Engineering the interfacial orientation of MoS_2/Co_9S_8 bidirectional catalysts with highly exposed active sites for reversible Li-CO₂ batteries

Bingyi Lu^{ab,1}, Biao Chen^{a,c,1}, Dashuai Wang^{a,d,e,1}, Chuang Li^a, Runhua Gao^a, Yingqi Liu^a, Rui Mao^a, Jinlong Yang^{b,2} 🕩, and Guangmin Zhou^{a,2} 🕩

Edited by Alexis Bell, University of California, Berkeley, CA; received October 4, 2022; accepted December 5, 2022

Sluggish CO₂ reduction reaction (CO₂RR) and evolution reaction (CO₂ER) kinetics at cathodes seriously hamper the applications of Li-CO₂ batteries, which have attracted vast attention as one kind of promising carbon-neutral technology. Two-dimensional transition metal dichalcogenides (TMDs) have shown great potential as the bidirectional catalysts for CO_2 redox, but how to achieve a high exposure of dual active sites of TMDs with CO₂RR/CO₂ER activities remains a challenge. Herein, a bidirectional catalyst that vertically growing MoS₂ on Co₉S₈ supported by carbon paper (V-MoS₂/ $Co_9S_8@CP$) has been designed with abundant edge as active sites for both CO_2RR and CO₂ER, improves the interfacial conductivity, and modulates the electron transportation pathway along the basal planes. As evidenced by the outstanding energy efficiency of 81.2% and ultra-small voltage gap of 0.68 V at 20 μ A cm⁻², Li-CO₂ batteries with V-MoS₂/Co₉S₈@CP show superior performance compared with horizontally growing MoS₂ on Co₉S₈ (H-MoS₂/Co₉S₈@CP), MoS₂@CP, and Co₉S₈@CP. Density functional theory calculations help reveal the relationship between performance and structure and demonstrate the synergistic effect between MoS₂ edge sites and Co₉S₈. This work provides an avenue to understand and realize rationally designed electronic contact of TMDs with specified crystal facets, but more importantly, provides a feasible guide for the design of high-performance cathodic catalyst materials in Li-CO₂ batteries.

bifunctional catalyst | Li-CO₂ batteries | interfacial orientation | reaction path

Rechargeable metal-gas batteries with an energy density of 5 to 10 times beyond that of traditional lithium-ion batteries have attracted widespread attention (1-5). Among these advanced metal-gas batteries, Li-CO₂ battery, based on the reaction of $3CO_2$ (g) + 4Li (s) + 4e⁻ \leftrightarrow 2Li₂CO₃ (s) + C (s), is a potential candidate due to high discharge voltages (~2.8 V) and large theoretical specific energy $(1,876 \text{ Wh kg}^{-1})$ (6–8). More importantly, Li-CO₂ batteries not only act as one kind of promising carbon-neutral technology to provide a method of CO₂ fixation for serious global warming, but also offer opportunity for applications such as Mars exploration or submarine operations with CO_2 -rich environments (9–11).

Despite the great potential of $Li-CO_2$ batteries, there are some thorny problems (12). One of the challenges is that the sluggish CO₂ reduction reaction (CO₂RR) and evolution reaction (CO₂ER) kinetics at cathodes seriously deteriorate the performance of the Li-CO₂ batteries. The CO₂RR and CO₂ER involve a conversion from gas to two solids in liquid electrolyte, and the insulating nature of the discharge product lithium carbonate makes its formation and decomposition exceptionally difficult (13-15). The unexpected irreversible conversion reaction leads to poor reversibility and low energy efficiency. Therefore, the construction of unique electrode structures with efficient bidirectional catalysts to facilitate the reduction of CO_2 and the oxidation of the discharge products is of particular importance.

Two-dimensional transition metal dichalcogenides (TMDs) are an interesting family of layered materials that have been widely studied in various fields such as electrocatalysis, metal-sulfur batteries, and Li-O2/-CO2 batteries, due to their unique physical and chemical properties (8, 16–17). However, the basal planes of most semiconducting TMDs have poor intrinsic activity, which is much smaller than that of the edge sites (18-20). To address this problem, surface engineering, including defect, doping, and single-atom decoration has been applied to improve electrical conductivity and activate surface activity (21–25). For example, nucleophilic N dopants and electrophilic S vacancies in the ReS₂ plane have been designed to promote the bidirectional activity in $Li-CO_2$ batteries (21). However, for achieving bidirectional catalysis in Li-CO₂ batteries, the precise synthesis of dual active centers in the basal plane through surface engineering is still hard to control (26). In this regard, developing a new strategy to minimally expose the basal plane of TMDs shows highly desirable for their use in Li-CO₂ batteries.

Significance

Li-CO₂batteries not only act as promising carbon-neutral technology to provide a method of CO₂fixation for serious global warming, but also offer opportunity for applications such as Mars exploration or submarine operations with CO₂-rich environments. We design an efficient bifunctional activity in 2D materials with a large number of dual active centers, realizing highly reversible Li-CO₂batteries with an ultra-small voltage gap of 0.68 V and an ultra-high energy efficiency of 81.2%, which is superior to those of previous catalysts under similar conditions. This work not only paves an avenue to understand and realize rationally manipulated electronic contact of 2D materials with specified crystal facets, but also offers guidance for designing high-performance catalysts for Li-CO₂batteries.

Author contributions: B.L. and G.Z. designed research; B.L., B.C. and D.W. performed research; B.L., B.C., D.W., C.L., R.G., Y.L., R.M., J.Y., and G.Z. analyzed data; and B.L., B.C., D.W., J.Y., and G.Z. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2023 the Author(s). Published by PNAS. This open access article is distributed under Creative Attribution-NonCommercial-NoDerivatives Commons License 4.0 (CC BY-NC-ND).

¹B.L., B.C. and D.W. contributed equally to this work.

²To whom correspondence may be addressed. Email: yangjl18@szu.edu.cn or guangminzhou@sz.tsinghua. edu.cn.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas. 2216933120/-/DCSupplemental.

Published January 30, 2023

Recently, edge engineering has attracted emerging attention, in which TMDs grew perpendicular to the substrates, thereby maximally exposing the highly active edge sites, and showing excellent intrinsic activity for catalytic reactions (27). Meanwhile, the interfacial interactions between substrate and vertically aligned TMD nanosheets are strong, leading to a fast electron transport path from the substrate to edge sites (28). As far as CO_2RR and CO_2ER in Li-CO₂ batteries, the reported edge-terminated films did not exist, and the fast CO₂/electrolyte diffusion, the enough space for accommodating discharged products, and a large number of active sites are also important to promote reaction kinetics. In addition, two kinds of active sites are more favorable to achieving excellent and stable bidirectional activity, thereby incorporating another promising active material with vertically aligned TMDs is urgently needed. The key challenge in producing excellent TMD-based bidirectional catalysts for reversible Li-CO₂ batteries is how to achieve freestanding TMD-based cathode with maximally exposing edge sites, a large number of dual active sites, porous structure, good electrical conductivity, and strong interfacial interaction.

In this work, we design a freestanding cathode, in which ultrasmall MoS₂ vertically grows on Co₉S₈ sheets supported by carbon paper with a large number of exposed active sites (V-MoS₂/Co₉S₈@ CP). Notably, the designed freestanding V-MoS₂/Co₉S₈@CP cathode shows all above-mentioned good properties for achieving excellent bidirectional catalysts (Fig. 1*A*). Moreover, structure–performance relationship, MoS₂ edge sites and Co₉S₈ active sites decrease the energy barriers for different rate-determining steps, which show the obviously complementary effect to facilitate the reaction kinetics revealed by density functional theory (DFT) calculations. As a result, the Li-CO₂ battery assembled with V-MoS₂/ Co₉S₈@CP delivers superior performances of an ultra-small voltage gap (0.68 V) and high energy efficiency (81.2%) at 20 μ A cm⁻².

Results and Discussion

Synthesis and Characterization of Free-standing Catalysts. The V-MoS₂/Co₉S₈@CP is prepared by a two-step procedure, as shown in SI Appendix, Fig. S1. First, Mo-Co(CO₃)_{0.5}OH[•]0.11H₂O nanosheets vertically anchored on the surface of carbon paper by hydrothermal method [Mo-Co(CO₃)_{0.5}OH[•]0.11H₂O/CP, SI Appendix, Fig. S2]. Then, the gaseous sulfur reacted with Mo-Co(CO₃)_{0.5}OH[·]0.11H₂O nanosheets from surface to interface to prepare MoS₂/Co₉S₈ heterostructure (V-MoS₂/Co₉S₈@CP), which keep vertical structure on the surface of CP. During the sulfurization, because the growth directions of Co_9S_8 are isotropic, the Co_9S_8 inherits the sheet morphology of oxides. For MoS_2 , due to the weak Van der Walls interaction between MoS₂ layers, the sulfurization direction is parallel to the basal plane (29). The growth of MoS_2 nanosheets is along the direction from the surface to interface (30). Therefore, in the obtained MoS_2/Co_0S_8 heterostructure, the MoS₂ nanosheets vertically grow on the surface of Co_9S_8 sheets with an interface along the edge of MoS_2 . The structure of V-MoS₂/Co₉S₈@CP was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). As shown in Fig. 1B, the surface of CP was fully and uniformly covered by sheets. The vertical sheets have ultrathin thickness, and they are cross-linked to form porous structure, which facilitates the transport of CO₂ gas and provides a large specific surface area to accommodate discharge products (31–32). The TEM image (Fig. 1C) and inserted fast Fourier transform (FFT) pattern show that MoS₂ nanosheets with four to eight layers vertically stand on Co_9S_8 surface with exposed (01–1) plane. High-resolution TEM (HRTEM) image reveals that the size of the vertically aligned MoS_2 nanosheets is around ~5 nm (Fig. 1D).

Furthermore, the MoS₂ nanoplate is seamlessly bonded to Co₉S₈ surface along the edges and fringes with a lattice spacing of 6.15 Å, while that of Co_9S_8 is 2.98 Å, corresponding to the (002) plane of hexagonal MoS_2 and (311) of Co_9S_8 , respectively. The coexistence of MoS₂ and Co₉S₈ is further confirmed by selected area electron diffraction (SAED) patterns (inset image in Fig. 1D). As illustrated in Fig. 1*E*, the MoS_2 with exposed (002) plane vertically stands on the (01-1) planes of Co_9S_8 . Moreover, the X-ray energydispersive spectroscopy (EDS) elemental mapping images show that the Co, Mo, and S elements are uniformly distributed through the nanosheet morphology (Fig. 1F). For comparison, the MoS₂ nanosheets vertically anchored on CP (MoS₂@CP), Co₉S₈ nanosheets vertically anchored on CP (Co₉S₈@CP) and MoS₂ horizontally lie on Co₉S₈ heterostructures that anchored on CP $(H-MoS_2/Co_9S_8@CP)$ were also prepared. Their detailed synthesis processes are shown in SI Appendix, Supporting Information. Their microstructures were investigated by SEM images, as shown in SI Appendix, Figs. S3-S5.

The composition, phase, and chemical states of the four samples were further investigated. The X-ray diffraction (XRD) measurements show the phases of all the obtained samples agree well with their standard PDF cards (MoS₂: 37-1492 and Co₉S₈: 19-0364), together with the intensive carbon peak at about 26° (SI Appendix, Fig. S6). As shown in Raman spectra of Fig. 1G, the stretching vibration bands of MoS_2 corresponding to E_{2g} (in-plane) and A_{1g} (out-of-plane) are observed at 373.90 and 401.67 cm⁻¹, respectively. The characteristic vibration bands of Co₉S₈ are located at 188.30, 467.84, and 512.40 cm⁻¹. All these bands corresponding to Co₉S₈ and MoS₂ can be found in V-MoS₂/Co₉S₈@CP, confirming the successful fabrication of the MoS_2/Co_9S_8 heterostructure. X-ray photoelectron spectroscopy (XPS) was used to analyze the chemical states (Fig. 1 H and I and SI Appendix, Figs. S7 and S8) (33). Fig. 1 H and I show the high-resolution XPS spectra of Mo 3d and Co 2p. For Mo 3d spectra; the peaks of $Mo^{4+} 3d^{3/2}$ and Mo^{4+} 3d^{5/2} are, respectively, located at 232.59 eV and 229.21 eV for V-MoS₂/Co₉S₈@CP, while 232.65 eV and 229.53 eV for MoS₂@ CP. For Co 2p spectra, they can be deconvoluted into six peaks, including Co²⁺ (798.58 eV and 782.24 eV), Co³⁺ (793.93 eV and 778.94 eV), and satellite peaks (803.39 eV and 786.21 eV) for V-MoS₂/Co₉S₈@CP. The peaks of Co²⁺ are at 797.38 eV and 781.42 eV, and the peaks of Co³⁺ are at 793.29 eV and 778.4 eV in Co₂S₈@CP. Compared to V-MoS₂/Co₂S₈@CP, Mo⁴⁺ undergoes a negative shift and Co (Co²⁺ and Co³⁺) experiences a positive shift, suggesting strong electronic interaction between Co₉S₈ and MoS_2 , as well as the formation of the heterojunction (34, 35). Moreover, for the S 2p spectra, two peaks at 161.98 and 163.12 eV correspond to S $2p^{3/2}$ and S $2p^{1/2}$, respectively (*SI Appendix*, Fig. S8). Besides, the peak at 164.59 eV confirms the presence of bridging disulfides S_2^{2-} in V-MoS₂/Co₉S₈@CP.

Electrochemical Performance in Li-CO₂ Batteries. To testify the electrochemical performance of four free-standing cathodes, corresponding Li-CO₂ batteries were assembled. The cyclic voltammetry (CV) tests were firstly conducted in the range between 2.2 and 4.5 V under CO₂ atmosphere (Fig. 2*A*). Furthermore, the CO₂RR and CO₂ER kinetics were evaluated by the onset potentials corresponding to 40 μ A cm⁻² in Fig. 2*B*. V-MoS₂/Co₉S₈@CP shows a cathodic onset potential of 2.92 V, which is higher than Co₉S₈@ CP (2.76 V), MoS₂@CP (2.77 V) and H-MoS₂/Co₉S₈@CP (2.82 V). The anodic onset potentials of V-MoS₂/Co₉S₈@CP, Co₉S₈@CP, MoS₂@CP, and H-MoS₂/Co₉S₈@CP are 3.50, 3.94, 3.44, and 3.80 V, respectively. The anodic initial potential of V-MoS₂/Co₉S₈@ CP is similar to that of MoS₂@CP, but it is significantly smaller than that of the other two catalysts. The above results suggest

Fig. 1. (A) Illustration of V-MoS₂/Co₉S₈@CP in Li-CO₂ batteries. (B) SEM, (C) TEM, (D) HRTEM images of V-MoS₂/Co₉S₈@CP. (E) Illustration of the V-Co₉S₈/MoS₂@ CP with MoS₂ vertically grows on Co₉S₈ with an interface along the edge. (F) EDS-mapping images of V-MoS₂/Co₉S₈@CP. (G) Raman spectra and (H and I) XPS fine spectra of V-Co₉S₈/MoS₂@CP, Co₉S₈@CP, and MoS₂@CP. The inserted images in C and D are FFT pattern and SAED image of Co₉S₈ and V-MoS₂/Co₉S₈, respectively.

that V-MoS₂/Co₉S₈@CP cathode has better CO₂RR and CO₂ER kinetics than the other three cathodes. Full discharge profiles are displayed in Fig. 2*C*. V-MoS₂/Co₉S₈@CP cathode delivers a full discharge capacity of 3,954 μ A h cm⁻² with a discharge plateau at ~2.80 V. They are both higher than those of Co₉S₈@CP (1039 μ A h cm⁻² and 2.78 V), MoS₂@CP (548 μ A h cm⁻² and 2.53 V) and H-MoS₂/Co₉S₈@CP (885 μ A h cm⁻² and 2.61 V). The V-MoS₂/Co₉S₈@CP cathode retains a high Coulombic efficiency of 71% after charging (*SI Appendix*, Fig. S9), suggesting a high bidirectional activity in Li-CO₂ batteries. Therefore, the V-MoS₂/Co₉S₈@CP cathode shows the best catalytic kinetics and the largest number of available active sites among all the catalysts.

The rate capabilities and cycling stability of the Li-CO₂ batteries with the four as-obtained cathodes were tested with a limited capacity of 100 μ Ah cm⁻². For the galvanostatic discharge–charge (GDC) profiles at different current densities, as shown in Fig. 2 *D*–*F* and *SI Appendix*, Figs. S10–S12, the V-MoS₂/Co₉S₈@CP cathode shows superior rate performance, with voltage gaps of 0.68, 0.86, 1.07, and 1.33 V and energy efficiencies of 81.2, 77.0, 72.2, and 66.7% at 20, 40, 70, and 100 μ A cm⁻², respectively. The V-MoS₂/Co₉S₈@CP cathode shows higher median discharge voltages, smaller voltage gaps, and higher energy efficiencies than those of the Co₉S₈@CP, MoS₂@CP, and H-MoS₂/Co₉S₈@CP at the same condition (*SI Appendix*, Table S1). When the current

Fig. 2. (*A*) CV curves at a scanning rate of 0.2 mV s⁻¹, (*B*) corresponding onset potentials during discharging and charging, and (*C*) fully discharging curves of four cathodes at 40 μA cm⁻². (*D*) GDC profiles with a limited capacity of 100 μA h cm⁻² at different current densities for V-MoS₂/Co₉S₈@CP. (*E*) Voltage gaps and (*F*) energy efficiencies at different current densities for four cathodes. (*G*) Performance comparison chart, voltage gaps and energy efficiencies for rechargeable Li-CO₂ batteries with V-MoS₂/Co₉S₈@CP and other reported catalysts. (*H*) Cycling performance of four cathodes at 20 μA cm⁻².

density recovers back to the initial value, the median discharge voltage and median charge voltage are almost the same as the initial constant, demonstrating that the V-MoS₂/Co₉S₈@CP has excellent reversibility. Moreover, compared with cathode catalysts previously reported (the discharge time ≥ 5 h), V-MoS₂/Co₉S₈@ CP cathode also exhibits superior performance regarding with voltage gap and energy efficiency under similar conditions (Fig. 2Gand SI Appendix, Table S2). Moreover, the V-MoS₂/Co₉S₈@CP cathode shows stable long-term cycling stability at different current densities (20 and 40 μ A cm⁻²) (Fig. 2*H* and *SI Appendix*, Figs. S13 and S14). The V-MoS₂/Co₉S₈@CP cathode maintains a high discharge voltage of 2.81 V and a low charge voltage of 3.85 V after 630 h at 20 μ A cm⁻². Attractively, the V-MoS₂/Co₉S₈@CP cathode can be reversibly charged and discharged for 140 h at 40 μ A·cm⁻² with a relatively stable discharge and charge plateau (SI Appendix, Fig. S14), demonstrating good cycling stability. In addition, V-MoS₂/Co₉S₈@CP cathode exhibits the smallest voltage gaps and the largest energy efficiencies in the overall cycling life among all cathodes, which are consistent with the results of rate performance. The above results show that the V-MoS₂/ Co₉S₈@CP exhibits excellent bidirectional catalytic activity towards CO₂RR and CO₂ER processes, resulting in reversible conversion reactions and high energy efficiencies in Li-CO₂ batteries.

High Reversibility and Stability of V-MoS₂/Co₉S₈@CP Cathode. To uncover the conversion reaction mechanism of V-MoS₂/Co₀S₈@CP cathode in Li-CO₂ batteries, ex situ XRD and SEM measurements at different working states in the first cycle were conducted (Fig. 3 A-E and SI Appendix, Figs. S15-S19). As shown in Fig. 3C, the granular Li₂CO₃ is readily observed during discharge, and in the following charge process, which is almost no residue on the surface of V-MoS₂/Co₉S₈@CP cathode after the first cycle. It is in sharp contrast to the cases containing H-MoS₂/Co₉S₈@CP, Co₉S₈@CP and MoS₂@CP, for which there still exist many particle residues (Fig. 3D and SI Appendix, Figs. S16 and S17). Ex situ XRD patterns show that the Li₂CO₃ signal emerges and was easily observed from XRD patterns during discharge. During the subsequent charging process, the signal in V-MoS₂/Co₂S₈@CP cathode is gradually weakened and has disappeared in the final state, while the obvious signal of Li₂CO₃ can still be detected in H-MoS₂/Co₉S₈@CP, Co₉S₈@CP and MoS₂@CP cathodes (Fig. 3E and SI Appendix, Figs. S15, S16 B, S17 B, and S19). This suggests that the V-MoS₂/ Co₉S₈@CP has an excellent bidirectional activity for both CO₂RR and CO₂ER. Moreover, TEM and XPS were used to investigate the stability of V-MoS₂/Co₉S₈@CP after repeated cycles at 20 µA cm⁻ (Fig. 3 F and G, and SI Appendix, Figs. S20 and S21). As revealed, the V-MoS₂/Co₉S₈@CP remains in its sheet structure, in which MoS_2 nanosheets vertically stand on the surface of Co_9S_8 sheets and

Fig. 3. (*A*) GDC profiles of V-MoS₂/Co₉S₈@CP cathode at 20 μ A cm⁻² with a capacity limit of 200 μ A h cm⁻². The labels 1 to 5, respectively, represent the electrochemical states of pristine, discharging with 100, 200, and charging with 100, 200 μ A h cm⁻². (*B*) Schematic illustration of the morphological changes. (*C* and *D*) SEM images at the different working states for V-MoS₂/Co₉S₈@CP and H-MoS₂/Co₉S₈@CP cathodes, respectively. (*E*) Ex situ XRD patterns for four cathodes when charged to 200 μ A h cm⁻². (*F* and *G*) Mo 3d and Co 2p XPS spectra of V-Co₉S₈/MoS₂@CP and V-Co₉S₈/MoS₂@CP cathode after 10 cycles.

the Co, Mo, and S elements are uniformly distributed in the sheet structure after 10 cycles. Furthermore, the chemical states of Mo 3d and Co 2p spectra in V-MoS₂/Co₉S₈@CP after 10 cycles show a little change when compared with those in pristine V-MoS₂/Co₉S₈@ CP, suggesting high chemical stability during repeated CO₂RR and CO₂ER. These results verify that V-MoS₂/Co₉S₈@CP possesses excellent bidirectional activity, robust structure, and high stability for its full play as the catalyst for CO₂ redox.

To get deep insight into the effect of V-MoS₂/Co₉S₈@CP cathode in the Li-CO₂ battery, in situ differential electrochemical mass spectrometry (DEMS) was applied to investigate the gas evolution during discharge–charge process at a high current of 150 μ A (36–39). The V-MoS₂/Co₉S₈@CP cathode shows a higher discharge voltage and a lower charge voltage, which is in sharp contrast to the other cathode materials (Fig. 4 *A*–*H*). In the discharge process,

the molar amount of charge lost is 5.60×10^{-6} mol. According to the typical CO₂RR: $3CO_2 + 4e^- + 4Li^+ \rightarrow 2Li_2CO_3 + C$, the theoretical CO₂ mass-to-charge ratio is 0.75, so the theoretical mole number of CO₂ is 4.19×10^{-6} mol. The moles of CO₂ consumed by V-MoS₂/Co₉S₈@CP, H-MoS₂/Co₉S₈@CP, Co₉S₈@CP, and MoS₂@CP in the discharge process can be calculated by area integral, and they are 3.99×10^{-6} , 2.16×10^{-6} , 1.38×10^{-6} , and 3.64×10^{-6} mol, respectively. The efficiency of CO₂ reduction of V-MoS₂/Co₉S₈@CP, H-MoS₂/Co₉S₈@CP and MoS₂@ CP cathodes are 95.2%, 51.6%, 33.0%, and 86.9%, respectively. Moreover, no CO was traced during CO₂RR. In the charge process, the amount of CO₂ evolution in the V-MoS₂/Co₉S₈@CP cathode is much higher than that of the others. Meanwhile, no O₂, NO, NO₂, and SO were detected (Fig. 4 *B*, *D*, *F* and *H*), which ruled out the self-decomposition of Li₂CO₃ and the

Fig. 4. DEMS profiles with discharge-charge curves at a current of 150 μA for (*A* and *B*) V-MoS₂/Co₉S₈@CP, (*C* and *D*) H-MoS₂/Co₉S₈@CP, (*E* and *F*) MoS₂@CP, and (*G* and *H*) Co₉S₈@CP cathodes.

occurrence of side reactions. The above results clearly suggest that V-MoS₂/Co₉S₈@CP has excellent catalytic activity, which was consistent with the results of electrochemical performance test.

The Origin of the Excellent Bifunctional Activity from DFT Calculations. DFT calculations were further used to explore the origin of catalytic activity of CO₂RR and CO₂ER of the V-MoS₂/Co₉S₈@CP cathode. Three models, including Co₉S₈, MoS₂ basal plane, and MoS₂ edge, were constructed (20). It is found that the bonding strength of MoS₂ plane and edge with Co₉S₈ (01–1) plane is –0.23 and –0.05 eV/Å², respectively. Meanwhile, according to the corresponding differential charge density (*SI Appendix*, Fig. S22), it can be found that the bonding number of Co₉S₈ (01-1) planes and MoS₂ edges are more than that of MoS₂ basal

planes. These results suggest that (01-1) planes of Co_9S_8 are selective for vertically growing MoS_2 . We first investigated the adsorption configurations of CO_2 , Li, and Li₂CO₃, and resulting charge density differences on three models (Fig. 5 *A* and *B* and *SI Appendix*, Figs. S23–S28). For CO₂RR, the strong adsorption ability for CO₂ and Li is a crucial role in the activation stage of reactants. As shown in Fig. 5*C*, MoS₂ edge reveals higher adsorption energy for CO₂ and Li in contrast to the MoS₂ basal plane and Co₉S₈. Therefore, the fully exposed MoS₂ edge endows the V-MoS₂/Co₉S₈@CP with stronger adsorption energy toward CO₂ and Li, so as to achieve better catalytic performance for the CO₂RR. Meanwhile, the intrinsic activities of MoS₂ edge, MoS₂ basal plane and Co₉S₈ were studied. We calculated the Gibbs free energy (ΔG_f) for eight possible reaction pathways, which can be divided into two reaction stages (40). As shown in SI Appendix, Fig. S29, in the first stage, *Li₂CO₃ and *CO (* represents the catalytic surface) were formed through five possible reaction paths, and finally Li₂CO₃ and C were formed after the second stage. The ΔG_f at both U = 0 V (open-circuit potentials) and U = U₀ = 2.85 V (equilibrium potentials) were calculated for five possible pathways (SI Appendix, Figs. S30–S32 and Tables S3–S5) (41). MoS₂ basal plane, MoS_2 edge and Co_9S_8 show different reaction paths, and the most favorable paths for three materials are I, IV and II, respectively (Fig. 5D and SI Appendix, Fig. S33). In the first stage, Gibbs free energy changes at the rate-determining step $[\Delta G_f(r)]$ of MoS₂ base plane, MoS₂ edge, and Co₂S₈ are 2.67, 1.70, and 0.93 eV, respectively. Obviously, Co_9S_8 shows the smallest value, which means that it exhibits the best thermodynamics during the formation of Li₂CO₃ and *CO. In the second stage, MoS₂ edge displays the smallest $\Delta G_f(r)$ (2.87 eV), followed by Co_9S_8 and MoS_2 basal plane, which were 5.2 and 6.09 eV, respectively (Fig. 5E and SI Appendix, Table S6). The fully exposed MoS₂ edges and Co₉S₈ in the V-MoS₂/Co₉S₈@CP show complementary effects, leading to significantly reduced energy barriers of the ratedetermining steps. The complementary effect of the two kinds of active sites promotes the reaction kinetics, leading to excellent catalytic activity. Compared with the edge of MoS_2 and Co_9S_8 , the MoS_2 basal plane has bigger $\Delta G_f(r)$ in both stages, which is not conducive to the progress of CO_2RR . The calculated results of ΔG_f are consistent with the experimental results, which to a certain extent indicates the effective design of the dual-active sites catalyst.

In terms of CO₂ER, the crucial step is the decomposition of Li₂CO₃, which can be reflected by the bond type of adsorbing Li₂CO₃ (42, 43). In the MoS₂ basal plane, the Li₂CO₃ is adsorbed through the Li-S bonds while MoS₂ edges and Co₉S₈ through Li-S bonds and Mo-O or Co-O bonds. The addition of Mo-O or Co-O bonds can further weaken the interaction between Li-O bonds, thereby achieving a favorable decomposition of Li₂CO₃ (*SI Appendix*, Fig. S25). Furthermore, the sequentially increased electron depletion of Li-O bonds also verifies that the bond strength of Li-O bonds weakened. As a result, the V-MoS₂/Co₉S₈@CP exhibit the highest catalytic ability for the decomposition of Li₂CO₃, followed by Co₉S₈@CP, and MoS₂@CP is the weakest as depicted in Fig. 5 *F* and *G* and *SI Appendix*, Fig. S34. These results further support the effective design of V-MoS₂/Co₉S₈@CP catalyst for Li-CO₂ batteries.

Fig. 5. Top views for the charge density difference of Li, CO_2 and Li_2CO_3 adsorption configurations on (*A*) MoS₂ basal plane and (*B*) MoS₂ edge, respectively. (*C*) Adsorption energies of Li, CO_2 and Li_2CO_3 on the Co_9S_8 , MoS₂ basal plane and MoS₂ edge. (*D*) The most favorable paths for MoS₂ basal plane, MoS₂ edge and Co_9S_8 , and (*E*) the Gibbs free energy changes at the rate-determining step. (*F*) Detailed decomposition paths and (*G*) decomposition energy barriers of Li_2CO_3 on Co_9S_8 , MoS₂ basal plane and MoS₂ edge.

According to the above experimental and theoretical analysis, the synergistic effect of fully exposed MoS₂ edge sites and Co₂S₈ endow V-MoS₂/Co₉S₈@CP with excellent bidirectional catalytic activity. The MoS₂ edge showed high adsorption energies to CO₂ and Li and proper adsorption energies to CO and CO₃ intermediates, while Co₉S₈ plane shows appropriate adsorption energy to LiCO₃ and Li₂CO₃ intermediates. According to Gibbs free energy analysis of the reaction process, it can be seen that Co_0S_8 displays the smallest reaction energy barrier in the first stage of the reaction, and the MoS₂ edge presents the smallest reaction energy barrier in the second stage, leading to good reaction kinetics during CO₂RR. During CO₂ER, MoS_2 edge and Co_9S_8 further weaken the interaction between Li-O bond through Li-S bonds and Mo-O or Co-O bonds, to achieve favorable decomposition of Li₂CO₃. The co-existence of MoS₂ edges and Co₉S₈ in V-MoS₂/Co₉S₈@CP gives it bidirectional activities and electrochemical performance in Li-CO₂ batteries.

Conclusion

In summary, we have designed and synthesized a V-MoS₂/Co₉S₈ heterostructure vertically anchored on CP, in which MoS₂ with fully exposed edge sites grows vertically on Co₉S₈. The porous lamellar V-MoS₂/Co₉S₈ nanosheets not only facilitate the diffusion of CO₂ and electrolyte, but also provide a large number of active sites and ample space to accommodate discharge products of Li₂CO₃ and carbon. More importantly, the fully exposed MoS₂ edge and Co₉S₈ have a good synergistic effect on CO₂RR and CO₂ER processes, leading to excellent intrinsic activity, which is demonstrated by both experimental and theoretical results. As a result, the V-MoS₂/

- J. Zhou et al., Flexible metal-gas batteries: A potential option for next-generation power accessories for wearable electronics. Energy Environ. Sci. 13, 1933–1970 (2020).
- Y. Huang *et al.*, Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal-air batteries. *Adv. Mater.* 31, 1803800 (2019).
- F. Cheng, J. Chen, Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41, 2172–2192 (2012).
- L. Yang et al., Harnessing the surface structure to enable high-performance cathode materials for lithium-ion batteries. Chem. Soc. Rev. 49, 4667–4680 (2020).
- X. Zhong et al., Engineering Pt and Fe dual-metal single atoms anchored on nitrogen-doped carbon with high activity and durability towards oxygen reduction reaction for zinc-air battery. Appl. Catal. B Environ. 286, 119891 (2021).
- K. Chen et al., The stabilization effect of CO₂ in lithium-oxygen/CO₂ batteries. Angew. Chem. Int. Ed. Engl. 59, 16661–16667 (2020).
- B. Liu et al., Recent advances in understanding Li-CO₂ electrochemistry. Energy Environ. Sci. 12, 887–922 (2019).
- A. Ahmadiparidari *et al.*, A long-cycle-life lithium-CO₂ battery with carbon neutrality. *Adv. Mater.* **31**, 1902518 (2019).
- B. Chen et al., Engineering the active sites of graphene catalyst: From CO₂ activation to activate Li-CO₂ batteries. ACS Nano 15, 9841–9850 (2021).
- Y. Jiao et al., Recent progress and prospects of Li-CO₂ batteries: Mechanisms, catalysts and electrolytes. Energy Storage Mater. 34, 148–170 (2021).
- Y. Wang *et al.*, Decreasing the overpotential of aprotic li-CO2 batteries with the in-plane alloy structure in ultrathin 2D Ru-based nanosheets. *Adv. Funct. Mater.* 32, 2202737 (2022).
- X. Yu, A. Manthiram, Recent advances in lithium-carbon dioxide batteries. Small Struct. 1, 2000027 (2020).
- 13. K. Zhang *et al.*, Boosting cycling stability and rate capability of Li-CO₂ batteries via synergistic
- photoelectric effect and plasmonic interaction. Angew. Chem. Int. Ed. Engl. 61, e202201718 (2022).
 J. Li, A. Dai, K. Amine, J. Lu, Correlating catalyst design and discharged product to reduce
- overpotential in Li-CO₂ batteries. *Small* **17**, 2007760 (2021). 15. X. Mu, H. Pan, P. He, H. Zhou, Li-CO₂ and Na-CO₂ batteries: Toward greener and sustainable electrical
- energy storage. Adv. Mater. 32, 1903790 (2019).
 B. Zhao et al., 2D metallic transition-metal dichalcogenides: Structures, synthesis, properties, and applications. Adv. Funct. Mater. 31, 2105132 (2021).
- X. Tian et al., Correlating the three-dimensional atomic defects and electronic properties of twodimensional transition metal dichalcogenides. Nat. Mater. 19, 867–873 (2020).
- T. Jaramillo et al., Identification of active edge sites for electrochemical H₂ evolution from MoS₂ nanocatalysts. Science **317**, 100–102 (2007).
- H. Wang *et al.*, High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS₂ materials. *Nano Lett.* **14**, 7138–7144 (2014).
- C. J. Chen et al., Catalytically active site identification of molybdenum disulfide as gas cathode in a nonaqueous Li-CO₂ battery. ACS Appl. Mater. Interfaces 13, 6156-6167 (2021).
- B. Chen et al., Designing electrophilic and nucleophilic dual centers in the ReS₂ plane toward efficient bifunctional catalysts for Li-CO₂ batteries. J. Am. Chem. Soc. 144, 3106–3116 (2022).
- Y. Liu *et al.*, Toward an understanding of the reversible Li-CO₂ batteries over Metal-N4-functionalized graphene electrocatalysts. ACS Nano 16, 1523–1532 (2021).

 Co_9S_8 @CP cathode exhibits an excellent energy efficiency of 81.2% and an ultra-small voltage gap of 0.68 V at 20 μ A cm⁻². This work not only contributes excellent bidirectional catalysts for high-performance Li-CO₂ batteries, but also provides a viable guidance for further developing bidirectional catalysts toward CO₂ electrochemical redox in rechargeable energy storage systems.

Experimental Section

Experimental details and characterizations are included in *SI Appendix*.

Data, Materials, and Software Availability. All study data are included in the article and/or *SI Appendix*.

ACKNOWLEDGMENTS. G.Z. appreciates support from the National Key Research and Development Program of China (2019YFA0705700), Shenzhen Stabilization Support Program (WDZC20200824091903001), Shenzhen Science and Technology Program (KOTD20210811090112002), the Overseas Research Cooperation Fund, and Interdisciplinary Research and Innovation Fund of Tsinghua Shenzhen International Graduate School. We would like to thank the Testing Technology Center of Materials and Devices of Tsinghua Shenzhen International Graduate School for its help with materials characterization.

Author affiliations: ^aTsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; ^bGuangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; ^cSchool of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, People's Republic of China; ^dInstitute of Zhejiang University-Quzhou, Quzhou 324000, China; and ^eCollege of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

- 23. B.-W. Zhang et al., Targeted synergy between adjacent co atoms on graphene oxide as an efficient
- new electrocatalyst for Li-CO₂ batteries. *Adv. Funct. Mater.* **29**, 1904206 (2019). 24. Q. Wang *et al.*, Design of active nickel single-atom decorated MoS₂ as a pH-universal catalyst for
- hydrogen evolution reaction. *Nano Energy* 53, 458–467 (2018).
 H. Lin *et al.*, Electrocatalysis of polysulfide conversion by sulfur-deficient MoS₂ nanoflakes for lithium-sulfur batteries. *Energy Environ. Sci.* 10, 1476–1486 (2017).
- B. Chen *et al.*, Graphene-supported atomically dispersed metals as bifunctional catalysts for next-generation batteries based on conversion reactions. *Adv. Mater.* 34, 2105812 (2022).
- 27. J. Hu *et al.*, Engineering stepped edge surface structures of MoS₂ sheet stacks to accelerate the hydrogen evolution reaction. *Energy Environ. Sci.* **10**, 593–603 (2017).
- Q. Yu *et al.*, A Ta-TaS₂ monolith catalyst with robust and metallic interface for superior hydrogen evolution. *Nat. Commun.* **12**, 6051 (2021).
- D. Kong *et al.*, Synthesis of MoS₂ and MoSe₂ films with vertically aligned layers. *Nano Lett* 13, 1341–1347 (2013).
- H. He et al., MoS₂/TiO₂edge-on heterostructure for efficient photocatalytic hydrogen evolution. Adv. Energy Mater. 6, 1600464 (2016).
- Z. Hu et al., Hierarchical Ti₃C₂Tx MXene/carbon nanotubes for low overpotential and long-life Li-CO₂ batteries. ACS Nano 15, 8407-8417 (2021).
- Z. Zhang *et al.*, The first introduction of graphene to rechargeable Li-CO₂ batteries. *Angew. Chem. Int. Ed.* 54, 6550-6553 (2015).
- 33. L. Diao et al., An in-plane $Co_0S_0@MoS_2$ heterostructure for the hydrogen evolution reaction in alkaline media. Nanoscale **11**, 21479–21486 (2019).
- C. Liu et al., Interface engineering of MoS₂: based ternary hybrids towards reversible conversion of sodium storage. Mater. Today Energy 26, 100993 (2022).
- M. Kim et al., Kirkendall effect induced bifunctional hybrid electrocatalyst (Co₂S₈@MoS₂/N-doped hollow carbon) for high performance overall water splitting. J. Power Sources 493, 229688 (2021).
- G. Y. Qiao *et al.*, Perovskite quantum dots encapsulated in a mesoporous metal-organic framework as synergistic photocathode materials. *J. Am. Chem. Soc.* **143**, 14253–14260 (2021).
- Z. Zhang *et al.*, Verifying the rechargeability of Li-CO₂ batteries on working cathodes of ni nanoparticles highly dispersed on N-doped graphene. *Adv. Sci.* 5, 1700567 (2018).
- B. D. McCloskey et al., Solvents' critical role in nonaqueous lithium-oxygen battery electrochemistry. J. Phys. Chem. Lett. 2, 1161–1166 (2011).
- Y. Zhang *et al.*, Single metal site and versatile transfer channel merged into covalent organic frameworks facilitate high-performance Li-CO₂ batteries. ACS Cent. Sci. 7, 175–182 (2021).
- C. Yang et al., Unraveling reaction mechanisms of Mo₂C as cathode catalyst in a Li-CO₂ battery. J. Am. Chem. Soc. **142**, 6983–6990 (2020).
- Z. Zhao et al., Deciphering CO₂ reduction reaction mechanism in aprotic Li–CO₂ batteries using in situ vibrational spectroscopy coupled with theoretical calculations. ACS Energy Lett. 7, 624–631 (2022).
- Z. Zhao, J. Huang, Z. Peng, Achilles' heel of lithium-air batteries: Lithium carbonate. Angew. Chem. Int. Ed. 57, 3874–3886 (2018).
- L. Zhou et al., Fast decomposition of Li₂CO₃/C actuated by single-atom catalysts for Li-CO₂ batteries. Sci. China Mater. 64, 2139-2147 (2021).