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INTRODUCTION

Post-traumatic stress disorder (PTSD), anxiety and depres-
sion are factors that impact our lives and daily tasks.1 Studies 
show that more than 70% of adults experience traumatic events 
may lead to PTSD.2 PTSD symptoms (including: re-experienc-
ing, avoidance of scenes or voices and hyperarousal and hy-
persensitivity to noise or other stimuli)3 occur after traumatic 
events such as car accident, rape and rescued people from 
earthquake may also experience these symptoms.4 These events 
may be associated with injury, pain5 and negative changes in 
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thinking and emotions like anxiety and intrusive memory.6 
Chronic pain in the body may be along with PTSD symp-

toms and understanding the shared mechanisms is integral 
in allowing providers to better serve their patients.7 At the mo-
ment of the traumatic events, endogenous opioids release to 
decrease pain but after several minutes or hours from the event, 
flashbacks are exaggerated along with intrusive thoughts as a 
PTSD symptom.8 Previous studies have shown that morphine 
administration for curing the pain in PTSD individuals is use-
ful for diminishing the PTSD symptoms.9 Due to morphine’s 
negative role in fear memory consolidation, repeated morphine 
injection or administration of morphine 48 hours after trau-
matic events prevent the memory formation of stress.10,11 Mor-
phine increases the brain-derived neurotropic factor (BDNF) 
mRNA in regions like locus coeruleus (LC), medial prefron-
tal cortex (mPFC), ventral tegmental area (VTA) and amyg-
dala.12 As a treatment line, the anti-depressant drugs like se-
lective serotonin reuptake inhibitors (SSRI) that inhibits the 
5-hydroxytryptamine (5-HT) reuptake can activate the opioi-
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dergic system.13 Opioidergic system is affected by mu and delta 
opioid receptors directly by increasing opioid release and sup-
pressing the nociception transmission. However, these events 
are surprisingly reversed by naloxone and naltrindole.14 Nal-
oxone- a mixed opioid antagonist- has an affinity for mu-opi-
oid (MOP), delta-opioid (DOP) and kappa-opioid (KOP) re-
ceptors but it is more effective on mu and delta opioid receptors 
compared to kappa. It does not have an effect on nociceptin/
orphanin FQ (NOP) receptors.15,16 As a result, it is claimed that 
naloxone has a positive effect on the itching that is induced 
by opioid or as a controller of opioid addiction. In another 
point of view, it can be advantageous in pain and PTSD signs’ 
relief.17 Endorphin withdrawal effects and emotional numb-
ing will disappear after naltrexone injection in rats that have 
perceived the inescapable shock as a model of PTSD.18 Petra-
kis et al.,14 have shown that naltrexone alone or in coupling with 
SSRI anti-depressant is a good drug for modulating PTSD 
symptoms.  Other studies have revealed that naloxone sensi-
tizes rats to the mechanical and cold stressor in a chronic pain 
model.19 In an experiment by Berna et al.,20 individuals ex-
posed to burning heat showed analgesic reactions in the pres-
ence of naloxone, while the endogenous opioid system was 
activated. They reported that blocking endogenous opioid 
signaling with naloxone did not significantly affect imagery-
induced regulation of pain intensity.20 Their findings indicated 
that analgesia is independent from opioid modulation system. 

Naloxone as an opioidergic antagonist has a reciprocal ef-
fect on pain. It can block the mu-opioid receptor and partially 
antagonize the stress-induced analgesia that happens through 
endogenous opioid system in descending pain modulating 
pathway. The effect of the endogenous opioidergic system 
and opioidergic antagonist system as a mediator in PTSD pa-
tients is not clearly revealed. In this narrative review, a brief 
evaluation of PTSD mutual maintenance with pain is studied. 
The effect of endorphins, morphine as an agonist and nalox-
one as an antagonist in PTSD symptoms and associated pain 
is also investigated. In this way, maybe a window will open 
for psychiatrists or researchers to investigate certain drugs or 
ways to cure the PTSD symptoms and associated pain. 

METHODS 

This narrative review was done by a full-scale searching 
about protagonist role of opioidergic system on PTSD and as-
sociated pain in Google Scholar, Scopus, ScienceDirect, Web 
of Science and PubMed databases as well as hand searching 
in key resource journals (1979–2019). We manually screened 
the obtained articles and aimed at identifying original papers 
and reviews with a particular focus on PTSD, pain and opi-
oidergic system. The search terms applicable to the literature 

search process were: “PTSD,” “pain,” “acute pain,” “chronic 
pain,” “opioid agonist and antagonist,” “opioidergic system” 
and “opioid receptors”. Besides, we used only English original 
articles that found to be the most appropriate in the field of 
opioidergic system effect on PTSD and associated pain. Even 
though this article tries to discuss and reveal the hidden sides 
of the supporting role of opioidergic system on PTSD and as-
sociated pain. It doesn’t mean that it is a full-scale review that 
is covering all factors that have an effect on literature topic. 
We only discuss the studies that have information around the 
protagonist role of opioidergic system on PTSD and associ-
ated pain. 

PTSD AND THE EFFECT OF 
ENDOGENOUS AND 
EXOGENOUS OPIOIDS 

PTSD, symptoms and PTSD models
According to DSM-IV, PTSD is an anxiety disorder that 

may develop whenever a person is exposed to a traumatic 
event such as physical invasiveness, unexpected death of loved 
ones, war, terroristic attacks, sexual violence, natural disasters 
like flood, earthquake, avalanche and car accidents or airplane 
crash.4 PTSD is defined by three classes of symptoms includ-
ing re-experiencing (nightmare, intrusive memory or inter-
rupted scenes from the event), avoidance (staying away from 
talking about trauma, avoiding social activity, being hopeless 
about future) and hypersensitivity (hypervigilance, acoustic 
startle, concentration deficiency).4 PTSD will be diagnosed if 
these symptoms are present for a period of one or more than 
one month. PTSD categorizes into three orders of acute, chron-
ic and delayed according to the onset time.2 When the symp-
toms exist between 1 to 3 months, the PTSD is acute and when 
the symptoms exist at least three months, it will be chronic. 
There is at least 6 months interval between events and the ini-
tiation of PTSD in delayed onset order.2 According to the last 
analysis, among children and adolescence, PTSD rate is 15.9%.21 

The side effects of PTSD are sleep deficiency, irritability or 
appearance of anger, difficulty to concentrate and exaggerated 
startle response.22 Depression and inability are also the PTSD 
symptoms23 and cytokines and neurotransmitters are implicated 
in PTSD symptoms appearing. The pro-inflammatory cyto-
kines such as interleukin-1β (IL-1β), IL-6 and tumor necrosis 
factor (TNF-α) is increased in depression but anti-inflammato-
ry like IL-10 is elevated in anxiety.24 BDNF augmentation has 
an important role in beginning of PTSD and increasing the 
arousal responses.12 LC neural activity and norepinephrine re-
lease increase in PTSD.25,26 Chronic stress may also lead to 
hypothalamus-pituitary adrenal (HPA) axis dysfunction that 
contributes to major depressive disorders.27,28 Studies indicat-
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ed that PTSD enhances the corticosterone negative feedback 
axis at day 28 after single-prolong stress (SPS) as a model of 
PTSD and decreases the corticosterone concentration.29 In 
stress situations, corticotropin-releasing factor (CRF) also 
can activate the LC for norepinephrine release.30,31 The atten-
uated cortisol by HPA axis negative feedback may decrease 
the catecholamine that leads to consolidation of the PTSD 
traumatic memory.32 The brain regions like amygdala, medial 
prefrontal cortex (mPFC) and hippocampus have shown mor-
phological changes in SPS rats.33 Jovanovic and Norrholm,34 
showed that connections between amygdala and medial pre-
frontal cortex were disrupted in subjects undergoing chronic 
social stress as a model of PTSD. Animal models of PTSD 
can be induced by repeated stress such as restrainer, expo-
sure to the predator (like a cat), forced swim stress,35 inescap-
able or escapable electrical shocks, the odor of predator (cat 
or cat urine) and the long-time consecutive stress such as SPS 
and Chronic Acute-Prolong Stress (CAPS).36 In SPS model, 
the animals kept in restrainer for 2 hours and then immediate-
ly force to swim for 20 minutes. They will rest for 15 minutes 
and then they completely anesthetize with diethyl ether. After 
the animals recover from anesthetization, they will be isolated 
in separate cages for 7 days.37 For CAPS model, animal will 
face chronic cold stress (4 centigrade degrees, 6 hours in day 
for 14 days), and on day 15, they will undergo the acute stress 
for one hour followed by isolation (20 minute). Then they will 
restraint for 30 minute and force to swim (10 minute).38

The effect of endogenous and exogenous opioids on 
PTSD

At the start of traumatic events beta- endorphin as an en-
dogenous opioid increases and helps the individual not to 
experience emotional sensation. When the trauma is finished, 
release of beta-endorphin decreases and withdrawal effect of 
beta-endorphin leads to emotional stress and other symptoms 
of PTSD.39 Nuller et al.,40 have shown naloxone reduced the 
depersonalization and de-realization symptoms of PTSD. In 
another situation, naloxone increased the struggling and stress 
responses in restrained PTSD cats.41 Because of the effects of 
the two endogenous factors like corticotropin-releasing factor 
(CRF) and dynorphin on KOP receptors, these receptors have 
a role in fear and stress behaviors.42 PTSD symptoms have 
decreased by buprenorphine/naloxone effects on KOP recep-
tors in duration of the 24 month in PTSD patients.43 Henry et 
al.,44 have shown that in social defeated mice, enkephalin as 
an endogenous opioid, has a role in stress resilience and sen-
sitization to PTSD symptoms through DOP receptors.  

In stress circumstances, LC activation leads to arousal and 
anxiety state.45 Endogenous opioid that is released in the time 
of SPS can decrease the LC activity and norepinephrine re-

lease.46 Therefore, both of the cortisol reduction and endoge-
nous opioid release will synchronize in consolidating the trau-
matic memory. Morphine administration to SPS rats as an 
exogenous opioid reduces the stress-enhanced fear learning.11 
Zomkowski et al.,47 showed that morphine injection in forced 
swim test, reduced the time of immobility as a fear reaction 
but naloxone injection as a pretreatment reversed these results. 
In restraint stress, naloxone increased the firing rate of LC 
neurons in cats.41 Valentino and Wehby reported that naltrex-
one alone or in morphine dependent rats increased the locus 
ceorelus (LC) activity.48 

An animal study suggested that morphine injection before 
traumatic events is not effective in preventing the appearance 
of PTSD symptoms but morphine injection after trauma de-
creased the possibility of PTSD occurrence.49 Due to morphine 
half- life and appearance of SPS symptoms 7–14 days after 
SPS induction,50 it seems morphine injection 24 hours after SPS 
exhibits a stronger effect on reduction of SPS symptoms.51 
Naloxone injection to opioid dependent rats with social de-
feated stress has reduced opioid withdrawal signs.52 Pitman 
et al.,53 have shown that when the combat soldiers watch the 
scenes of war after injection of naloxone, the analgesic effects 
did not return back to them. Continues cold water swimming 
induces analgesia that is reversed by high dosage of naloxone 
and this effect may be related to non-opioid analgesia phe-
nomena and independent of endogenous opioid.54 It suppos-
es that analgesia is followed by intermittent cold swim stress 
could be mediated by endogenous opioid system and antago-
nized by naltrexone.54 In rats exposed to foot shock stress for 
a short time (intermittent), stress induced analgesia (SIA) ex-
erted the effects by descending modulatory pain pathway.55 
But foot shock stress for a long time induced the non-opioid 
analgesia as another type of SIA.56 However, under these cir-
cumstances (foot-shock) the morphine administration could 
decrease the nociceptive response via few mu-opioid receptors 
and other endogenous receptors (delta and kappa),55 that is 
why we cannot claim that this phenomenon is mediated by 
non-opioid mechanisms. In predator stress or its odorant on 
mice, the endogenous opioid analgesia or non-opioid analge-
sia is involved.57

PAIN AND THE EFFECT OF 
ENDOGENOUS OR 
EXOGENOUS OPIOIDS ON IT 

Acute pain, chronic pain and pain models
Pain as a stressor alarms the physical threats in format of 

signals that incite some responses such as arousal, autonomous 
system activity and avoidance behavior changes.58 Experience 
of previous pain, culture, age and emotional factors like plea-
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sure, sadness, horror, thrill, beliefs and attitudes can affect pain 
responses.59 Based on duration, pain is categorized into two 
types; acute and chronic.60 Acute pain is a conservative mech-
anism that alarms the body from imminent important dan-
ger.61 Acute pain is a normal physiologic response to chemi-
cal, mechanical and thermal stimuli that are associated with 
trauma, surgery and diseases.62 It may persist for less than 1 
month.63 Tissue destruction that provokes the immunologic 
and inflammation (monoamine, cytokine, prostanoids, and 
peptide) responses,64 stimulates the A and C sensory fibers and 
conveys the nociceptive message from somatic and visceral 
organ to the cortical and subcortical structures (limbic and 
thalamus).65 In chronic diseases like arthritis and cancer, re-
lease of inflammation factors are increased and interfere with 
acute pain.65 So, if the pain suppression responses are not pres-
ent in our body, a little damage can lead to a chronic pain.65 The 
chronic pain is defined as a kind of pain that involves one or 
more regions in the body and it usually can’t be localized.66 It 
lasts for more than 3 or 6 months and it takes a lot of time and 
effort to cure the pain.67 Studies show that chronic pain will be 
back after months or years, it does not follow any biological 
aim and also it is associated with continuous psychic changes 
like social, emotional, mental and physical stress.67 This pain 
is characterized with weak responses to medicine and causes 
inability in a person’s life.68 About 20% of the worldwide pop-
ulation suffer from chronic pain.69 

There are animal models of acute and chronic pain which 
give us further information about pain mechanisms and pos-
sible ways to cure it. Carrageenan, complete Freund’s adjuvant 
and formalin are substances with the potential of inducing in-
flammation and pain via injection in animals like rat, mouse, 
guinea pig, cat and mammals.70-72 These substances have a fo-
cus on food pad and vibrissae pad of rats. Carrageenan and 
complete Freund’s adjuvant induce 5 local signs of inflamma-
tion including hypersensitivity, redness, swelling, heat, and 
loss of function in vibrissae pad or footpad of rats.73 Carra-
geenan has neurogenic and non-neurogenic (inflammatory) 
effects similar to formalin.74 Studies show that the carrageen-
an can be involved in heat-hyperalgesia and may participate 
in mechanical hyperalgesia.75 In heat pain stimulation, the ros-
tral anterior cingulate cortex (rACC), the binding site for opi-
oids, has exhibited changes in PET scan images.76 The acute 
inflammatory pain appears after 2 or 7 days after injection of 
complete Freund’s adjuvant in hind paw of rats and the chronic 
inflammatory pain appears in 28 days by increasing the tran-
sient receptor potential vanilloid-1 (TRPV1) protein expres-
sion in dorsal root ganglion (DRG).77 Several stimuli can open 
TRPV1 and the ionic influx from this channel may change to 
the action potential and chronic pain sensation.78 Formalin 
activates the TRPV1 on sensory neurons which leads to cal-

cium entry and action potential induction that is interpreted 
as formalin pain.78 It seems that the cause of acute phase is the 
peripheral stimuli and the chronic phase is due to the inflam-
matory factors that aggregate in the site of formalin injection 
and central sensitization that happens in dorsal root horn.79 

The effect of endogenous or exogenous opioids on 
pain

The endogenous opioid is an index of susceptibility to pain.80 
Genetic and other factors determine that pain is a resilience 
or augmented process.81 The endogenous opioid system has 
neurons in central and peripheral nervous system that exert 
an analgesic effect on pain input at dorsal horn of spinal cord, 
facial region, osteoarthritis, gastrointestinal tract (GI).82-85 Pre-
vious studies have shown that the opioids are the medication 
for curing acute pain such as trauma pain, surgical pain, labor 
pain and chronic pain which includes cancer pain or non-can-
cer pain.86 The classical endogenous opioids including beta-
endorphin, leu-enkephalin, met-enkephalin, dynorphin and 
Nociceptin/Orphanin FQ (N/OFQ) act through MOR (μ), 
DOR (δ), KOR (κ) and NOP opioid receptors respectively.87 
In addition to those common opioids, endomorphine-1 that 
is located in the brain and endomorphine-2 that is located in 
dorsal horn of spinal cord and medulla have been isolated from 
bovine and human brain and have an affinity for mu-opioid 
receptor.88-90 Deficiency of endorphin in descending pain in-
hibitory pathway has been seen in fibromyalgia.85 Exogenous 
opioids such as morphine, diamorphine, methadone, codeine 
and fentanyl are classified into agonist substances that affect 
MOR.91 Pain ascending pathway (Figure 1) sends the pain 
information from dorsal spinal cord to amygdala, periaque-
ductal-gray matter (PAG) and rostro-ventromedial medulla 
(RVM).92 Descending pain modulatory circuit that originates 
from hypothalamus, amygdala, and rACC, send their projec-
tion to periaqueductal gray matter (PAG).93 Projections from 
PAG feed the rostro ventromedial medulla (RVM), nucleus 
raphe magnus and nucleus reticularis gigantocellularis.93 RVM 
has on-cell, off-cell and serotoninergic neurons.94 On-cell’s neu-
rons discharge increases in response to superficial stimuli in-
put at dorsal horn of spinal cord but off-cells act in an opposite 
manner.94 From RVM, 5-HT neurons project to dorsal horn of 
spinal cord and activate the enkephalin neurons of this area for 
suppressing the pain afferent neurons.84 Most of RVM neurons 
are GABAergic and glycinergic for suppressing the pain inputs 
at dorsal horn of spinal cord. Serotoninergic neurons from this 
area have dual modulatory and facilitator effects.95 Ossipov et 
al,93 showed that opioids injection into PAG disinhibited off-
cells and directly inhibited on-cell firing of RVM. In another 
pathway, γ-amino butyric acid neurons of RVM inhibit the 
PAG anti-nociceptive efferent neurons.96 After morphine in-



510  Psychiatry Investig  2020;17(6):506-516

PTSD, Pain and Opioidergic System

jection, PAG neurons will be activated and then 5-HT neurons 
of RVM are excited.97 5-HT neurons in turn activate the en-
kephalin neurons of dorsal horn and block the pain messages 
that enter via nociceptive afferent neurons.97 Morphine ad-
ministration disinhibits the afferent GABA neurons to PAG 
via the mu opioid receptors (MOR) that exist in this area and 
stimulate the 5-HT neurons in the descending inhibitory path-
way to the spinal cord.98 In dorsal horn of spinal cord, CRF 
acts through CRF1 receptors and activates the GABA neu-
rons and inhibit the 5-HT secretion indirectly.96,99 Projection 
of RVM or PAG neurons to LC may exert an inhibition on pre-
synaptic or post-synaptic neurons of dorsal spinal cord noci-
ceptive neurons.94 The facial input also projects to RVM and 
then transmits to PAG via gracilis and cuneatus nuclei of me-
dulla oblongata, and then RVM sends the inhibitory informa-
tion to the trigeminal complex in the spinal cord.100 On the 
other hand, there is a connection between rACC and PAG and 
naloxone blocks mu-opioid receptors in these areas.101 In spite 
of naloxone antagonist properties on mu-opioid receptors and 
reversing the analgesic effect, in some diseases- like fibromy-
algia as a kind of chronic pain- 4.5 mg naltrexone reduced this 
pain by increasing the threshold of pain in subjects.102 Studies 
indicated that mu and delta-opioid agonist have a role in mod-
ulating the pain sensory in dorsal horn of spinal cord by inhib-
iting glutamate release from neurons of spinal dorsal horn.103 
In heat pain and mechanical pain as an acute pain, because 
of the presence of the MOP and DOP receptors in afferent ter-
minals of dorsal horn, DRG and dorsal horn, MOP and DOP 
agonists are useful for relieving the heat pain and mechanical 

pain respectively.104 MOP receptor’s availability in DRG or no-
dose ganglia are responsible for agonist’s impression in these 
regions.104 In chronic pain, the presence of mu-opioid recep-
tors in central and peripheral primary afferent neurons is the 
cause of hyperalgesia inhibition.105 In neuropathic pain that 
originates from spinal cord injury, the NOP, DOP, MOP, and 
KOP receptor agonists decreased the hypersensitivity to the 
pain but naloxone (1 mg/kg) and naltrindole (10 mg/kg) in-
creased this type of pain.106 Down regulation of mu-opioid re-
ceptors in rat spinal cord and dorsal root ganglion have been 
observed a few weeks after the spinal cord injury.107 PET scan 
study also has shown the changes in delta and kappa recep-
tors in this pain.108 The nitric oxide (NO) inhibitor could have 
elevated the effects of MOP, DOP and KOP receptors’ agonists 
on the acute and chronic pain.109 

The Linkage between amygdala and dorsal lateral prefrontal 
cortex (DLPFC), has an essential role in emotional modula-
tion of functions for achieving a goal or avoidance from pun-
ishment.110 DLPFC has a role in cognitive function, working 
memory, decision making and pain.111 DLPFC and rACC are 
active during the first phase of pain but hypothalamus, PAG 
and RVM are active during first and second phases of pain.101 
Repeated intrathecal morphine injection (5 mg/mL) released 
the pro-inflammatory cytokines like IL-1β, IL-6 and TNF-α 
that is aggregated in the body112,113 and contributes in hyperal-
gesia and allodynia.114 On the other hand, Grabow and Dough-
erty,115 showed that intrathecal injection of morphine before 
orofacial formalin test, reduced pain in both phases of forma-
lin test in rats. They reported that naloxone (10 μg) increased 
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Figure 1. Schematic diagrams of ascending and descending pain pathways. Afferent neurons of nociception in ascending pain pathway 
transmit from spinal cord to the amygdala, rostro ventromedial medulla (RVM) and periaqueductal gray matter (PAG). The pathways that 
originate from amygdala, hypothalamus and rostral anterior cingulated cortex (rACC) send their projections to PAG and they are related to 
emotional content. Also, Locus coeruleus (LC) received the RVM projections. In reverse pathway or descending pain pathway, dorsolateral 
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RVM and LC. LC in turn projects to spinal cord for suppressing the pain message. RVM also, sends the neurons to spinal cord for inhibiting 
the nociceptive neuron. 
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pain in phase-1 and reduced pain in phase-2 of formalin test. 
Other investigations indicated that naloxone in low dosage 
(picogram, s.c.) had an anti-nociceptive effect in two phases 
of formalin test by binding to classical opioidergic receptors.116 
Naloxone reduced the mechanical threshold in allodynia test 
in transgenic mouse model of Alzheimer’s disease.82 In Spinal 
cord injured rats that were bothered by pain, the endogenous 
opioidergic system was activated but naloxone blocked mu-
receptors and rats showed mechanical and cold allodynia re-
sponses.117 

However, there are a few contradictions regarding different 
roles of opioidergic system and their antagonist in pain con-
trol and mood in PTSD. So, further investigations need to be 
done in order to reveal the role of opioidergic system in PTSD 
patients suffering from acute or chronic pain.

HOW IS THE MUTUAL MAINTENANCE 
RELATION BETWEEN PTSD AND PAIN?

An important relationship exists between PTSD and pain. 
Increased intensity of one can lead to enhancements in the 
other.5 Something that connects these two problems together 
is depression and inability as a sign of PTSD.118 Both of them 
enhance the PTSD and pain.119 There is comorbidity between 
PTSD and chronic pain.120 Patients with chronic pain have 
avoidance behaviors in risky conditions.120 Following chronic 
swim stress, Nazeri et al.,121 showed there is a relationship be-
tween thermal hyperalgesia with passive avoidance task im-
pairments and increased locomotion. PTSD may mediate the 
initiation and exacerbate the headache pain such as migraine 
pain.122,123 The breast cancer survivals are the cases that have 
susceptibility for revealing the PTSD symptoms.124 PTSD is 
prevalent in fibromyalgia and it increases this type of pain but 
it doesn’t occur in dyspepsia.125 An animal study showed that 
the acute restrained stress did not show any changes in Tem-
poromandibular Joint (TMJ) formalin test but chronic restrain-
er stress increased the pain response in this region.126 Gameiro 
et al.126 showed that morphine injection in restrained rats pri-
or to formalin test decreased the pain but it did not show any 
significant difference in pain response compared to control in 
the rat. It seems pain and PTSD are conditions that commonly 
co-occur and further research is required to find treatment 
protocols and more effective assessment for use when they 
co-occur.

CONCLUSION 

PTSD increases pain, and chronic pain exacerbates the symp-
toms of PTSD. Beta-endorphins in stress condition including 
the moment of traumatic stress, in duration and end of it exag-

gerate the symptoms of PTSD, and morphine as a therapeutic 
line can dampen PTSD symptoms in some patients. On the 
other hand, sometimes, morphine injection doesn’t have this 
effect and the pain becomes worse in the PTSD while nalox-
one has a reverse effect and the pain and symptoms of PTSD 
become better. Hence, it seems both of the endogenous opioi-
dergic and opioidergic antagonist systems are effective in pain 
reduction (Table 1). The role of opioidergic system in pain con-
trol and PTSD is suggested based on available data, however, 
data from these studies require more comprehensive studies, 
which are essential to empirically test whether endogenous opi-
oidergic are involved in pain and PTSD symptoms, and to de-
termine mechanisms of action for endogenous opioidergic in 
regulation of affect. 
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