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The Malnutrition-Inflammation Score (MIS) was initially proposed to evaluate

malnutrition-inflammation complex syndrome (MICS) in end-stage renal disease (ESRD)

patients. Although MICS should be routinely evaluated to reduce the hospitalization and

mortality rate of ESRD patients, the inconvenience of the MIS might limit its use. Cerebral

complications in ESRD, possibly induced by MICS, were previously assessed by using

spectral electroencephalography (EEG) via the delta/theta ratio and microstate analysis.

Correspondingly, EEG could be used to directly assess MICS in ESRD patients, but the

relationships among MICS and these EEG features remain inconclusive. Thus, we aimed

to investigate the delta/theta ratio and microstates in ESRD patients with high and low

risks of MICS. We also attempted to identify the correlation among the MIS, delta/theta

ratio, and microstate parameters, which might clarify their relationships. To achieve these

objectives, a total of forty-six ESRD subjects were willingly recruited. We collected their

blood samples, MIS, and EEGs after receiving written informed consent. Sixteen women

and seven men were allocated to low risk group (MIS ≤ 5, age 57.57 ± 14.88 years).

Additionally, high risk group contains 15 women and 8 men (MIS > 5, age 59.13 ±

11.77 years). Here, we discovered that delta/theta ratio (p < 0.041) and most microstate

parameters (p < 0.001) were significantly different between subject groups. We also

found that the delta/theta ratio was not correlated with MIS but was strongly with the

average microstate duration (ρ = 0.708,p < 0.001); hence, we suggested that the

average microstate duration might serve as an alternative encephalopathy biomarker.

Coincidentally, we noticed positive correlations for most parameters of microstates A

and B (0.54 ≤ ρ ≤ 0.68, p < 0.001) and stronger negative correlations for all microstate

C parameters (−0.75 ≤ ρ ≤ −0.61, p < 0.001). These findings unveiled a novel EEG

biomarker, the MIC index, that could efficiently distinguish ESRD patients at high and low

risk of MICS when utilized as a feature in a binary logistic regression model (accuracy of

train-test split validation = 1.00). We expected that the average microstate duration and

MIC index might potentially contribute to monitor ESRD patients in the future.

Keywords: delta/theta ratio, microstate analysis, end-stage renal disease, malnutrition-inflammation complex

syndrome, encephalopathy, cognitive decline, EEG biomarker

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2021.795237
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2021.795237&domain=pdf&date_stamp=2022-01-04
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yodchanan.won@mahidol.ac.th
https://doi.org/10.3389/fnhum.2021.795237
https://www.frontiersin.org/articles/10.3389/fnhum.2021.795237/full


Jatupornpoonsub et al. EEG Biomarkers for MICS-ESRD Patients

1. INTRODUCTION

Malnutrition-inflammation complex syndrome (MICS), a
condition in which protein-energy malnutrition (PEM) and
inflammation are present simultaneously, has been known
to particularly occur in end-stage renal disease (ESRD)
patients, leading to a high rate of hospitalization and mortality
(Kalantar-Zadeh et al., 2003). The point prevalence of MICS
in dialysis patients has been reported as 42% to 62% in the
previous literature (Bramania et al., 2020). It was also suggested
that nutritional supplement, optimized dialysis, and anti-
inflammatory interventions may possibly alleviate MICS in
these patients (Kalantar-Zadeh et al., 2003). To diagnose MICS,
scoring systems that combined the evaluation of both nutritional
status and inflammation were ideally recommended to utilize
(Kalantar-Zadeh et al., 2003). The Malnutrition-Inflammation
Score (MIS) was previously introduced as a comprehensive
and reliable questionnaire for evaluating the severity of MICS.
Studies have indicated that the MIS can also assess the mortality
and morbidity of ESRD patients (Kalantar-Zadeh et al., 2001; Ho
et al., 2008; Harvinder et al., 2016), in which a cutoff value of five
indicates 88% certainty of malnutrition and an 80% risk of 1-year
mortality in ESRD patients (Ho et al., 2008; Harvinder et al.,
2016). Although the MICS status of an ESRD patient needs to be
routinely monitored to prevent undesirable outcome, the MIS
questionnaire is invasive and time-consuming, since it requires
the laboratory serum analysis and a clinician to evaluate the
patient properly. Hence, there may be an opportunity to improve
the assessment of MICS in ESRD patients.

Another clinical consideration for ESRD patients is that
more than 80%may present neurological complications (Hamed,
2019). In fact, MICS may induce cerebral complications,

including cognitive deterioration and encephalopathy (Kalantar-

Zadeh et al., 2003; Zheng et al., 2017; Guenzani et al.,
2019; Hamed, 2019; Jatupornpoonsub et al., 2021). Spectral
analysis of electroencephalogram (EEG), a non-invasive and

feasible neuroimaging tool, has been utilized to assess these

cerebral complications in prior studies. Although an obvious
mechanism of delta/theta ratio deviation in encephalopathy is
still inconclusive, researchers have found that the delta/theta
ratio tended to decrease (increased theta/delta ratio) in
encephalopathy without specificity of the underlying causes
(Faigle et al., 2013; Kamiya-Matsuoka and Tummala, 2017;
Jatupornpoonsub et al., 2021). It was also suggested that
delta/theta ratio inversely reflects the severity of encephalopathy
in ESRD patients (Jatupornpoonsub et al., 2021). It is
possible that this ratio may be altered by the combination of
encephalopathy consequences, which affected both delta and
theta oscillation. In details, the variation of these activities
has been found to associate with short attention span and
mild cognitive decline, which were found to be signs of early
encephalopathy in ESRD patients (Kalantar-Zadeh et al., 2003;
Hamed, 2019; Jatupornpoonsub et al., 2021). Therefore, the
delta/theta ratio, may be particularly altered by the induction of
MICS in ESRD patients.

Spectral analysis explicitly bases on frequency-domain EEG;
on the other hand, microstate analysis establishes the assessment

of quasistable patterns in time-domain EEG (Lehmann et al.,
1987; Poulsen et al., 2018). In the prior study, different
microstates have been said to involve different large-scale
activities of a brain (Poulsen et al., 2018), each topographic
pattern reflects a configuration of neuronal generators in an
underlying neural network (Britz et al., 2010; Khanna et al., 2015).
Following the argument that four microstates are consistently
generated at rest, and each of which synchronously correlates
with an activation of a resting state network (Britz et al., 2010),
it may be reasonable to include four microstates in the resting
state analysis of EEG. Specifically, microstate A, B, C, and D
have been suggested to indicate resting activities in phonological
processing network, visual processing network, salience network,
and dorsal attention network (DANs), respectively (Mantini
et al., 2007; Britz et al., 2010; Nishida et al., 2013; Khanna
et al., 2015). In microstate analysis, an amount of each neural
network activity is commonly reflected by microstate parameters
including occurrence, coverage, and duration (Khanna et al.,
2015; Michel and Koenig, 2018). These parameters have been
found to randomly alter in many diseases, such as schizophrenia,
dementia, cognitive decline, Alzheimer’s disease, and head injury
(Nishida et al., 2013; Khanna et al., 2015; Michel and Koenig,
2018; Musaeus et al., 2019, 2020). Therefore, it may be possible
to discover an alteration of microstate pattern or parameters in
ESRD patients with the MICS comorbidity.

Although EEGs could be applied to alternatively observe
MICS in ESRD patients, the relationships among the MIS,
the delta/theta ratio, and EEG microstate parameters remain
unanswered. Therefore, we aimed to investigate the delta/theta
ratio and microstates in ESRD patients with high (ESRD-H) and
low (ESRD-L) risks of MICS, which are allocated using an MIS
cutoff of five. Moreover, we attempted to identify the correlations
among the MIS, delta/theta ratio, and microstate parameters,
which might clarify their relationships. In the first investigation,
we utilized quantitative EEG (QEEG) to calculate the delta/theta
ratio compared to a normative database (Khanna et al., 2015;
ANI, 2018). In the second investigation, we used microstate
analysis to observe quasistable patterns and their parameters.
We expected that the delta/theta ratio would be decreased in
ESRD-H relative to ESRD-L because MICS should lead to more
severe encephalopathy and that this ratio might be correlated
with the MIS. Moreover, if the delta/theta ratio was correlated
with some of the microstate parameters, it would indicate
that these parameters might be related to encephalopathy. We
also hypothesized that the microstate parameters of ESRD-H
patients should be different from those of ESRD-L patients
due to the effect of MICS on the underlying cerebral network.
If the correlations between the MIS and either the microstate
parameters or the delta/theta ratio were significantly strong, we
would suggest an optimal biomarker for evaluating MICS in
ESRD patients further.

2. MATERIALS AND METHODS

2.1. Participants
The experimental protocol involving participants in this cross-
sectional study was approved by the Institutional Review
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Board of Phramongkutklao Hospital with certificate of approval
(COA) number S072h/62 and by the Institutional Review
Board of Mahidol University with COA number MU-CIRB
2020/393.2511. ESRD patients who underwent either peritoneal
dialysis (PD) or machine hemodialysis (MHD) were willingly
recruited. They were asked to provide written informed consent
before enrollment. All participants achieved sufficient dialysis; 3-
4 times a week for MHD patients and dialysate drainage every 4 h
for PD patients. The patients were aged at least 40 years and had
no history of neurologic or psychiatric disease that could affect
the EEG. Participants would be excluded if their EEGs contained
excessive artifacts or if they recently received or had a history of
exposure to central nervous system drugs, such as anti-epileptic
and antidepressant drugs.

2.2. MICS Assessment
In this study, we used MIS questionnaires to assess MICS status
of participants. This tool contains four sections: medical history,
physical examination, body mass index (BMI), and blood test.
The medical history section includes (1) dry weight alterations
after dialysis for 3–6 months; (2) quantity of dietary intake;
(3) gastrointestinal symptoms; (4) daily functional capacity; and
(5) major comorbid conditions, including duration (years) of
dialysis. The physical examination section consists of (6) loss of
subcutaneous fat and (7) muscle wasting. The last two sections
are (8) BMI and laboratory tests, including (9) serum albumin
and (10) serum total iron binding capacity (TIBC) levels. Each
component has four severity levels, which are scored from 0
to 3. The total score of MIS directly indicates the severity of
MICS (Kalantar-Zadeh et al., 2001; Ho et al., 2008; Harvinder
et al., 2016). Although the MIS can range from 0 to 30, the
recommended cutoff between a low and high risk of MICS is
five, which indicates an 88% probability of malnutrition in ESRD
patients (Harvinder et al., 2016), as well as an 80% risk of 1-
year mortality in these patients (Ho et al., 2008). Therefore, our
study allocated participants to two subgroups: ESRD-H (MIS >

5) and ESRD-L (MIS ≤ 5). On the day before the participants
were to undergo hemodialysis (for MHD) or 3 h after the last
dialysate drainage (for PD), we collected their blood samples
and MIS. Sex, age, and dialysis duration were matched to reduce
comparison bias.

2.3. EEG Recording
After we had assessed the nutritional status of the participants,
we asked them to undergo an eyes-closed EEG recording session
for 6 min on the same day. Due to the COVID-19 pandemic, the
participants needed to complete the recording while wearing a
surgical mask. To obtain neutral resting-state EEG data, we made
the experimental room soundproof and painted the walls ivory.
The room was temperature controlled at 25 degrees Celsius and
illuminated with sufficient light (300 lux). Before the session was
started, we had requested that the participants sit upright and
relaxed in an ergonomic chair with both legs forward in the most
comfortable position. After that, the participants rested 1 min in
the chair and were asked to close their eyes for a 5-min recording.

Microstate analysis has been said to still be reliable with a
low electrode density recording (a minimum of eight electrodes)

(Khanna et al., 2014). However, in practice, a higher electrode
density might be more ideal but would lead to longer participant
preparation and electrode attachment duration. Therefore, we
decided to utilize the international 10-20 electrode placement
system (19 channels) with reference to the left ear lobule (A1)
and ground at the right ear lobule (A2) in this study. The
referential EEG monopolar montage was measured under the
following protocol to optimize the signal quality. We chose
an elastic cap that was optimally fit to the participant’s head,
which ensured the closest distance between the titanium nitride
electrodes and the scalp. After placing the cap, the gap between
the electrodes and scalp was filled with conductive gel. Then,
gold cup electrodes filled with conductive paste were attached
to both ear lobules, and the impedance was maintained at less
than 5 k�. Additionally, two cup electrodes were attached above
the right eyebrow (positive electrode) and at the eyelid-cheek
junction (reference) to obtain an electrooculogram (EOG) for
assessing eye movement. Twomore cup electrodes were placed at
the left (positive electrode) and right (reference) wrists to record
an electrocardiogram (ECG). These two signals were intended for
use as EEG artifact-removal guides.

The EEG, EOG, and ECG signals were synchronously
measured by a Brain Master Discovery 24E amplifier with a
256 Hz sampling rate and 24-bit accuracy. These signals were
applied low-pass filter at 80 Hz, monitored, recorded, and
stored in a laptop computer by using Brain Master Discovery
software. Before recording, the signal offset was monitored on
the acquisition screen and adjusted until it was less than 10mV to
maximize signal quality. During the recording period, eye blinks
or muscle artifacts that affected the EEG were marked on the
artifact record form, which was used to exclude contaminated
EEG trials afterward.

2.4. Z-Score Power Ratio Calculation
The raw EEGs, recorded in the European Data Format (EDF),
were processed, validated, and transformed using NeuroGuide
software version 2.8.5 (ANI, 2018). Artifact-free EEG epochs
were selected by using the EOG, ECG, and artifact-record
forms as a guide. Test-retest and split-half reliability were then
calculated to validate signal homogeneity and the consistency of
a measurement as recommended by the manual (ANI, 2018).
The selected EEGs were then downsampled to 128 Hz. A 5th-
order Butterworth bandpass filter was applied with a passband
of 1–40 Hz. The signals were converted to the frequency domain
by fast Fourier transform (FFT) to calculate the absolute power
and power ratio. In detail, absolute power is the diagonal of the
auto-spectral matrix, which was calculated by the FFT of the
signal multiplied by its complex conjugate and divided by the
number of frequencies. The power ratio is the absolute power
ratio of two specific bands (ANI, 2018). EEG frequency bands
included in all calculations were specified as either delta (1.0–
4.0 Hz) or theta (4.0–8.0 Hz), which were used to compute the
delta/theta ratio. The power ratio was then transformed into a Z-
score (in range −3.000 to 3.000) with reference to a normative
database (Thatcher et al., 2003), in which patients were matched
to healthy subjects by age, sex, and recording condition (eyes
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closed). Subsequently, the Z-scores were exported as tab delimiter
text (TDT) files to undergo further statistical analysis.

2.5. Preprocessing Pipeline for Microstate
Analysis
Python programming language version 3.8.10 was utilized to
process and analyze the EEG signals. The open-source MNE-
Python package version 0.23 was used to repair artifacts
and perform microstate analysis on the EEG data (Gramfort
et al., 2013). The raw EEG data in EDF were imported
as input to an artifact repair pipeline. The raw signal was
then subjected to a fourth-order Butterworth bandpass filter
(1–40 Hz). The signal was prewhitened by scaling with the
standard deviation across all channels. Then, the signal was
decomposed with no dimensional reduction by using principal
component analysis (PCA). The principal components were
passed to the independent component analysis (ICA) algorithm,
generating the independent components. Picard was chosen
as the ICA algorithm rather than FastICA or Infomax, as
Picard tends to be faster in terms of convergence and more
robust to partially dependent sources, which is a common
characteristic of EEG (Ablin et al., 2018). The EOG and
ECG signals were matched to each independent component to
calculate the Pearson correlation as an ICA score, which directly
indicates any contaminated components. We also visualized this
component by topographical plots, overlay plots, and property
diagnostic plots. Then, we excluded outliers and reconstructed
the optimized EEG signal. To handle artifacts such as theta bursts
during drowsiness or other benign variants, we also manually
selected the resting-state EEG in the time domain. The selected
EEG was then saved in FIF format, which allows all descriptive
information to be stored in the same file. The FIF file was then
subjected to microstate analysis.

2.6. Microstate Analysis
The time-domain EEG topographical map has been shown to
contain some quasistable patterns whose period varies from 80
to 120 ms (Lehmann et al., 1987). These patterns have also been
suggested to indicate “the atom of thought” underlying EEG signal
activity. This idea of microstates in EEG can be represented by
Equation (1),

sn = iknmk + an, for k = ln and n = 1 . . .N. (1)

sn represents a column vector of the EEG signal at the nth

sample. mk indicates the kth microstate prototype. ikn is the
intensity or amplitude value of the kth microstate prototypes
at the nth sample, which must be zero except under certain
circumstances, in which it equals one (ikn × ik′n = 0, for
k 6= k′). an refers to a zero mean noise of the nth sample.
ln is a class label of nth EEG sample, which is determined
by the most similar kth prototype. N is a number of EEG
samples. In practical computations, these microstate patterns
have been investigated by using unsupervised machine learning
algorithms such as modified k-means clustering. This algorithm
was developed based on the traditional k-means algorithm to
achieve polarity-invariant clustering and microstate-intensity

modeling (Pascual-Marqui et al., 1995; Poulsen et al., 2018). In
this study, we introduced the microstate analysis concept based
on the application in this paper, as summarized in Figure 1.

2.6.1. Microstate Prototype Computation
We decided to include four microstate prototypes in our analysis,
as suggested in a prior study (Poulsen et al., 2018). To perform
microstate analysis, the processed EEGs in each group were
concatenated, and a rereferencing method was applied to obtain
the average reference signal. The signal was then downsampled
with the peak of global field power (GFP), which represents
the standard deviation of sn. To improve the efficiency of the
clustering algorithm, each EEG sample (19 channels, microvolt
unit) at the peak of GFP was transformed to a vector of Z-score
(19 channels) and passed to the modified k-means algorithm as
an input. Hence, all microstate patterns as outputs of this model
were characterized by Z-score hereafter. The concept of modified
k-means algorithm is based on the minimization of the loss
function (E) (Pascual-Marqui et al., 1995; Poulsen et al., 2018),
as presented in Equation (2),

E =

N
∑

n=1

(

‖sn‖
2 − (sTnmk)

2
)

. (2)

In this study, we intended to reduce the computational
complexity by maximizing the intensity (ikn) in stead of
minimizing loss function (E). In the first iteration, the microstate
prototypes were randomly initialized under these constraints:
‖mk‖ = 1 and (mT

k
mk′ )

2 < 1, for k 6= k′. Then, the class label (ln)

of the nth EEG sample was acquired by maximizing the intensity
(ikn), as shown in Equations (3) and (4):

ikn = sTnmk (3)

ln = argmax
k

(i2kn). (4)

The kth prototypes (mk) and class label of the n
th sample (ln) were

updated in each iteration until the convergence criterion wasmet.
In detail, The iteration was stopped when the relative change in
the error of activation between iterations is less than 10−6. Noted
that if this algorithm did not converge, it was stopped at the
1, 000th iteration. After the criterion was met, which ended a run
of the iterations, the cosine similarity (CSn) of the label prototype
(mln ) and the nth sample (sn) was computed to evaluate their
similarity. Additionally, the global explained variance (GEV) was
calculated as the cosine similarity weighted by the fraction of the
nth sample’s squared GFP and the total squared GFP, denoted in
Equations (5) and (6):

CSn =
mT

k
sn

‖mk‖ ‖sn‖
, for k = ln (5)

GEV =

N
∑

n=1

GEVn =

N
∑

n=1

(

CS2n
GFP2n

∑N
n′=1 GFP

2
n′

)

. (6)
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FIGURE 1 | The stepwise methodology of microstate analysis introduced based on the application in this study. Four prototypes were set and included in clustering,

backfitting, and temporal smoothing.

After performing several runs with different random
initializations, the run with the maximum GEV was chosen.
Moreover, the most similar set of microstate prototypes for each
participant group was identified.

2.6.2. Microstate Parameter Calculation
After obtaining the microstate prototypes for each subject group,
it was important to ensure that the prototypes were properly
fitted to where they belonged. Backfitting was performed to
reassign an optimal microstate label to an EEG sample based
on their similarity, which can be computed using Equation
(5). Because EEG noise can contribute to shortening microstate
segments after clustering or backfitting, it was also important to
smooth the microstate label based on the prior and/or following
EEG sample. In this study, we used the small segment rejection
method to perform temporal smoothing, as introduced by an
earlier study (Poulsen et al., 2018). These two steps, backfitting
and temporal smoothing, were applied to an individual EEG to
calculate the following microstate parameters. These included
the GEV, similarity (also called cosine similarity), coverage,
duration, and occurrence. In detail, occurrence indicates the
average frequency of microstate prototype activation (Hz).
Duration is the average period of a given microstate throughout
an EEG signal (milliseconds). The coverage reflects the total
duration of a microstate divided by all signal periods (%). These
parameters were used to perform statistical analysis hereafter.

Moreover, to observe differences in microstate patterns between
subject groups, we also calculated the microstate prototypes
in each individual EEG signal and statistically compared the
corresponding topographical maps.

2.7. Statistical Analysis
The SciPy statistics library in Python was applied to perform
descriptive and inferential statistics (Virtanen et al., 2020).
In detail, the normality of the distribution of variables was
investigated using the Shapiro–Wilk test. The median and
interquartile range (IQR) are used to describe non-parametric
variables, while parametric variables are described with the mean
and standard deviation. To perform Z-score analysis, the global
mean power ratios were compared; if they were found to be
significantly different, regional comparisons were performed
afterward. The 19 EEG channels were reorganized into nine
regions by representing each region with the mean electrode
signal. These regions are the left frontal (Fp1, F3, and F7), right
frontal (Fp2, F4, and F8), frontal (Fp2, F4, F8, Fz, Fp1, F3,
and F7), central (C3, Cz, and C4), left temporal (T3 and T5),
right temporal (T4 and T6), temporal (T4, T6, T3, and T5),
parietal (P3, P4, and Pz), and occipital (O1 and O2) regions.
The permutation-based t-test was utilized to compare microstate
parameters and Z-score power ratios between independent
groups. A p-value less than 0.05 was considered significantly
different. We also used topographic analysis of variance
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(TANOVA) to compare microstate prototypes between groups.
TANOVA is suitable for comparing topographical maps without
polarity considerations because it is performed based on cosine
spatial distance and permutation test (Murray et al., 2008). As
the MIS is ordinal data, we used the Mann–Whitney U-test to
compare the median between groups. The correlations among
MIS, microstate parameters, and Z-score delta/theta ratio were
also calculated using Spearman’s rank order correlation, in which
ρ (rho) >0.5 or <-0.5 was considered a strong correlation (Chan,
2003). If an EEG biomarker for MICS was suggested, logistic
regression or linear regression analysis was utilized to check
the accuracy in predicting MICS by using this biomarker as a
feature. Train-test split validation was performed to calculate the
accuracy. The receiver operating characteristic (ROC) curve was
also plotted to evaluate the performance of the model.

3. RESULTS

Following a recruitment period, fifty participants were enrolled
in this study, but only forty-six were finally included. Three
subjects (all female, two with ESRD-H and one with ESRD-L)
were excluded because their EEG signals were contaminated by
irreparable noise. The last subject, a male with ischemic stroke,
was also excluded. Thus, twenty three subjects were allocated
to each group. The demographic information including general
information, clinical features, and serum chemistry result of the
participants is shown in Table 1. We found that age, dialysis
duration, blood urea nitrogen (BUN), creatinine, and estimated
glomerular filtration rate (eGFR) were not significantly different
between ESRD-H and ESRD-L patients, suggesting that their
EEGs should be comparable.

3.1. Participant MICS Status
After evaluating theMICS status of the participants with theMIS,
we found that the causes of significant differences between the
ESRD-H and ESRD-L groups included the quantity of dietary
intake, gastrointestinal symptoms, loss of subcutaneous fat,
muscle wasting, serum albumin, and TIBC. As seen in Table 2,
the second and third components of theMIS show thatmore than
26% of the high-risk group had slightly decreased appetite and
occasionally felt nauseated. The sixth and seventh components
indicated that more than 75% of ESRD-H patients had mild to
moderate muscle wasting and subcutaneous fat loss. The ninth
and tenth components signified that more than 45% of ESRD-H
patients had low serum albumin (less than 3.4 g/dL) and TIBC
levels (less than 200 µg/dL). The outcome of the blood test also
confirmed the significant difference in serum albumin and iron
(p < 0.04), but TIBC was not significantly different due to
the high deviation in values. The remaining electrolytes were
also not significantly different between groups. Interestingly,
greater proportions of ESRD-H patients had hypoalbuminemia
and hypoironemia than ESRD-L patients (Table 1). The levels
of serum albumin (ρ = −0.628, p < 0.001) and iron (ρ =

−0.317, p < 0.032), BMI (ρ = −0.679, p < 0.001) and weight
(ρ = −0.717, p < 0.001) were also found to be negatively
correlated with the MIS.

3.2. Delta/Theta Ratio in ESRD With MICS
The global delta/theta ratio of the ESRD-H group was lower
than that of the ESRD-L group (t = −2.613, p = 0.011). We
found that all electrode regions exhibited differences between
the ESRD-H and ESRD-L groups (−2.660 ≤ t ≤ −2.151,
0.011 ≤ p ≤ 0.037). Pairwise comparison subsequently
confirmed differences for each electrode (−3.082 ≤ t ≤ −2.092,
0.004 ≤ p ≤ 0.041). Since a Z-score of zero refers to a healthy
control (HC), we compared the Z-score to zero and found a
strong, significant deviation in the delta/theta ratio throughout
both groups as demonstrated in Figure 2A (ESRD-L: −4.795 ≤

t ≤ −2.753, p < 0.009, ESRD-H: −7.247 ≤ t ≤ −3.264,
p < 0.002). An insignificant correlation between the delta/theta
ratio and the MIS was also observed (ρ = −0.302, p = 0.046) as
presented in Figure 2B.

3.3. Microstate Findings in ESRD With
MICS
3.3.1. Microstate Prototype Findings
The microstate prototypes we archived from each subject group
are shown in Figures 3A,B. These prototypes can globally explain
77.47±5.98 and 74.23±5.57% of the selected EEGs of the ESRD-
H and ESRD-L groups, respectively (t = −1.551, p = 0.124).
The average similarities were 65.48 ± 4.23 and 62.34 ± 2.44%,
respectively (t = −1.012, p = 0.318). Using TANOVA, we
found that these patterns were not significantly different between
groups; the p-values for prototypes A to D were 0.120, 0.852,
0.260, and 0.480, and the t-values from the pairwise comparisons
are shown in Figure 3C. Note that we had already adjusted the
phase of each sample before comparing them.

3.3.2. Microstate Parameter Findings
The microstate parameters analyzed in this study were coverage,
duration, and occurrence, as shown in Table 3. We found that all
parameters in ESRD-L were noticeably imbalanced, as microstate
C was the most prominent pattern, overwhelming the remaining
classes; in contrast, microstate D was the least dominant class
in ESRD-H. These findings inspired us to compare parameters
between the ESRD-H and ESRD-L groups. We found that
coverage, duration, and occurrence were significantly different
for most microstate prototypes (p ≤ 0.001); however, microstate
D coverage and occurrence and microstate B duration were not
different between groups. To further analyze the relationship
between the MIS and the parameters of each microstate pattern,
we calculated their correlations and trends. Notably, microstate
D coverage and occurrence and microstate B duration not only
were not significantly different between groups but also were not
significantly correlated with the MIS. Fair to strong correlations
were found for the remaining parameters, as shown in Figure 4

(Negative: −0.75 ≤ ρ ≤ −0.37, Positive: 0.54 ≤ ρ ≤ 0.68,
p < 0.012).

3.3.3. Correlation Between Delta/Theta Ratio and

Microstate Parameters
As mentioned above, the delta/theta ratio was not significantly
correlated with the MIS; however, it was significantly different
between the ESRD-H and ESRD-L groups. Thus, we chose
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TABLE 1 | The demographic information of 46 subjects shows that the weight and BMI of ESRD-L patients were significantly higher than those of ESRD-H patients

(∗p ≤ 0.001), while other parameters were not different between groups, as compared by the permutation-based t-test.

General information ESRD-L ESRD-H

Number of subjects 23 23

Sex (F/M) 16 (69.6) / 7 (30.4) 15 (65.2) / 8 (34.8)

Diabetes (yes/no) 13 (56.5) / 10 (43.5) 14 (60.9) / 9 (39.1)

Handedness (L/R) 5 (21.7) / 18 (78.3) 5 (21.7) / 18 (78.3)

Hypertension (yes/no) 16 (69.6) / 7 (30.4) 16 (69.6) / 7 (30.4)

Hyperlipidemia (yes/no) 7 (30.4) / 16 (69.6) 7 (30.4) / 16 (69.6)

Dialysis (MHD/PD) 10 (43.5) / 13 (56.5) 11 (47.8) / 12 (52.2)

Clinical features ESRD-L ESRD-H t p

Age (years) 57.57 ± 14.88 59.13 ± 11.77 0.396 0.697

Dialysis duration (years) 6.43 ± 7.02 7.56 ± 8.53 0.487 0.635

Weight (kg) 71.74 ± 12.4 54.77 ± 11.3 −4.854 <0.001*

BMI (kg/m2 ) 26.33 ± 3.75 22.26 ± 3.45 −3.834 0.001*

BUN (mg/dL) 41.51 ± 12.25 43.18 ± 18.62 0.358 0.726

Creatinine (mg/dL) 9.01 ± 2.55 8.31 ± 2.97 −0.857 0.406

eGFR (ml/min/1.73 m2) 5.76 ± 1.51 6.14 ± 2.57 0.618 0.558

Serum chemistry ESRD-L ESRD-H t p ⇓ ⇑

Albumin (mg/dL) 4.11 ± 0.5 3.72 ± 0.66 −2.236 0.031* 22 : 61 0 : 0

Calcium (mg/dL) 9.17 ± 1.09 8.94 ± 1.3 −0.655 0.516 35 : 48 17 : 17

Phosphate (mg/dL) 4.57 ± 1.18 4.23 ± 0.85 −1.103 0.276 4 : 4 48 : 52

Sodium (mEq/L) 138.02 ± 3.76 136.86 ± 4.33 −0.971 0.340 13 : 22 26 : 22

Potassium (mEq/L) 4.28 ± 0.67 4.04 ± 0.78 −1.151 0.257 9 : 26 13 : 9

Chloride (mEq/L) 96.47 ± 4.05 95.52 ± 4.3 −0.773 0.451 61 : 65 0 : 0

Bicarbonate (mEq/L) 26.2 ± 2.51 27.25 ± 2.68 1.369 0.177 4 : 0 13 : 22

Iron (µg/dL) 71.81 ± 29.65 54.82 ± 18.12 −2.345 0.012* 35 : 61 4 : 0

TIBC (µg/dL) 219.09 ± 29.69 200.0 ± 47.69 −1.629 0.109 83 : 74 0 : 0

Tf saturation (%) 32.92 ± 12.2 28.6 ± 11.31 −1.245 0.222 22 : 43 22 : 30

Pre-albumin (mg/dL) 34.28 ± 7.79 32.7 ± 7.43 −0.705 0.485 0 : 4 48 : 39

Serum albumin and iron were significantly different between subject groups (∗p < 0.05). To describe general information, the values of dichotomous variables are presented with their

percentages in parentheses (%). The serum components are interpreted as lower (⇓) and higher (⇑) than normal range values and is reported as the percentage of ESRD-L subjects to

the percentage of ESRD-H subjects (%L:%H).

to further investigate the correlations between the microstate
parameters and delta/theta ratio to find some reasonable
explanations for this significant difference. As seen in Figure 5,
we found that the delta/theta ratio was strongly positively
correlated with the duration of eachmicrostate (0.51 ≤ ρ ≤ 0.66,
p < 0.001) and fairly negatively correlated with the occurrences
of A and B and the coverage of B (−0.47 ≤ ρ ≤ −0.32, p < 0.04).
These findings led us to further calculate the correlation between
the average duration of all microstates and the delta/theta ratio.

3.4. Suggested Biomarkers for MICS and
Encephalopathy
After determining the correlation between the MIS and the
microstate parameters, we noticed positive correlations for the
coverage and occurrence of microstates A and B (0.54 ≤ ρ ≤

0.68, p < 0.001) and stronger negative correlations for the
coverage, occurrence, and duration of microstate C (−0.75 ≤

ρ ≤ −0.61, p < 0.001), as seen in Figure 4. These findings

motivated us to find an optimal index that could represent all
malnutrition-related features of the microstates. Consequently,
we proposed the “Malnutrition-Inflammation Cutoff Index”
(MIC index), which combines the significant microstate A and
B parameters (AB index) and C parameters (C index), as shown
in Equations (7)–(9):

ABi =
Z(OccAi +OccBi )+ Z(CovAi + CovBi )

2
(7)

Ci =
Z(OccCi )+ Z(CovCi )+ Z(DurCi )

3
(8)

MICi =
ABi − Ci

2
, (9)

where Occki , Cov
k
i , and Durki represent the occurrence, coverage,

and duration of microstate k (A, B, or C) in the ith subject.
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TABLE 2 | The MIS for questions 2, 3, 6, 7, 8, and 9 was significantly different between groups [median (IQR), ∗p < 0.05].

Question

Score frequency MIS

U1 p
ESRD-L (%) ESRD-H (%)

Low (≤ 5) High (> 5)

0 1 2 3 0 1 2 3

1 0 (0.0, 0.0) 0 (0.0, 0.0) 290.5 0.395

2 100** 70** 30 0 (0.0, 0.0) 0 (0.0, 1.0) 345 0.005*

3 100** 74** 26 0 (0.0, 0.0) 0 (0.0, 0.5) 333.5 0.010*

4 0 (0.0, 0.0) 0 (0.0, 1.0) 322 0.068

5 1 (1.0, 2.0) 1 (1.0, 2.0) 251.5 0.760

6 74** 26 17 61** 22 0 (0.0, 0.5) 1 (1.0, 1.0) 429 <0.001*

7 74** 26 22 52** 26 0 (0.0, 0.5) 1 (1.0, 1.5) 420.5 <0.001*

8 0 (0.0, 0.0) 0 (0.0, 0.0) 310 0.091

9 61** 26 13 39 13 43** 4 0 (0.0, 1.0) 1 (0.0, 2.0) 352 0.038*

10 17 70** 9 4 17 13 57** 13 1 (1.0, 1.0) 2 (1.0, 2.0) 384.5 0.005*

total 4 (3.0, 4.5) 7 (6.0, 9.0) 529 <0.001*

These questions reflect the following respective factors: quantity of dietary intake; gastrointestinal symptoms; loss of subcutaneous fat; muscle wasting; serum albumin; and TIBC. The

score frequencies are shown for the statistically significant questions in percentages, with the highest values labeled by double asterisks (**). The p-value and U1 were calculated by the

Mann–Whitney U-test.

FIGURE 2 | (A) Delta/theta ratio in all regions and channels exhibited significant differences between ESRD-H (orange) and ESRD-L (blue). (The box’s rim: Z-score

mean, whiskers: 95% CI, Topographical maps: Z-score mean and t-value of pairwise comparison). (B) No significant correlation was found between MIS and

delta/theta ratio (Gray: 95% CI, point: Z-score mean, vertical line: SD).

Z indicates the transformation to the Z-score, which relies on
the mean and SD of the population. As seen in Figures 6A–C,
both the C and AB indices were significantly correlated with
the MIS. However, the AB index alone cannot clearly separate
the ESRD-H and ESRD-L groups. The C index can distinguish
between the groups effectively, but it may not be specific for
malnutrition-inflammation because a reduction in microstate
C duration has also been observed in other diseases, such as
head injury, dementia, and Alzheimer’s disease (Nishida et al.,
2013; Khanna et al., 2015; Michel and Koenig, 2018). Thus, we
combined the AB and C indices into the MIC index. We noticed

that a positiveMIC index possibly reflected a high risk ofMICS in
ESRD patients. To confirm this idea, we used the MIC index as a
feature in binary logistic regression and validated it by using the
train-test split method. Based on the data from our 46 subjects,
zero cutoff of this EEG biomarker discriminated ESRD-H (MIS
> 5) and ESRD-L (MIS≤ 5) with 100% accuracy, sensitivity, and
specificity, as shown in Figures 6E,F.

The findings on the correlation between the delta/theta
ratio and duration of each microstate were likewise of interest
(Figure 5). Upon further investigation, we found that the average
duration of all microstates was positively correlated with the
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FIGURE 3 | Phase-independent microstate prototypes characterized by Z-score are orderly demonstrated in the A, B, C, and D patterns of the (A) ESRD-H and

(B) ESRD-L groups. (C) Pairwise comparisons for each channel are represented by t-values (ESRD-H - ESRD-L). No statistically significant differences were observed

in any of the topographic maps. All values are represented by color bars.

TABLE 3 | Significant differences were observed for most prototypes and parameters.

Parameters Class ESRD-H ESRD-L t or U1 p

Coverage (%)

A 28.17 ± 4.57 19.55 ± 5.62 5.58 <0.001*

B 29.63 ± 3.58 19.77 ± 4.59 7.95 <0.001*

C 23.53 ± 4.42 40.76 ± 2.80 −15.44 <0.001*

D 18.67 ± 6.17 19.92 ± 6.52 −0.65 0.525

Duration (ms)

A 84.99 ± 6.84 92.19 ± 5.96 −3.72 0.001*

B 87.09 ± 6.78 90.48 ± 6.81 −1.66 0.107

C 87.46 ± 6.67 106.13 ± 11.97 −6.39 <0.001*

D 81.65 ± 7.48 89.79 ± 6.96 −3.74 0.001*

Occurrence (Hz)

A 3.0 (3.0, 4.0) 2.0 (2.0, 3.0) 469 <0.001*

B 3.0 (3.0, 4.0) 2.0 (2.0, 2.0) 488.5 <0.001*

C 3.0 (2.0, 3.0) 4.0 (4.0, 4.0) 49.5 <0.001*

D 2.0 (2.0, 3.0) 2.0 (2.0, 2.0) 279 0.701

Because occurrence is a discrete parameter, its median was compared by the Mann–Whitney U-test; the permutation-based t-test was used to compare means between the remaining

parameters (∗p < 0.05).
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FIGURE 4 | The correlation between the MIS and microstate parameters in each prototype was obtained by Spearman’s rank order correlation test. With the

exceptions of (D,F,L), the remaining parameters (A–C,E,G,H–K) demonstrated significant correlations with the MIS (Gray: 95% CI, point: Z-score mean, vertical line:

SD).

delta/theta ratio (ρ = 0.708, p < 0.001), as shown in Figure 6D.
Thus, the average microstate duration may correspondingly be
considered an alternative biomarker for encephalopathy.

4. DISCUSSION

4.1. Main Findings Summary and a Conflict
With the Hypothesis
In this study, we aimed to investigate both the delta/theta
ratio and EEG microstates in ESRD-H and ESRD-L patients.
Moreover, we attempted to determine the correlations among the
MIS, delta/theta ratio, and microstate parameters to potentially
clarify their relationships. After thorough investigation and
analysis, we summarize our findings as follows. Subcutaneous
fat loss, muscle wasting, less appetite, and slight gastrointestinal
symptoms were observed in ESRD-H (fairly) and ESRD-L
(slightly). These complications may contribute to the lower BMI
and weight in ESRD-H than in ESRD-L. In addition, iron and
albumin deficiency was found to be associated with a high risk
of MICS, as evaluated by MIS and blood chemistry tests. The
delta/theta ratio was lowest in ESRD-H, followed by ESRD-L
and healthy controls, but it may not be significantly correlated
with the MIS. However, this ratio was strongly correlated
with the individual and average microstate duration. Thus,

we suggest that the average duration of all microstates may
be another encephalopathic biomarker candidate. Furthermore,
we found that the patterns of the microstate prototypes were
not significantly different between ESRD-H and ESRD-L. Most
microstate parameters, however, were different between groups
and were also correlated with the MIS, including the coverage
and occurrence of A and B (strong negative) and all C parameters
(strong positive). By combining these significant parameters, we
developed and proposed the MIC index as an optimal biomarker
for distinguishing ESRD patients at high or low risk of MICS.
This biomarker was evaluated for its classification efficiency by
using it as a feature in a binary logistic regression model. This
classification on our data then yielded 100% accuracy by train-
test split validation and 100% sensitivity and specificity from the
ROC curve.

After considering all our findings, it appears that in one aspect,
our hypothesis may not correct obviously. As hypothesized,
the delta/theta ratio may be correlated with the MIS; however,
we observed a fair correlation (ρ = −0.302), but it was
nearly insignificant (p = 0.046). Although MICS can induce
encephalopathy (Kalantar-Zadeh et al., 2003; Hamed, 2019), this
cerebral complication is a multifactorial disorder; hypertension,
diabetes, uremic toxin accumulation, andmetabolic deterioration
are other potential causes (Britton et al., 2016; Hamed, 2019;
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FIGURE 5 | Strong correlations were obtained between the delta/theta ratio and the duration of each microstate, as seen in (E–H). Fair correlations are shown in

(B,I,J). On the other hand, insignificant correlations were found in (A,C,D). Gray: 95% CI.

Jatupornpoonsub et al., 2021). Therefore, we suggest that the
delta/theta ratio could probably assess encephalopathy in ESRD
patients with high and low risk ofMICS (as we found a significant
difference between ESRD-H and ESRD-L), but this ratio cannot
indicate the severity of MICS specifically.

4.2. Why Could the MIC Index Distinguish
the Risk of MICS in ESRD Patients?
We suggest that microstates A, B, and C, which refer to
the phonological, visual, and salience networks, respectively
(Mantini et al., 2007; Britz et al., 2010; Nishida et al., 2013),
may be the causes of the significant associations observed in
this study, resulting in the formation of the MIC index. In
detail, low BMI, iron deficiency, and hypoalbuminemia have
been suggested to be associated with cognitive impairment and
dementia in aging adults (Llewellyn et al., 2010; Garcia-Ptacek
et al., 2014; Jáuregui-Lobera, 2014), andMICS itself was proposed
to be a cause of cognitive decline (Zheng et al., 2017). A
correlation between cognitive impairment and MIS was also
proposed (Guenzani et al., 2019). These studies jointly implicate
cognitive impairment, which is a cerebral complication involving
neurodegenerative processes. As the severity of cognitive
impairment increases, it may develop into Alzheimer’s disease,
dementia, or frontotemporal dementia (Nishida et al., 2013). An

earlier study found that abnormal functioning of the salience
network, which is located in the anterior insular and dorsal
anterior cingulate cortices, may lead to cognitive impairment
(Menon, 2020); in addition, the phonological network, which
is located in the temporal region, has also exhibited alterations
in cognitive impairment and Alzheimer’s disease (Nishida et al.,
2013; Musaeus et al., 2019, 2020). Therefore, microstates A and C
may be reasonably associated with MICS.

Cognitive impairment, lower appetite, and mild depression
were found to be symptoms of early encephalopathy, which can
be induced by MICS (Kalantar-Zadeh et al., 2003; Hamed, 2019).
Although encephalopathy has a multifactorial pathogenesis, the
delta/theta ratio tends to decrease in severe encephalopathy
of any pathogenic mechanism (Faigle et al., 2013; Kamiya-
Matsuoka and Tummala, 2017; Jatupornpoonsub et al., 2021).
In this study, the correlation between the delta/theta ratio
and the average duration of all microstates indicated that the
average microstate duration may be reduced in more severe
encephalopathy. Another study also found that a reduction in
the average microstate duration was associated with cognitive
decline and depression, which these symptoms also related
to encephalopathy (Khanna et al., 2015). Hence, the average
microstate duration may be considered another alternative
encephalopathic biomarker. The delta/theta ratio is not only
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FIGURE 6 | (A) The MIC index, (B) AB index, and (C) C index were strongly correlated with the MIS. (D) The delta/theta ratio was also strongly correlated with the

average duration. (E) The MIC index, as a feature in binary logistic regression, discriminated ESRD patients at high and low risk of MICS with 100% accuracy by using

train-test split validation. (F) The ROC curve demonstrated a 100% area under the curve (AUC). Gray: 95% CI.

positively correlated with the average duration but also negatively
correlated with the coverage (ρ = −0.32, p < 0.032) and
occurrence (ρ = −0.47, p < 0.001) of microstate B. This
may indicate that these parameters may be higher in severe
encephalopathy. In addition, encephalopathy can induce visual
disturbance in ESRD patients, a condition called posterior
reversible encephalopathy syndrome (PRES) that has previously
been observed by MRI; studies have shown that the typical
origin of abnormalities was the parieto-occipital region of the
brain, which is near the visual network (Kamiya-Matsuoka and
Tummala, 2017; Hamed, 2019). As a result, the alteration in the
coverage and occurrence of microstate B in this study may have
been caused by the visual disturbance in this encephalopathy.
Thus, microstate B may also be reasonably associated with
the MICS. In summary, we suggest that the MIC index could
distinguish the risk of MICS in ESRD patients, as this index
combines features related to encephalopathy and cognitive
impairment, which can be induced by MICS.

4.3. Limitations and Future Works
The following limitations of our work should be considered. First,
the Z-score delta/theta ratio was calculated with NeuroGuide
software (commercial software), which limits our ability to
provide the standard error for normal controls and reduces
the repeatability of our study. The suggestion on the average
duration of microstates as a biomarker needs to be carefully
considered because we solely relied on the delta/theta ratio, which
is an alternative method of encephalopathy assessment (not from

clinical investigation). Although the delta/theta ratio can be used
to evaluate the severity of encephalopathy asmentioned in a prior
study, the proper cutoff value for this ratio in terms of clinical
significance remains unknown. Hence, we also cannot suggest
the cutoff value for the average microstate duration, which may
be considered another limitation and should be addressed in
future studies.

The proposed MIC index also had some limitations. Indeed,
this index can only distinguish ESRD patients at high and low
risk ofMICS (binary classification), but it cannot imply or predict
the severity of MICS as it is not a regression parameter. To
calculate the value of this biomarker, the mean and standard
deviation of the ESRD patient population need to be calculated
at the beginning because it relies on the transformation of
the microstate parameters to Z-scores (Equations 7–9). This
limitation will lead to the database production of microstate
parameters in the future. Although our result indicated that MIC
index could accurately distinguish ESRD subjects with different
risk of MICS, the robustness of this index is still questionable due
to the small sample size of our study. Therefore, we also suggested
to observe MIC index in the larger sample size. Another
consideration regarding the relationship between microstate
B parameters and encephalopathy is that we were unable to
determine the specific causes of encephalopathy that altered these
parameters in the participants. However, we attempted to explain
our findings by using inferences from prior studies and the
delta/theta ratio itself. Therefore, our recommended biomarkers
need to be studied further in clinical practice.
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Another limitation is that we cannot provide menstrual cycle
data of recruited female subjects in this study, which lead to the
consideration in two aspects. Although the effect of menstrual
disturbance on appetite and iron metabolism of ESRD patients
remain inconclusive in the prior study, periovulatory phase of
menstrual cycle can contribute to lower quantity of food intake
in female healthy adult (Strahler et al., 2020). Consequently, it
may affect the second question of MIS and deviate the score to be
either zero or one in our ESRD subjects (normal or slightly less
quantity of food intake). Iron deficiency presented in this study
might also be affected by menstruation (Peinado et al., 2021).
As a result, we suggested that our results should be interpreted
with these considerations. We also recommended to clarify these
effects on ESRD patients in the future study.

5. CONCLUSION

Based on the delta/theta ratio findings in our study, ESRD
participants at high risk of MICS presented with more
severe encephalopathy. Most microstate parameters were also
significantly different between groups. These differences in the
delta/theta ratio and microstate parameters might be caused by
the induction of MICS resulting in cognitive impairment and
encephalopathy. A strong correlation between the delta/theta
ratio and the average duration of microstates was observed;
hence, we suggest that the average microstate duration may be

a candidate encephalopathic biomarker. The strong correlation
between certain microstate parameters and the MIS also inspired
the MIC index as an optimal EEG biomarker for MICS. This
biomarker could accurately distinguish ESRD patients at high
and low risk of MICS in ESRD. Because the MIC index
and average microstate duration relied solely on microstate
parameters and is unlikely to require clinician intervention, we

expect that these biomarkers might potentially contribute to
improve ESRD patient monitoring in the future.
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