhibitory concentration (IC50) or half maxi-
mal effective concentration (EC50) ≤ 10 μM; (ii) the presence 
of UniProt ID representation of the protein and (iii) the pro-
tein being tagged as ‘review’. DGIdb is integrated by several 
databases. In the latest release of DGIdb 4.0 (26), we screened 
14 databases for experimentally validated drug–target asso-
ciation and excluded three databases with drug–target pre-
diction and five databases (ChEMBL, DrugBank, GtoPdb, 
PharmGKB and TTD) that had been collected separately (see 
the details in Supplementary Table S1). In PharmGKB, there 
were three types of drug–target relationships: ‘associated’, ‘not 
associated’ and ‘ambiguous’, and only the data marked as 
‘associated’ were selected. All drug–target associations are val-
idated by in vivo experiments and guaranteed to be of human 
origin but not of other species.

Drug classifications
There are various kinds of drug classifications in these 
databases. A drug may be marked as different types in 
different databases. For example, tisagenlecleucel (27), an 
immune agent for B-cell lymphoma, is marked as ‘anti-
body’ in ChEMBL and ‘biotech’ in BindingDB. There are 
about 268k drugs in BindingDB, which account for 89.5% 
of drugs in HCDT database. Therefore, we classified drugs 
based on BindingDB first and then referred other classifica-
tions in other databases. There are six drug types in Bind-
ingDB: small-molecule organic compounds (synthetic small 
molecule), synthetic products of biotechnology (Biotech), 
metabolites, oligomer and combination of drug pairs and 
unknown drug types that do not fall into the above five cat-
egories. For Biotech, there are subtypes such as protein, cell, 
enzyme, gene in ChEMBL, antibody in ChEMBL and GtoPdb. 
For oligomer, there are four subtypes, such as oligonucleotide, 
oligopeptide and oligosaccharide in ChEMBL and peptide in 
GtoPdb. There are also two special drug types in GtoPdb. For 
example, apigenina (28), a flavonoid, is shown as a natural 
product in ChEMBL and GtoPdb, but does not belong to any 
six types in BindingDB; nitric oxide, a selective pulmonary 
vasodilator used to treat various forms of pulmonary hyper-
tension in order to improve oxygenation levels, is marked as 
inorganic in GtoPdb, but it does not belong to any six types 
in BindingDB. Finally, we got eight types of drugs (Figure 1).

For each drug, we use the label in BindingDB if a drug 
exists in BindingDB (for example, tisagenlecleucel is marked 
as ‘biotech’ as it is marked as ‘biotech’ in BindingDB); we 
match label in the original database to the corresponding 
BindingDB label if a drug does not exist in BindingDB, but 

Figure 1. Drug classifications in HCDT database.

the labels can match [for example, MIPOMERSEN (29) is 
marked as ‘Oligomer’ as it is marked as ‘Oligonucleotide’ in 
ChEMBL]; we use label inorganic or natural product, if a drug 
belonged to these two types.

Gene types
Based on the HGNC database, genes are classified into four 
groups according to function (30): genes that encode proteins, 
genes that do not encode ribonucleic acid (RNA), pseudogenes 
that have no actual function and the remaining genes whose 
function is not yet clear. Then, they are further subdivided into 
a total of 24 subtypes based on their specific attached func-
tional objects. The main type of protein-coding gene group is 
a collection of genes that can encode proteins; the non-coding 
RNA group is divided into 10 types according to the RNA 
type that can be transcribed and translated into sex chro-
mosomes, long-stranded non-coding RNA, microRNA and 
small RNA; pseudogenes are non-functional residues formed 
during gene evolution and can be divided into three types: T-
cell receptor pseudogenes, immunoglobulin pseudogenes and 
pseudogenes with unknown receptors; for the other 10 sub-
types such as functional T-cell receptor genes, complex site 
component genes and endogenous retroviral genes, they make 
up the fourth group because the attachment object loci are still 
unclear.

Data integration
The SMILES information is used as the unique identifier 
(31) for drugs and then other features, such as IUPAC name 
(32), and synonyms are matched to the drugs. For genes, the 
gene symbol is used as the unique identifier and the HGNC 
database is used to supplement the information on UniProt 
ID, Entrez ID, gene type, location and Ensembl ID. The drug–
target relationships in each database were then integrated 
based on SMILES and gene symbol.

Results
Data in HCDT database
In total, 299 458 drugs, 5618 genes and 500 681 pairs of 
associations were obtained in HCDT database (Table 2). 
BindingDB is the largest source of HCDT database.



4 Database , Vol. 00, Article ID baac101

Drug–target network
A drug–target network is constructed based on the drug–
target association. The distribution of degrees for drug 
(the number of corresponding targets for a drug) is shown 
in Figure 2. A drug is associated an average 1.7 experimen-
tally validated target genes, and 220 198 (73.53%) drugs are 
associated with only the target. Staurosporine (33), an adeno-
sine triphosphate–competitive, non-selective protein kinase 
inhibitor, has up to 333 targets. Similarly, the distribution of 
degrees for target (the number of corresponding drugs for a 
target gene) is shown in Figure 3. A target gene is associated an 
average 89.1 drugs, and 1214 (21.61%) genes are associated 
with only one drug. HCRTR2 has 6435 related drugs, which 
is the largest number (34). The protein encoded by HCRTR2 
is a G-protein coupled receptor (GPCR), and it is involved 
in encoding hypothalamic secretagogues that lend themselves 
to the regulation of appetite and sleep behavior. GPCRs are 
the largest family of membrane receptors that are targeted by 
approved drugs, and approximately 35% of approved drugs 
target GPCRs (35). The drugs associated with HCRTR2 can 
be divided into activators and inhibitors. The amide carbon 
group for the junction is present in the activator. The amide 
carbonyl of the linker forms a hydrogen bond with H350, 
whose sidechain also contacts the terminal 1,2,3-triazole moi-
ety and the distal phenyl ring of the core, thereby stabilizing 

Table 2. Statistics on HCDT data sources

Database
Number of 
drugs

Number of 
targets

Number of 
associations

BindingDB 268 001 2293 357 695
ChEMBL 17 110 1018 42 571
DGIdb 10 025 2344 41 924
DrugBank 6393 3168 27 111
Gtopdb 8821 1766 18 352
PharmGKB 1178 1868 18 084
PubChem 11 049 3840 64 483
TTD 27 761 2510 56 048
HCDT database 299 458 5617 500 681

the kinked conformation of HCRTR2. As for inhibitors, all 
antagonists occupy the bottom-most region of the central cav-
ity, overlapping with the last three residues of HCRTR2 and 
the portion of a compound containing the sulfonamide and 
the amide-linked phenyltriazole (36). A list of hub drugs and 
targets is shown in Supplementary Table S2. 

We take the top 5% of drugs and genes of degrees in the 
networks as hubs, where the drugs had at least four tar-
gets and the genes had at least 31 target drugs. Then, we 
compare the hubs between HCDT database and the eight 
individual databases. For genes, all hub genes in BindingDB 
and ChEMBL belong to HCDT database (Supplementary 
Figure S1A and B), which is because BindingDB and ChEMBL 
provide most drugs for HCDT database. Most hub genes 
(204/282) in HCDT database are hubs in these individual 
databases (Supplementary Figure S1I). For drugs, all or most 
hub drugs in seven individual databases except BindingDB are 
hubs in HCDT database (Supplementary Figure S2B-H), and 
about half (7305/13 400) of hub drugs in BindingDB are hubs 
in HCDT database (Supplementary Figure S2A). These results 
show that HCDT database is consistent with these individ-
ual databases and provides more information as an integrated 
database.

Drug and target classification
299 458 drugs were classified into eight types in HCDT 
database (Table 3). There are 268 722 synthetic small-
molecule drugs, which is in line with the reality of drug design, 
where small organic compounds are mostly used in clinical 
drug development (37). There are only 156 inorganic drugs. 
Inorganic drugs have been identified as significant candidates 
for new cancer therapeutic modalities because of their bio-
compatibility, easy functionalization and fabrication, optical 
tunable characteristics and chemical stability. However, the 
problems of eliminating long-term toxicity from metals in vivo
and transport of drug carriers have led to the still low number 
of inorganic drugs entering clinical usage (38, 39). 

5618 target genes are classified into 11 subtypes in 
HCDT database (Table 4), and 5492 of them (97.8%) are

Figure 2. A frequency plot of the number of targets for a drug. The x -axis indicates the number of targets corresponding to a drug and the y -axis 
indicates the number of drugs. In this figure, only the drugs with less than 15 target genes are shown which account for 99.5% of the drugs.
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Figure 3. A frequency plot of the number of drugs targeting a specific gene. The x -axis indicates the number of drugs targeting a specific gene, and 
y -axis indicates the number of target genes. In this figure, only the genes with less than 20 related drugs are shown which account for 73% of the 
target genes.

Table 3. Drug statistics in HCDT database

Drug type Number of drugs

Synthetic small molecule 268 722
Natural product–derived 18 864
Biotech 4978
Oligomer 2824
Metabolite 1778
Inorganic 156
Combination drug 439
Unknown 1697
Total 299 458

Table 4. Types of genes in HCDT database

Gene type Number of genes

Gene with protein product 5492
Pseudogene 39
RNA, micro 28
Immunoglobulin gene 21
RNA, long non-coding 18
Complex locus constituent 9
T cell receptor gene 3
Readthrough 4
RNA, small nucleolar 2
RNA, misc 1
RNA, ribosomal 1
Total 5618

protein-coding genes. Different types of genes have different 
functional mechanisms in drug effect, and HCDT database 
could be used to analyze the potential mechanism for drugs. 

Comparison with individual databases
HCDT database is an integrated normative database, and it 
includes as much information as possible for drugs and target 

genes. For each drug, there are SMILES, PubChem Compound 
ID, IUPAC name, synonyms, INCH and drug type. For each 
gene, there are gene symbol, Ensembl ID, gene type, loca-
tion, Entrez ID and UniPort ID. Not every information exists 
in these individual databases. For example, in ChEMBL, the 
target genes are represented by gene-encoded proteins, but 
not gene symbols; similarly, SMILES and IUPAC name infor-
mation of some drugs in BindingDB are missing. Therefore, 
HCDT database is much convenient for researchers.

Compared to individual databases, HCDT database has 
a much greater volume. It contains 1.1–254.2 times drugs, 
1.8–5.5 times target genes and 1.4–27.7 times drug–target 
associations. Among these databases, BindingDB is the largest 
data provider, which accounts for 89.50% of drugs, 40.82% 
of target genes and 71.44% of drug–target associations. For 
individual databases, there are different types of data infor-
mation for drugs, targets and associations depending on the 
purpose of the study. For example, DrugBank lacks target 
structure information; DGIPdb has descriptions of associ-
ations but lacks drug-specific information; BindingDB has 
records of both drug and target information but is more 
complicated to operate and has a lot of prediction infor-
mation. HCDT database combines the advantages of each 
database and complements the drug, target and association 
information.

In HCDT database, 399 429 (79.78%) drug–target associ-
ations came from only one raw database, most associations 
(99.21%) existed in less than four raw databases and only 
48 associations were present in all eight databases (Figure 4). 
For example, amitriptyline is a commonly used antidepres-
sant in various types of depression as well as in chronic pain 
(40). The association of amitriptyline with CACNA1C is only 
recorded in BindingDB, the association of amitriptyline with 
Potassium Voltage-Gated Channel Subfamily H Member 2 
is recorded in BindingDB, DrugBank and PubChem and the 
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Figure 4. Histogram of the number of data sources for each drug–target association. The x -axis indicates the number of data sources for each 
drug–target association, and the y -axis indicates the number of drug–target associations.

association of amitriptyline with SLC6A4 is recorded in all 
eight databases. This indicates that the drug–target associa-
tions in each database are somewhat related but have some 
variability due to the different purposes of each database. Inte-
gration of these databases in HCDT database greatly improves 
the volume and credibility of drug–target associations.

Discussion
Drug–target association plays more and more roles in drug 
discovery, drug repositioning, drug synergy prediction, etc. 
HCDT database (http://hainmu-biobigdata.com/hcdt) is a 
publicly available resource for highly confident drug–target 
associations. The researchers can query drug–target asso-
ciations via drugs or target genes and can download all 
the associations. HCDT database integrated eight databases 
and includes 500 681 highly confident (experimental veri-
fied) drug–target associations. It has the largest volume and 
has as much information as possible for drugs and target 
genes. Together with multi-omics data, it will be a good 
resource in analyzing the drug functional mechanism, mining 
drug-related biological pathway, predicting drug synergy, etc.

Supplementary data
Supplementary data are available at Database Online.
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