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Abstract

A large literature has accumulated suggesting that human and animal decision making is

driven by at least two systems, and that important functions of these systems can be cap-

tured by reinforcement learning algorithms. The “model-free” system caches and uses stim-

ulus–value or stimulus–response associations, and the “model-based” system implements

more flexible planning using a model of the world. However, it is not clear how the two sys-

tems interact during deliberation and how a single decision emerges from this process,

especially when they disagree. Most previous work has assumed that while the systems

operate in parallel, they do so independently, and they combine linearly to influence deci-

sions. Using an integrated reinforcement learning/drift-diffusion model, we tested the

hypothesis that the two systems interact in a non-linear fashion similar to other situations

with cognitive conflict. We differentiated two forms of conflict: action conflict, a binary state

representing whether the systems disagreed on the best action, and value conflict, a contin-

uous measure of the extent to which the two systems disagreed on the difference in value

between the available options. We found that decisions with greater value conflict were

characterized by reduced model-based control and increased caution both with and without

action conflict. Action conflict itself (the binary state) acted in the opposite direction, although

its effects were less prominent. We also found that between-system conflict was highly cor-

related with within-system conflict, and although it is less clear a priori why the latter might

influence the strength of each system above its standard linear contribution, we could not

rule it out. Our work highlights the importance of non-linear conflict effects, and provides

new constraints for more detailed process models of decision making. It also presents new

avenues to explore with relation to disorders of compulsivity, where an imbalance between

systems has been implicated.

Author summary

A number of studies have framed goal-directed and habitual decision making from the

perspective of different reinforcement learning algorithms (“model-based” and “model-

free”), and further suggested that they are supported by separate though potentially
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overlapping systems. However, there has been little work to understand how the different

systems work together. By design, they will sometimes disagree on the identity of the best

action, and even when they agree, they will assign different values to the actions. Despite

this, the end result is a single behavioral output. The issue of how the two systems interact

and compete draws parallels to the existing literature on cognitive control, where a central

question has been how more ‘costly’ cognitive resources should be deployed in the pres-

ence of decision conflict (here, the goal-directed system is more computationally ‘expen-

sive’). Across four datasets, we found that the influence of the goal-directed system was

reduced as a function of conflict between systems, and in addition, responses overall were

more cautious. Our results provide new constraints for process models of decision mak-

ing, and suggest new research directions for questions related to psychopathology and dis-

orders of compulsivity in particular, where an imbalance between the two systems has

previously been implicated.

Introduction

The last decade and a half has seen an explosion of work formalizing goal-directed decision

making using the language of reinforcement learning [1–9] (RL), adding to a previous litera-

ture describing habitual decisions using this same framework [10, 11]. Habitual control has

been aligned with ‘model-free’ RL, which consists of algorithms for constructing stimulus–

value or stimulus–response associations based on experience. Goal-directed control has been

aligned with ‘model-based’ RL, which includes quite similar algorithms that learn a model of

the world in the form of a state transition and reward function, and use this model to make

decisions. This work has largely assumed that the two decision systems described by these

algorithms operate in parallel, and critically, with the exception of a few individual studies that

have posited specific more complicated relationships [2, 5, 12], that the outputs of these two

systems are computed independently and then combined linearly to contribute to choice [4, 6,

7, 13, 14]. From a computational perspective, each system assigns a weight to each option

under consideration—weights which may differ due to the different assumptions made by the

two classes of algorithms—and these weights are then simply added together before being

transformed by a link function that maps weighted value to choice. (The link function itself

may be nonlinear and is usually the softmax function, however, it is applied at a later step after

combining the output of the two systems.) This same reinforcement learning framework has

also been used to investigate impairments in decision making associated with psychopathol-

ogy, including binge eating, substance use, and obsessive-compulsive disorder [15–17], and to

test for differences under stress and cognitive load [18, 19]. Here too, the assumption has been

that the contributions of the two systems sum linearly, and that potential impairments influ-

ence each system separately. In particular, these traits and situations have been linked to

reduced model-based control.

By design, the values assigned to options by the two systems usually diverge. This can hap-

pen in two ways: they can disagree about value (we will refer to this as value conflict through-

out), and they can disagree about which option is better (we will refer to this as action conflict
because the options are usually tied to specific responses). These possibilities are of course not

mutually exclusive. The two systems may agree on which option is more valuable, but disagree

about the extent, and likewise, when they disagree about which option is more valuable, the

degree of disagreement can be measured on a continuum in terms of differences in predicted

values.
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Disagreement, or conflict, between model-based and model-free decision systems draws

parallels to the wider literature on conflict monitoring and control [20, 21]. The Stroop task is

a canonical exemplar task from this line of work [22, 23]. In the (standard) Stroop, participants

have to name the font color of a word while ignoring the word itself which may represent a dif-

ferent color, or vice versa. Incongruence in the stimulus results in conflict, which behaviorally

manifests as increased reaction time, though these effects are significantly larger when having

to name the font color while ignoring the meaning of the word. In contrast, font color does

not significantly interfere with word reading [23]. In order to explain these effects, models

have suggested that some responses are more prepotent and automatic, but that they can be

overridden by top-down control employed as a result of conflict monitoring and task demands

[20, 22]. All together, this results in an interactive non-linear effect: without conflict, the pre-

potent response dominates based on the degree of its default intensity, while this intensity is

subdued in the presence of conflicting demands.

In the current work, we used this basic prediction as a starting point for investigating the

effects of value and action conflict between model-based and model-free control. In this con-

text, the model-free system, by relying on cached values rather than more costly rollouts of

potential outcomes, may represent a generically more automatic decision system. Of course it

should be noted that it is not clear that models which can successfully explain conflict between

individual responses will necessarily translate directly to explain conflict between entire deci-

sion systems. In addition, which system represents a more prepotent mode of operation is also

not without debate [5]. Nevertheless, with this background and potential complexity of the

answer in mind, we asked about the intensity of model-based and model-free control under

different degrees of value conflict, both with and without action conflict.

To ask these questions, we used the popular ‘two-step’ task designed to distinguish the con-

trol employed by the two systems [4, 7]. Given the potentially loose a priori constraints on pre-

dictions described above, we tested the replicability of the results across four datasets, using

data previously published by us and previously collected but unpublished, as well as publicly

available data collected by others [7, 14]. The latter also allowed us to ask these questions in a

different version of the task, which is in many ways similar but was designed such that employ-

ing more model-based control results in a larger payoff compared to the original version [7].

We expected the strength of model-based control to be larger, or the strength of model-free

control to be lower, as a function of the disagreement between the two systems (value conflict)

when they favored different actions (i.e. in the presence of action conflict; when they agree on

the best course of action, there appears little reason to modulate control). To briefly preview

our results because they go against this prediction, we found consistent evidence that the

strength of model-based control was reduced as a function of value conflict, both on trials with

and without action conflict. Model-free control was simultaneously reduced on trials with

action conflict independent of the degree of disagreement, but this reduction was not signifi-

cantly different from the corresponding change in model-based control.

In addition to asking about how the degree of influence of each system changed as a func-

tion of conflict, we also asked how inter-system conflict related to overall decision caution. We

did this by analyzing the data using an integrated reinforcement learning/drift-diffusion

model that accounts for both learning and decision making, and that separates different com-

ponents which make up the decision process. The drift-diffusion model is part of a broader

class of evidence integration models which propose that a decision is made by incrementally

collecting information over time until reaching a threshold [24, 25]. Such models are able to

account not only for choice data, but also reaction time and confidence, and can help link

behavioral findings to their neural implementation [26, 27]. They have been applied across a

range of cognitive domains, including to reward-based decision making [28–31], where it is
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assumed that values are not directly accessible, but are instead sampled in a noisy fashion [32].

With some exception [33, 34], these models have not yet been widely applied to model-based

reinforcement learning and the two system RL-based account of decision making. In addition

to providing a more complete picture of the process of deliberation, evidence integration mod-

els parcellate it into distinct components, and include separate parameters that represent the

average preference for one option over another (here, for each decision system) and decision

impulsivity/caution. We took advantage of this ability and asked about the relationship

between inter-system conflict and each of these quantities.

A priori we might expect increased caution specifically during trials with action conflict:

assuming model-based control would then be dominant but the overall decision preference

signal weak because the systems favor different actions, increased caution would allow addi-

tional evidence to be accumulated according to the preferences of the model-based system.

Some support for the idea that action conflict is associated with increased caution comes from

studies in both the perceptual and reward-based domains, although it should be noted that in

the case of reward-based decisions, a more consistent effect has been increased caution moder-

ated by specific neural signatures—including theta-band medial prefrontal cortex activity and

activity in the subthalamic nucleus—rather than a main effect [28, 29, 35]. To briefly preview

these results, we found that value conflict was related to more caution both in the presence and

absence of action conflict. There was some evidence that the binary state of action conflict was

associated with a change in the opposite direction—decreased caution.

Finally, value conflict between systems is likely correlated with value conflict within systems

(i.e. the differences in value between the two choices). We assessed the extent to which within-

system conflict could be disambiguated from between-system conflict, and whether it influ-

enced decision making above and beyond its standard linear contribution.

Methods

Datasets

We included four datasets (Table 1) in this study, three from previously published work [7,

14], and one previously collected but unpublished. The data in [14] and the unpublished data-

set were collected in-person in the lab, while the other two were collected on Amazon Mechan-

ical Turk [7]. In all datasets, participants who had more than 20% trials with reaction

time < 0.2sec or a missing choice in either stage were excluded from the analysis. Three of the

datasets were based on the original version of the two-step task, and one based on a newer ver-

sion in which model-based control has been shown to pay off significantly more [7]. Both task

variants are described at a high level in the main text, and we refer readers to the previously

published work on these datasets for additional details [7, 14]. The one unpublished dataset

was based on the original task variant. Although similar experimental procedures were fol-

lowed in performing this experiment, we describe them next for completeness.

Table 1. Sources and sample sizes of the four datasets.

Original task Solway et al. [14] Kool et al. [7] Unpublished data

Collected sample size n = 119 n = 206 n = 92

After exclusion n = 115 n = 175 n = 84

Newer version Kool et al. [7]

Collected sample size n = 199

After exclusion n = 179

https://doi.org/10.1371/journal.pcbi.1010047.t001
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Ethics statement

For the previously unpublished dataset, experimental procedures were approved by the Prince-

ton University Institutional Review Board. Written informed consent was obtained in accor-

dance with the approved procedures.

Previously unpublished dataset details

Ninety-two participants from the Princeton University campus completed the experiment.

Each trial had two stages. The first stage involved a binary decision between the same two sti-

muli (randomly positioned on the left/right side of the screen), and the selected choice proba-

bilistically led to one of two other states. Transition probabilities were 0.7/0.3 and 0.3/0.7 as in

previous work. When participants selected a choice from the first-stage choice pair, the chosen

stimulus was highlighted. Then, the selected stimulus moved to the top, the non-chosen stimu-

lus disappeared, and the resulting second-stage choice pair appeared below. Each second-stage

state also featured an independent binary decision that led to a probabilistic 0/1 outcome. The

reward rate of each second-stage choice changed independently according to a Gaussian ran-

dom walk with reflecting boundaries at 0.25 and 0.75 and a standard deviation of 0.025. There

was a two second deadline for both decisions. Participants completed a tutorial session with

practice trials, followed by 201 trials of the experiment. They also completed several question-

naires, which were not analyzed here.

Reinforcement learning

The first part of our model was based on previous work with this task [4, 7, 13, 14]. Action val-

ues for each state and action (stimulus), Q(s, a), were computed using separate model-based

and model-free learning algorithms. The model-free system updated values from experience

using SARSA(λ) [36]. The update for the value of the action chosen at the first stage on trial t
was based on both the value of the second-stage action and the eventual outcome (rew) at the

end of the trial:

Qmf ðstatestage1; choicestage1Þ
0

t ¼ Qmf ðstatestage1; choicestage1Þt� 1
þ

a � ½Qmf ðstatestage2; choicestage2Þt� 1
�

Qmf ðstatestage1; choicestage1Þt� 1
�:

ð1Þ

Qmf ðstatestage1; choicestage1Þt ¼ Qmf ðstatestage1; choicestage1Þ
0

tþ

l � a � ½rew � Qmf ðstatestage2; choicestage2Þt� 1
�:

ð2Þ

The value of the action chosen at the second stage was similarly updated according to:

Qmf ðstatestage2; choicestage2Þt ¼ Qmf ðstatestage2; choicestage2Þt� 1
þ

a � ½rew � Qmf ðstatestage2; choicestage2Þt� 1
�:

ð3Þ

Values for non-selected choices decayed towards the initial Q value:

Qðs; aÞt ¼ Qðs; aÞt� 1
þ a � ½Qinitial � Qðs; aÞ�: ð4Þ

Qinitial was set to the midpoint reward in each version of the task: (1 + 0)/2 = 0.5 in the original

version and (−4 + 5)/2 in the newer version. Further, rewards were re-scaled in the second task

version by dividing them by 9 in order to put the differences between the Q-values on a similar
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scale as in the first task version. (The largest difference in Q-values in the second version was

5 − −4, while in the first version it was 1 − 0.)

The model-based system computed separate first-stage action values according to:

Qmbðstatestage1; choicestage1Þ ¼
X

s0
pðs0jstatestage1; choicestage1Þ �max

a0
Qmbðs

0; a0Þ: ð5Þ

It shared second-stage action values with the model-free system. In the original task version,

p(s0|statestage1, choicestage1) was set to one of the true underlying probabilities (0.7 or 0.3)

depending on the transitions experienced by the participant up until that trial. If the number

of times selecting action 1 and ending up in state 2 plus the number of times selecting action 2

and ending up in state 3 was more than than the sum of the opposite transitions, p(s = 2|s = 1,

a = 1) and p(s = 3|s = 1, a = 2) were set to 0.7, and p(s = 2|s = 1, a = 2) and p(s = 3|s = 1, a = 1)

were set to 0.3. Otherwise, the opposite assignments were made. In the second task version,

transitions were deterministic and transition probabilities for a pair of first-stage stimuli were

set to their veridical values as soon as a transition for one of them was observed. On the very

first trial of each pair, they were set to 0.5. Note that in the original task version the first-stage

state was always the same, while in the second version there were two possible first-stage states

(the two rockets pairs). In the second stage of the task, both versions had two second-stage

states, but while in the original each state had two choices, in the second version each state had

only one “choice”.

Action selection and model fitting

Model fitting was performed using a two step procedure. During the first step, action values

were mapped to choice probabilities using the logistic (softmax) function:

Pðstatestage1; choice1Þ ¼

logisticðbmb � ½Qmbðstatestage1; choice1Þ � Qmbðstatestage1; choice2Þ�þ

bmf � ½Qmf ðstatestage1; choice1Þ � Qmf ðstatestage1; choice2Þ�þ

brep � repÞ

ð6Þ

where rep was 1 if neither deadline was missed on the previous trial and choice1 was selected at

the first-stage, and −1 if choice2 was selected. Similarly, for the original version of the task

which had a second-stage decision,

Pðstatestage2; choice1Þ ¼

logisticðb2½Qmf ðstatestage2; choice1Þ � Qmf ðstatestage2; choice2Þ�Þ:
ð7Þ

Recall that Qmf = Qmb at the second stage. The following were free parameters: α, λ, βmb, βmf,

βrep, and β2. Models were fit within a multi-level Bayesian framework implemented in Stan

[37]. Multi-level models allow for more accurate parameter estimates by taking the entirety of

the data into account together [38]. Wide unbiased priors were used for all group-level param-

eters: αμ, ασ, λμ, λσ, b
m

mb, b
s

mb, b
m

mf , b
s

mf , b
m

2
, b

s

2
, b

m

rep, b
s

rep each had a prior of N(0, 20). Subject-level

parameters had Gaussian priors constrained by the group-level parameters: α* N(αμ, ασ),

λ* N(λμ, λσ), and so on for the remaining parameters. Subject-level α and λ parameters were

transformed to the 0–1 range using a logistic function. Standard deviation parameters were

constrained to be greater than or equal to 0.

After fitting this version of the model, we extracted the median α and λ estimates for each

participant, and used them to compute Q-values for each participant/trial. We then performed

a second round of inference to fit the drift-diffusion model, including conflict effects, based on

PLOS COMPUTATIONAL BIOLOGY Conflict and competition between model-based and model-free control

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010047 May 5, 2022 6 / 22

https://doi.org/10.1371/journal.pcbi.1010047


these Q-values. The drift-diffusion model was fit to both choices and reaction times. Our over-

all analysis was thus quasi-Bayesian in that we used a two step model fitting procedure and

point estimates for α and λ rather than their full posterior distribution. This approximative

scheme was necessary for a technical reason. Stan and the No U-Turn Sampler provide an effi-

cient method for obtaining posterior samples from complex multi-level models. However, effi-

cient sampling requires that the (unnormalized) posterior is differentiable. Both the sudden

change at zero in the definition of action conflict (see Eq 11) and the absolute value function in

the definition of value conflict (Eq 10) violated this requirement, requiring us to adopt the two

step process. We tested the validity of this approach in two ways, as reported further below

and in the Results. First, we simulated synthetic data and tested the procedure’s ability to

recover known parameter values. Second, we re-ran all of the analyses using a simplified

model that could be fit in a single step, and found similar results.

During the second step of the model fitting procedure, we fit a simple drift-diffusion deci-

sion process (without across-trial variance) to each of the first and second stage decisions.

Drift rate (v1) and boundary separation (a1) for the first stage were defined according to Eqs

12–14 in the main text below, which include conflict terms as regressors. The starting prefer-

ence was defined as:

s1 ¼ logisticðsrep � repÞ; ð8Þ

ranging from the lower to the upper boundary. In the drift-diffusion model, bias may be

implemented in two ways: in terms of the drift rate and in terms of the starting preference. Eq

13 specifies how choice perseveration is implemented in terms of drift rate, and Eq 8 specifies

how it is implemented in terms of the starting preference. To our knowledge, previous work

has not made this distinction. Drift rate for the second stage was defined according according

to:

v2 ¼ v2;base � ½Qmf ðstatestage2; choice1Þ � Qmf ðstatestage2; choice2Þ�; ð9Þ

and the boundary was a free parameter that lacked regressors. The starting preference at the

second stage was fixed to 0.5. The drift-diffusion model also has a fourth free parameter, τ, rep-

resenting non-decision time, and this was shared between the two decision stages. Note that

although including across-trial variance in parameters allows the model to explain a larger

range of main effects regarding accuracy and reaction time [25], other work has shown that

excluding them can result in improved model fit if these effects and parameters are not of

interest [39]. We excluded these parameters for this reason. In all, the following were free

parameters: vmb,base, vmb,conflict,value, vmb,conflict,action, vmb,conflict,interaction, vmf,base, vmf,conflict,value,

vmf,conflict,action, vmf,conflict,interaction, vrep, a1,base, aconflict,value, aconflict,action, aconflict,interaction, srep,
v2,base, a2, and τ. Parameters were hierarchically defined similar to the first step of the model

fitting procedure described above, with N(0, 20) priors on the group-level mean and standard

deviation for most parameters (see below), and Gaussian priors with the corresponding group

level mean and standard deviation for the subject-level parameters. There were three excep-

tions. First, the mean and standard deviation for conflict-related drift rate effects had N(0, 200)

priors. These parameters are on a larger scale because they multiply an effect that is itself a

result of multiplying two small numbers: the difference in Q-values between actions and inter-

system value conflict. Second, the mean non-decision time had a N(0.5, 1) prior and the stan-

dard deviation across subjects had a N(0, 1) prior. Third, am1;base and am2 had N(1, 20) priors,

biased positive because boundary separation must be positive. The group level parameters for

base boundary separation along with their subject-level counterparts, the group and subject-
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level parameters for non-decision time, and all standard deviation parameters were con-

strained to be greater than or equal to 0.

As described in the Results below, we also fit a second similar model in which non-linear

effects were due to conflict between action values within each decision system rather than

between systems. The same priors were used for the corresponding parameters in this model.

We tested the overall model fitting procedure in two ways. First, we simulated synthetic

data and used the same process to recover parameters from the synthetic datasets. This was

done for each experiment and model we analyzed, each time generating many datasets based

on the participant and trial numbers in the empirical data (see Results and Figs A-D in S1

Text). Second, to obtain corroborating evidence, we also analyzed reduced versions of both

models which could be fit in a single pass, and which made use of the full posterior for α and λ.

The reduced model for between-system conflict did not distinguish action conflict, and value

conflict for both models was defined based on the squared differences of their conflict terms

instead of the absolute values of these differences (see Eqs 10, 15 and 16).

For all models, Markov Chain Monte Carlo was performed for each step of the model fitting

procedure with three chains. Each chain was run for 10,000 (4,000 for the reduced models)

total iterations, using the first 1,000 for warmup. The Gelman-Rubin R̂ statistic was computed

and ensured to be less than 1.1 for all variables. We treated an effect as significant if the param-

eter’s central 95% credible interval excluded 0.

Results

Experimental tasks

We asked these questions in the context of the widely used ‘two-step task’ [4]. We used data

from two of our previous studies, one published [14] and another previously unpublished, and

two publicly available datasets collected by another group [7]. The latter study included both a

run of the original version of the task and a newer version in which the payoff for increased

model-based control was more substantial (see also [40], who first documented the lack of

incentive for being model-based in the original task). The inclusion of both task versions

allowed us to further test the replicability of the results as well as their generalizability.

Both versions are well-known, but we briefly describe them for ease of reference. In the

standard version [4] (Fig 1A), participants make two choices on each trial. The first stage

includes two options, each probabilistically leading to one of two second-stage states. Each sec-

ond stage state also includes two options, leading to a probabilistic reward (0 or 1 point). The

probability of reward for each second-stage option follows an independent Gaussian random

walk with reflecting boundaries. When computing the values of the first-stage options, the

model-free system is sensitive only to the reward or lack thereof experienced on each trial,

ignoring the transition structure from the first to the second stage (cf. Fig 1A). In contrast, the

model-based system takes the transition structure into account.

Although numerous studies have shown that people employ model-based control in this

version of the task [4, 7, 14, 18, 19], increasing such control does not yield significantly more

reward, and this motivated the development of an alternative version where increased model-

based control does result in an additional payoff [7]. In this version (Fig 1B), the first stage

starts with one of two pairs of options. Each option deterministically leads to one of two sec-

ond-stage states which deliver reward in the range -4 to 5, with each amount evolving accord-

ing to a Gaussian random walk. Here too, taking the transition structure between the first and

second stage into account, versus ignoring this information, leads to different predictions

about action values at the first stage over the course of the experiment.
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Definition of conflict and modeling of deliberation

Our analysis began by computing the value of each state and action, Q(s, a), separately accord-

ing to the model-based and model-free systems, using standard methods employed in previous

work [4, 7, 13, 14]. Details are provided in the Methods. Based on these values, we defined

value conflict at the first stage (the two systems do not differ at the second stage) as:

conflictvalue ¼ j ðQmbðs; choice1Þ � Qmbðs; choice2ÞÞ�

ðQmf ðs; choice1Þ � Qmf ðs; choice2ÞÞj:
ð10Þ

We defined action conflict as:

m ¼ ðQmbðs; choice1Þ � Qmbðs; choice2ÞÞ�

ðQmf ðs; choice1Þ � Qmf ðs; choice2ÞÞ;

conflictaction ¼
0 m � 0

1 m < 0:

( ð11Þ

Eq 10 defines a continuous measure of inter-system conflict that captures how much the

systems (dis)agree about the difference in value between the two actions at the first stage. We

call this value conflict. Eq 11 defines a binary measure, which we call action conflict, that cap-

tures whether or not the two systems agree on the identity of the best action. Our interest was

primarily in tracking conflict in a continuous fashion, and as described below, we asked ques-

tions about value conflict and its interaction with action conflict.

We used the drift-diffusion model [24, 25] to map action values, including conflict effects,

to choice. The drift-diffusion model describes decisions between two options. The relative

amount of evidence between the options changes on average at a set rate (drift rate, a free

Fig 1. A. Trial structure in the original version of the two-step task. A first-stage choice between two options probabilistically led to

a second-stage choice. Each second-stage choice had a randomly varying probability of paying a point or paying nothing.

Figure from “Model-based influences on humans’ choices and striatal prediction errors” [4]. https://doi.org/10.1016/j.neuron.2011.

02.027. Used under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/). B. Trial structure in a newer version of the two-step

task where model-based control pays off to a greater degree. Each trial started with one of two pairs of stimuli which participants

selected between. The choice led deterministically to one of two second-stage states, with payoffs that varied over the course of the

experiment. Figure from “When does model-based control pay off?” [7]. https://journals.plos.org/ploscompbiol/article/figure?id=10.

1371/journal.pcbi.1005090.g015. Used under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1371/journal.pcbi.1010047.g001
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parameter), but the exact trajectory is noisy. A decision is made when the relative evidence

reaches one of two decision boundaries, whose distance translates into the level of impulsivity

of the decision (and is also a free parameter). Other free parameters include the initial evidence

before the decision begins, and non-decision time. The use of the drift-diffusion model

allowed model fitting to be constrained by reaction time in addition to choice, and for us to

ask about the effects of conflict on decision caution/impulsivity separately from the effects on

the strength of each decision system. We set the upper boundary to be “choice 1” and the

lower boundary to be “choice 2”, arbitrarily defined (all equations can be changed to swap

these associations without affecting the results). The model-based and model-free decision sys-

tems influenced decision making through changes in drift rate. We defined the strength of the

model-based system as:

vmb ¼ vmb;baseþ vmb;conflict;value � conflictvalueþ

vmb;conflict;action � conflictactionþ

vmb;conflict;interaction � conflictvalue � conflictaction;

ð12Þ

with a similar definition for the strength of the model-free system. Because conflictaction is

dummy coded, this definition divides the continuous effects of value conflict into two groups:

trials with and without action conflict. The full drift rate for the first-stage decision was then

defined to be:

v1 ¼ vmf � ½Qmf ðs; choice1Þ � Qmf ðs; choice2Þ�þ

vmb � ½Qmbðs; choice1Þ � Qmbðs; choice2Þ�þ

vrep � rep;

ð13Þ

where rep was set to 1 when action 1 was selected on the previous trial and −1 when action 2

was selected. vrep represents a continuous bias in drift rate in the same (or opposite if negative)

direction as the previous choice, regardless of the reward received. In addition, as noted we

also allowed conflict to affect the separation between the decision boundaries representing the

two options:

a1 ¼ a1;baseþ aconflict;value � conflictvalueþ

aconflict;action � conflictactionþ

aconflict;interaction � conflictvalue � conflictaction:

ð14Þ

It is important to note that although the drift-diffusion model is sometimes taken to

describe the actual algorithm the brain uses during deliberation (e.g. [26]), here we are using it

as a descriptive statistical model. Eq 12 says that the strength of the model-based controller can

change as a function of conflict (and similarly for the model-free controller), but we do not

make strong claims about the specific algorithm or implementation by which this might hap-

pen. As we note in the Discussion, answering this question requires a better understanding of

the specific way in which the brain performs model-based rollouts, which is an open area of

research.

Model fitting

We fit the above model using an approximate hierarchical Bayesian framework, described in

Methods. In order to both test the model fitting procedure and ensure that we were able to

recover the parameters of interest given the number of parameters in the overall model, we

simulated and fit synthetic data with the same number of participants and trials present in
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each experimental dataset. These results are shown in Figs A-D in S1 Text. Parameter recovery

was overall reasonable. Estimates of the effects of conflict on drift rate appeared unbiased (to

be either more positive or more negative) across simulations. Despite the fact that priors at the

group level were very broad, there was evidence that estimates were symmetrically pushed

towards the prior mean of zero, suggesting that these effects were weakly constrained. Priors

can help guard against spurious results under such circumstances. In contrast, some bias was

present in the boundary separation parameters, with a potential tradeoff between the baseline

and the effect of value conflict without action conflict (in the original task version), as well as

the baseline model-free drift rate (also in the original task version) and the baseline model-

based drift rate (in the newer task version). Biases for value conflict effects in the newer task

version went in the opposite direction. These results could not explain the full pattern of

boundary effects reported below, which were consistent across task versions and with and

without the presence of action conflict.

The strength of model-based control was negatively correlated with value

conflict

Empirical results are reported in terms of the marginal posterior distributions of the parame-

ters of interest, as well as their medians and central 95% credible intervals. The latter quantita-

tive information is shown in the figures rather than embedded in the text for ease of reference.

Our primary questions about decision system control regarded the parameter vmb,conflict,value,

the sum vmb,conflict,value + vmb,conflict,interaction, and their model-free equivalents. Respectively,

these represent the effects of the continuous measure of conflict (value conflict) without and

with action conflict (i.e. separately for trials where the two systems agree/disagree on the iden-

tity of the best action). Fig 2 displays these results. Without action conflict, the strength of the

model-based controller was significantly reduced as a function of value conflict across all four

datasets, including the three datasets based on the original version of the task, and the dataset

based on the newer version (Fig 2A). No significant changes were seen in the strength of the

model-free controller in any dataset (Fig 2B), and the differences between the effects on the

two systems were significant in three of four datasets, with a marginally significant difference

in the fourth (Fig 2C). With action conflict, the strength of model-based control was signifi-

cantly reduced as a function of value conflict in the three datasets based on the original task

version, but not the newer version where increased model-based control pays off (Fig 2D). No

significant differences were seen in the strength of model-free control (Fig 2E), and the differ-

ences between the changes for the two systems were significant for the original task variant

where we saw an effect on model-based control (Fig 2F).

Fig 2G–2I shows the main effects of action conflict (the dummy coded variable in Eq 11).

We had no particular hypothesis about this term as it does not take the degree of conflict into

account, but we present these results for completeness. There was evidence of a reduction in

model-free strength (Fig 2H), but these effects were not significantly different from (them-

selves non-significant) changes in model-based strength (Fig 2I).

We also compared average value conflict (without and with action conflict) and the average

percentage of trials with action conflict across datasets and tasks. These are plotted in Fig 3.

Note that the raw scale of values in the newer task variant is different because rewards range

from -4 to 5 instead of being 0/1 as in the original. Here and in all analyses (see Methods) we

normalized reward in this task by dividing it by 9. Value conflict was similar across the four

datasets. However, the proportion of trials with action conflict was lower in the newer task

(Fig 3C).
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Finally, because our model fitting procedure required two separate steps (see Methods), in

addition to testing parameter recovery from simulated data, we also stress-tested the results

using a simplified model that allowed for full Bayesian inference in a single model-fitting step.

In the reduced model, value conflict was defined based on the squared difference between the

Fig 2. First row: The effect of value conflict in the absence of action conflict on the strength of model-based and model-free control in all four datasets. Second row: The

same as the first row, but for trials with action conflict. Third row: Main effect of action conflict on model-based and model-free control.

https://doi.org/10.1371/journal.pcbi.1010047.g002
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systems’ predictions instead of the absolute value (see Eq 10), and action conflict was not dis-

tinguished. The results of this model were similar to the main results (Fig E in S1 Text).

Decision boundary separation was positively correlated with value conflict

Fig 4 displays the effects of inter-system conflict on the separation between decision bound-

aries. Boundary distance increased as a function of value conflict on trials both with and with-

out action conflict in three out of four datasets. The presence of action conflict (the dummy

coded variable) was associated with a change in the opposite direction, but the latter effect was

less prominent overall and “significant” in only two datasets. Fig F in S1 Text shows the corre-

sponding results for the reduced model that could be fit in a single step, also demonstrating

increases in boundary separation as a function of value conflict.

Within-system conflict was significantly correlated with between-system

conflict

Given its definition (Eq 10), value conflict between systems is likely correlated with value conflict

within systems (i.e. |(Qmb(s, choice1) −Qmb(s, choice2))| and |(Qmf(s, choice1) −Qmf(s, choice2))|).

Fig 5 plots the correlation between value conflict (Eq 10) and each of these terms across all

participants and trials for each dataset. The correlation with within-system model-free con-

flict was substantial in the original version of the task (ρ > 0.9 in all three datasets). In con-

trast, the correlation with within-system model-based conflict was high in the newer

task version, although the effect was smaller than the model-free effect in the original task

(ρ = 0.53).

An alternative explanation for the above results could be that the strength of each system is

modulated based on the degree of conflict within the other system alone. A priori it seems less

obvious why the preferences of one system would be related to the strength of the other with-

out taking both systems’ values estimates into account. It would be valuable to test this explic-

itly, although the strength of the correlation between the different forms of conflict makes it

difficult to do so with the current task.

Fig 3. A. Average value conflict for trials without action conflict. Note that the values for the newer task version (Kool2016/new task) were normalized to put them on

the same scale as the original task version. See Methods. B. Average value conflict for trials with action conflict. C. Average proportion of trials with action conflict.

https://doi.org/10.1371/journal.pcbi.1010047.g003
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For completeness, we ran separate analyses with within-system conflict effects only. More

concretely, this version of the model defined vmb and a1 as:

vmb ¼ vmb;base þ vmb;within� conflict � jðQmf ðs; choice1Þ � Qmf ðs; choice2ÞÞj; ð15Þ

a1 ¼ a1;baseþ amb;within� conflict;value � jðQmbðs; choice1Þ � Qmbðs; choice2ÞÞjþ

amf ;within� conflict;value � jðQmf ðs; choice1Þ � Qmf ðs; choice2ÞÞj;
ð16Þ

and similarly for vmf. We did not differentiate the presence and absence of action conflict

because although between and within-system conflict are related, separating action conflict in

this version of the model would have introduced parameters that were perfectly correlated and

Fig 4. A. The effect of value conflict in the absence of action conflict on decision boundary separation. B. The same as (A), but for trials with action conflict. C. Main

effect of action conflict on decision boundary separation.

https://doi.org/10.1371/journal.pcbi.1010047.g004
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not identifiable. Figs G-J in S1 Text display parameter recovery results for this model and Figs

6 and 7 display the empirical results, which were similar to the results for between-system con-

flict. Thus, while our analysis speaks to the importance of non-linear conflict effects, the struc-

ture of the task does not allow us to empirically disambiguate the exact form of conflict at play.

To complete the parallel analysis, we also ran a version of the model with squared value differ-

ences that could be fit in a single step of full Bayesian inference, as we did for the between-sys-

tem conflict model above. Figs K-L in S1 Text display these results, which were similar to those

using the absolute value of the difference.

Fig 5. A. Model-free within-system value conflict versus between-system value conflict across all participants and trials for each dataset. B. Model-based

within-system value conflict versus between-system value conflict.

https://doi.org/10.1371/journal.pcbi.1010047.g005

Fig 6. A. The effect of within-system model-free conflict (Q-value differences) on the strength of model-based control. B. The effect of within-system model-based

conflict (Q-value differences) on the strength of model-free control. C. Differences between the effects on model-based and model-free control.

https://doi.org/10.1371/journal.pcbi.1010047.g006
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Discussion

Across four datasets which encompassed two versions of the well-studied two-step task, we

tested whether the strength of model-based and model-free control was modulated by conflict

between the two systems. In addition, we tested whether the distance between decision bound-

aries, representing the relative amount of evidence needed to make a decision (and thus the

amount of caution employed), was similarly related to inter-system conflict. We defined value
conflict to be the absolute difference in predicted action value preference between the two sys-

tems, and looked separately at value conflict effects on trials where the two systems disagreed

versus agreed on the identity of the best action (with and without value conflict). We found a

negative relationship between the strength of model-based control and value conflict in all

four datasets on trials without action conflict, as well as in three out of four datasets on trials

with action conflict. Moreover, this reduction was generally larger than the corresponding

change in model-free control.

Interestingly, the data with the non-significant relationship from the latter group were from

the more recent task version where increased model-based control is more rewarding com-

pared to the original version [7]. One interpretation could be that conflict-related reductions

in model-based control are attenuated when model-based control is worth it. However, enthu-

siasm for this interpretation should be tempered for two reasons. First, much of the posterior

distribution for the effect is still below zero (Fig 2D). Second, our analysis revealed that there

are in fact far fewer trials on average with action conflict in this version of the task (Fig 3C).

Thus, a simpler explanation is that questions about action conflict trials in the newer version

may be underpowered. We also found in three of the four datasets that value conflict was cor-

related with larger decision boundaries both in the presence and absence of action conflict.

The sole dataset where value conflict related boundary effects did not replicate had the smallest

Fig 7. A. The effect of within-system model-free conflict (Q-value differences) on decision boundary separation. B. The effect of within-system model-based conflict on

decision boundary separation.

https://doi.org/10.1371/journal.pcbi.1010047.g007
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sample size (Table 1), suggesting an issue of power here also as one possible explanation for

this failure.

The fact that there were fewer action conflict trials in the newer task version and that value

conflict was relatively similar between tasks (Fig 3) may seem counterintuitive on first blush. If

the newer version was specifically designed and shown to result in increased payoffs from

employing more model-based control [7], it seems that the two systems should differ more in

their predictions about which action is more valuable. However, it is important note that

model-derived predictions about values translate rather imperfectly to actual outcomes. Kool

et al. [7] analyzed this question in detail while designing the new version, looking at correla-

tions between predicted values and outcomes across a range of parameter values in the rein-

forcement learning model. Correlations were especially poor when outcomes were

probabilistic, and were better but still imperfect with deterministic outcomes. Given that ques-

tions about conflict rest on differences in the predictions made by the two systems rather than

differences in the outcomes received by relying on each system, future simulation work in the

spirit of Kool et al. [7] but aimed at understanding task features which maximize differences in

predicted values would be fruitful.

Although the findings were consistent across multiple datasets collected in different loca-

tions and by different labs, the data do not explain why the propensity of model-based control

is negatively correlated with conflict, or why decision boundary separation is positively corre-

lated with conflict, especially on trials without action conflict. It is tempting to attempt to inter-

pret these results from a normative perspective. While normative thinking has provided

explanatory power in other related contexts [41, 42], and is the basis for a more recent exten-

sion of the prominent conflict model we used as a starting point [21], its success in explaining

the two-step data in particular is wanting. Even prior to the current work, a salient mystery has

been why individuals have engaged in any amount of model-based control in the original ver-

sion of the task. Doing so does not yield a significantly higher payoff, on average, while

increasing the computational cost of the decision [7]. Nevertheless, virtually every study using

the task has reported significant levels of model-based control, including all three datasets of

the original version reported here [7, 14].

As discussed further below, we advocate more algorithmic thinking and building more

detailed decision models constrained by available data. However, we attempt to walk through

the logic of a normative interpretation of the conflict results to see how far it can take us. Dur-

ing trials without action conflict, which are the majority of trials (Fig 3C), model-based control

can increase the speed and accuracy of decisions (accuracy with respect to both systems) by

increasing drift rate. This can be seen in Eq 13: when both systems prefer the same action

(have the same sign), they sum together and the result is a larger absolute value of drift rate.

This in itself could explain why model-based control is employed in the original version of the

task: such an increase in drift rate can potentially reduce opportunity costs by reducing reac-

tion time, even if it does not deliver significant additional reward. However, we found that

value conflict was associated with a decreased contribution of model-based control to drift

rate, acting in opposition to this beneficial boost. During trials with action conflict, such a

reduction may be useful in the original task. With action conflict, the two systems drive drift

rate in opposite directions (the signs of the systems’ contributions in Eq 13 are opposite), lead-

ing to a decrease in overall drift rate and a potential increase in opportunity costs. Reducing

the contribution of model-based control would lessen the degree to which reaction time is

unnecessarily prolonged, as it does not yield significantly more reward. However, this logic

does not apply to the newer task, where model-based control does result in a higher payoff.

Additional challenges come from the relationship between value conflict and decision

boundary separation. While a positive correlation is consistent with previous work on one-
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step decisions [28, 29, 35], it mostly does not align with a normative interpretation in the pres-

ent context. In the one-step decision tasks previously studied, increased conflict resulted in

reduced overall drift rate (and thus accuracy), which could be compensated for with an

increased decision boundary. Such logic might also apply here to trials with action conflict in

the newer task version where model-based control is worthwhile and this system is dominant

(Table D in S1 Text). An increased boundary would allow the preferences of the model-based

system to be further integrated, and compensate for the reduced overall drift rate that results

from the disagreement between the systems about which action is better. However, giving

additional time to the model-based system is not necessary in the original task, where it would

not be worthwhile. Moreover, on trials without action conflict in both tasks, baseline drift rate

is actually increased in the direction agreed upon by the two systems because their contribu-

tions sum together, as noted above. There is thus nothing for the increased boundary to com-

pensate for in this case.

Rather than attempting to understand these results from a normative perspective, more

detailed algorithmic-level modeling work is required. Our approach of using the drift-diffu-

sion model as a link function to translate values computed by the standard hybrid reinforce-

ment learning model commonly applied to this task [4, 7, 13, 14] follows previous work [33].

However, use of the drift-diffusion model in this way is meant to be a statistical approxima-

tion; the combined model is not meant to describe the mechanistic cognitive process by which

decisions in these tasks evolve. Particularly unrealistic, the combined model assumes that

model-based value computations occur in constant time, independent of both the computed

values and the one-step rewards on which they are based. Moreover, the model is silent about

the specific process by which this computation is performed. In previous work, we explored

how more ‘pure’ model-based decisions may be realized by a competitive evidence integration

process [34]. In this work, the task was simplified in two ways relative to the current context:

all transitions were deterministic (although this was also the case in the newer task version pre-

sented here), and more importantly, there was no learning across trials. Stimuli were instead

everyday products that participants had to choose between, reducing reliance on model-free

contributions. Additional research is necessary in order to develop a more complete process

model of model-based control and combined model-free/model-based control. Using reaction

time data from the current tasks can help constrain and adjudicate between candidate process

models. In addition, the effects of conflict between decision systems presented here place addi-

tional constraints on such model development.

Modified forms of the drift-diffusion model have been developed for conflict tasks such as

the Stroop and Flanker [43]. One variation of these models assumes that decision making is

driven by two processes: one fast and the other slower and more controlled, with the more

controlled process beginning later in the decision. Dual process models with potentially differ-

ential starting times have also been developed in the context of risky decision making [44].

Such models pose technical challenges with model fitting, although recent progress has been

made in this area [43, 45], and it would be of interest to allow for different starting times for

the two systems in models of the two-step task. In this context, eye-tracking has suggested that

model-based rollouts may actually be what start first, even prior to trial onset [46]. Here we

made the more common assumption that the model-based and model-free systems begin

working in tandem at the start of the decision and continue in parallel. The standard drift-dif-

fusion model in particular has also likewise been used in prior work with the two-step task

[33].

We also found evidence, in three of four datasets, that model-free control was negatively

related to action conflict irrespective of the degree of disagreement (i.e. as a function of the

binary state). However, this reduction was not significantly different from the change in
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model-based control in any dataset. In addition, we found that boundary separation was nega-

tively related to action conflict, but while the direction was consistent in all four datasets, the

effect was significant in only two of them. These effects were less prominent than those of

value conflict. As noted above, however, action conflict trials made up less than 40% of each

dataset. In addition, power may be even more of an issue for this binary variable relative to the

continuous measure of value conflict. The replicability of these effects thus needs to be further

tested, and they likely should not be ignored in the development of mechanistic process mod-

els just yet.

Given its definition (Eq 10), between-system conflict was related to within-system conflict.

We found this correlation to be substantial, especially in the original version of the task (Fig 5),

preventing us from fitting and interpreting both effects within a single model. A priori it is less

clear why within-system conflict should modulate the strength of either system (above and

beyond its standard linear contribution) without taking into consideration the state of the

other system. For example, if the model-based controller had a significant preference for one

action over another, it is unclear why the strength of either system should change if the model-

free controller also had the same preference. It would of course be valuable to explicitly empiri-

cally test this, especially given the fact that the between-system effects, although replicable

across distinct datasets, did not align with our predictions. At best, here we could fit non-linear

within-system conflict effects separately from between-system conflict, and unsurprisingly

given their high correlation, results were similar. Future work is required to develop new tasks

that can better differentiate these different forms of conflict.

Conclusion

In summary, while many previous studies have assumed that model-based and model-free

decisions evolve independently and that their predictions sum linearly, our work suggests that

the two systems interact in a non-linear fashion, with the propensity of model-based control

being influenced by the value conflict between systems. In addition, we found that value con-

flict was related to the level of caution during decision making. These results were largely con-

sistent across datasets from different labs, which included different populations and data

collection methods (online and in-lab). Further work is necessary to construct more realistic

process models of decision making that incorporate both systems, and the current results pro-

vide additional new constraints that successful process models must capture. In addition, as

previous work has shown that OCD and other disorders of compulsivity are associated with a

reduction in model-based control [15–17], it would be of interest to explore how conflict

effects relate to these individual differences.
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