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The chemoselective hydrogenation of cinnamaldehyde (CAL) to the corresponding

hydrocinamaldehyde (HCAL) is a type of important reactions in fine chemistry,

which is critically dependent on the rational design the chemical structure of active

metal. In this work, calcium promoted palladium on CNT hybrid (Ca-Pd@CNT) with

monolithic structure was synthesized through one-pot alginate gel process. The catalytic

performance results showed that moderate Ca promotion catalyst (Ca-Pd@CNTHCl−2h)

present a superior CAL hydrogenation activity with CAL conversion of 99.9% and

HCAL selectivity of 86.4% even at the lager Pd nanoparticle size (c.a. 5 nm). The

characterization results show that the electron transfer between the additive Ca promoter

and Pd nanoparticles (NPs) could modify the electron structure of Pd species and induce

the formation of the partial positively charged Pdδ+ species on the Pd NPs surface

in the Ca-Pd@CNTHCl−2h catalyst resulting to the satisfactory catalytic performance.

Furthermore, the one-pot gel synthesis methodology for microscopic carbon supported

catalyst could also endows its great potential industry application in heterogeneous

catalysis with easily handling during the transportation and reaction, and attributed to

reducing the overall pressure drop across in the fix-bed reactor.

Keywords: Pd nanoparticles, Ca promoter, electronic modification, cinnamaldehyde hydrogenation, monolithic

nanocarbon materials

INTRODUCTION

Catalytically selective hydrogenation of α, β-unsaturated aldehydes via C=O or C=C bond to
α, β-unsaturated alcohols or saturated aldehydes is considered as an important fine chemical
process for producing intermediates for food additives and pharmaceuticals (Gallezot and Richard,
1998; Mäki-Arvela et al., 2005; Wu et al., 2012; Daly et al., 2014; Kahsar et al., 2014; Tian
et al., 2015). However, the C=C and C=O bond are conjugated in the typical substrate of α,
β-unsaturated aldehydes-cinnamaldehyde (CAL), which result in a mixture of hydrogenation
products such as cinnamyl alcohol (COL), hydrocinnamaldehyde (HCAL), and 3-phenyl propanol
(PPL). Palladium-based catalyst is favor to C=C hydrogenation due to its special position
of d-band center. Therefore, Pd could work as the active metal center for hydrogenation of
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CAL to produce the HCAL (Garcia-Mota et al., 2010; Ide
et al., 2012; Cárdenas-Lizana et al., 2013; Arrigo et al., 2014;
Salnikov et al., 2014; Durndell et al., 2015; Zhao et al., 2015).
Tailoring the electronic structure of Pd active sites through
adjustment surface chemistry of catalyst support (Balmes et al.,
2012; Cárdenas-Lizana et al., 2013; Figueiredo, 2013; Arrigo et al.,
2016; Rao et al., 2017), construction of the bimetallic or alloy
composition (Vu et al., 2006; Tsang et al., 2008), regulation
of the particle size (Amorim and Keane, 2008; Jiang et al.,
2016; Xu et al., 2019) and the addiction of promoter (Tsang
et al., 2008) could promote the CAL hydrogenation activity
as well as the HCAL selectivity (Toebes, 2004; Jiang et al.,
2016). The alkalis and alkaline-earth metals, such as Li, Na,
K, Rb, and Sr, are reported as effective promoter cations for
CAL hydrogenation (Galvagno et al., 1986; Li et al., 1997; Hsu
et al., 2010; Bhogeswararao and Srinivas, 2012), which could
increase the HCAL selectivity. Furthermore, alkalis and alkaline-
earth metals as promoter could also modify the coordination
environment around the noble metal atom through charge
transfer between the active metal and the promoter, even forming
new catalyst sites and thus regulating the catalytic properties
(Song et al., 2006). Yang et al. (2017) found that the controlled
addition of potassium with Pt/zeolite catalysts can create the Pt-
O (OH)-K interfacial sites, which could greatly accelerated the
reverse water gas shift reaction.Wei et al. (2017) also prepared Na
cations modified the Pt/FeOx catalyst and the formed Pt-O-Na-
O-Fe-like species could enhance the 3-aminostyrene selectivity
significantly while the hydrogenation activity of 3-nitrostyrene
remained unchanged. Considering the alkalis metal can act as
the electronic modifiers, we proposed to regulate the activity
and selectivity of cinnamaldehyde hydrogenation by controllable
introducing Ca to modify the Pd-based catalyst and investigate
the influence of calcium promoter. Meanwhile, the reaction rate
could also be reduced due to the blocking or poisoning the active
sites with inappropriate loading amount of Ca (Yang et al., 2017).

Compared to conventional metal oxides, carbon is an inert
support, which can be used as a platform to disperse and study
the changes of electronic state of metals (Auer et al., 1998;
Su et al., 2013). Carbon nanotubes (CNT) are widely used in
heterogeneous catalysis due to their chemical stability, low cost,
and easily recovery of precious metals by means of combustion
and other special properties in recent years C (Arrigo et al., 2012;
Gao et al., 2018; Zhu et al., 2019). However, it is difficult to
separate CNT supported catalysts after the liquid reaction due
to its original powder form. Therefore, a macroscopic shaped
CNT-based catalyst would facilitate the catalyst separating and
handling which present a great potential either in the liquid phase
and gas phase heterogeneous catalytic reactions (Liu et al., 2013,
2017; Ba et al., 2017; García-Bordejé et al., 2017).

In this work, monolithic CNT supported Pd catalyst is
synthesized by one-pot process via combined palladium nitrate,
CNT and alginate solution. During the synthesis process, the
alginate played as biopolymer template to form alginate gel in
the presence of CaCl2 solution with a homogeneous size and
macroscopic shape. The obtained monolithic Ca-Pd@CNT beads
with different Ca promoter concentration were employed as
catalyst for the hydrogenation of CAL to HCAL. The monolithic

structural carbon-based catalysts could be easily separated from
the liquid reactant and thus facilitates the catalysts recycling.
The structural and electronic properties of such monolithic
Ca-Pd@CNT catalyst are analyzed by different characterization
techniques to understand the structure-activity relationship in
the presence of Ca promoter.

EXPERIMENTAL SECTION

Materials
The commercial multi-walled carbon nanotubes (CNT)were pre-
treated by hydrochloric acid (6 mol/L) at room temperature for
12 h in order to remove residual metal impurities. CaCl2, alginate
and hydrochloric acid were purchased from Tianjin Kemiou
Chemical Reagent Co., Ltd. (Tianjin, China). Pd (NO3)2 · 2H2O
was purchased from Alfa Aesar. All chemical agents were used as
received without further purification.

Catalyst Preparation
Macroscopic shaped CNT beads (Liu et al., 2012; Ba et al.,
2016):1 g of CNT was dispersed in 50mL distilled water and
treated by ultrasonic (400W) for 60min at room temperature.
Then the mixture was heated to 50◦C and maintained at this
temperature for 10min before a certain amount of alginate (1
wt.% with respect to the H2O) was slowly added to the above
mixture. The suspension was kept stirring under vigorous speed
(500 rpm) at 50◦C for another 50min in order to obtain a
homogeneous mixture. To form the gel beads, the mixture was
added dropwise into an aqueous CaCl2 (3 wt.%) solution at
room temperature. The gel beads were left into CaCl2 aqueous
overnight, and then the gel beads were separated andwashed with
distilled water to remove excess sodium and calcium ions. The gel
beads were dried under vacuum overnight and calcined at 350◦C
under argon for 2 h with the ramp of 2◦C/min.

Ca-Pd@CNTHCl−x (x= 0, 2, 4) catalysts: Macroscopic shaped
catalysts with 1 wt.% Pd loadings was synthesized by an in-
situ process which was similar with aforementioned preparation
method shown in Figure 1. Typically, the Pd(NO3)2·2H2O was
added into the CNT-containing suspension accompanied with
the alginate. The gel beads were dried under vacuum and then
calcined at 350◦C under argon for 2 h with the ramp of 2◦C/min
to obtain the Ca-Pd@CNT sample. The as-synthesized Ca-
Pd@CNT sample was reduced under pure H2 at 400◦C for 2 h.
Furthermore, to investigate the influence of Ca promoter on the
catalytic performance, the Ca-Pd@CNT sample was treated in
dilute hydrochloric acid (1 mol/L) at room temperature for 2 and
4 h, respectively. HCl washed Ca-Pd@CNT sample were denoted
as Ca-Pd@CNTHCl−2h and Ca-Pd@CNTHCl−4h, respectively.

Pd/AC, Pd/CNT and macroscopic shaped Ca-Pd/CNT
catalyst: A certain amount of Pd(NO3)2 solution was added
into the active carbon (AC), powdered CNT and as-prepared
CNT beads by wetness impregnation method. The samples
were also dried under vacuum and calcined at 350◦C under
argon for 2 h with the ramp of 2◦C/min, and then reduced
under pure H2 at 400◦C for 2 h before the CAL chemoselsctive
hydrogenation reaction.
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FIGURE 1 | Schematic illustration of in-situ gel methodology for the synthesis of macroscopic shaped of Ca-Pd@CNT beads with Ca promoter.

TABLE 1 | Specific surface area from N2 adsorption-desorption isotherms,

exactly Pd, Na, and Ca mass loading and catalytic performance in selective

hydrogenation of CALa.

Catalyst SAA

(m2/g)

Pd

(wt.%)b
Ca

(wt.%)b
Na

(wt.%)b
dTEM
(nm)

CAL

conversion

(%)b

HCAL

selectivity

(%)

Pd/CNT 170 0.74 0 – 5.5 40.3 75.8

Ca-Pd@CNT 209 0.92 4.33 0.0308 4.7 63.8 86.5

Ca-

Pd@CNTHCl−2h

248 0.97 0.28 n.a.c 4.9 99.9 86.4

Ca-

Pd@CNTHCl−4h

303 0.93 0.06 – 4.9 92.1 86.5

aReaction conditions: 10 bar H2, 80
◦C, 30mg of catalyst, 5ml 0.45 mol/L reaction

mixture, dioxane as solvent, o-xylene as internal standard, reaction time: 30 min.
bThe actual mass loading of Pd and Ca (wt.%) on the various Ca-Pd@CNT catalysts were

determined by ICP-OES.
cNot available.

Characterization
The morphology and compositions measurements were
performed using a scanning electron microscopy (SEM)
instrument (JSM-7800F, Japan), elemental mapping was
operated on JSM-7800F with probe corrector at 15 kV.
The textural properties of the samples were analyzed by N2

adsorption-desorption measurements using a Micromeritics
ASAP 2020 plus sorptometer operated at −196◦C. The samples
were degassed under vacuum at 180◦C for 6 h before the analysis
in order to desorb moisture and adsorbed volatile species on
the sample surface. The specific surface area was calculated
according to Brunauer-Emmett-Teller (BET) method. Pore
volume and average pore diameter were determined from using
desorption branch by Barret-Joyner-Halenda (BJH) method.
Inductively coupled plasma optical emission spectrometer (ICP-
OES) was used to measure Pd and Ca element concentration
by an IRIS Intrepid II XSP instrument. The particle size was
obtained through using Transmission electron microscopy
(TEM) technology which was performed on Titan Themis ETEM
G3 (Thermofisher) with image corrector operating at 300 kV.
High angle annular dark filed scanning TEM (HAADF-STEM)

and elemental mapping were operated on Hitachi HF5000 with
probe corrector at 200 kV. A small amount catalyst was crushed
and ultrasonicated in ethanol, and then a drop was deposited
onto a copper grid covered with a holey carbon membrane
for analysis. X-ray photoelectron on spectroscopy (XPS) were
recorded on a Thermofisher ESCALAB 250Xi spectrometer
equipped with monochromatic Al KC (hυ = 1486.6 eV, 15
kV, 10.8mA). The binding energies were calibrated by carbon
deposit C1s with Eb = 284.6 eV.

Catalytic Reaction
The liquid phase hydrogenation of cinnamaldehyde was
performed in an autoclave reactor with pressure control system.
The reaction process as follows: cinnamaldehyde was diluted in
1,4-dioxane to obtain a 0.45 mol/L reaction solution, and o-
xylene was used as internal standard. Typically, 30mg of catalyst
was added into 5mL reaction solution. The autoclave was then
purged with hydrogen flow with four times to replace the air
inside the autoclave and maintained the total pressure at 1 MPa
at room temperature. Then, the autoclave was heated to 80◦C
in a water bath with a magnetic stirrer at a fixed rate (c.a. 800
rpm) to carry out the hydrogenation reaction. After the reaction,
the reaction mixture was analyzed using gas chromatograph
(GC-FID) equipped with an HP-5 column.

The HCAL selectivity was calculated according to the
following equation:

HCALSelectivity(%) =

Moles of HCAL produced at reaction time

Moles of CAL at converted at reaction time
× 100%

(1)

RESULTS AND DISCUSSION

The macroscopic shaped Ca-Pd@CNT catalyst was synthesized
by an ionic induced crosslinking method. A series of
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FIGURE 2 | (a) Optical photos showing macroscopic shaped Ca-Pd@CNT catalyst. The inset image presents the volume of hybrid catalyst (1) and the compared

initial CNT sample (2). (b) Low magnification SEM micrograph showing the gross morphology of the sphere structured catalyst. (c–g) SEM image and elemental

mapping of Ca-Pd@CNT catalyst. (h,i) SEM images of Ca-Pd@CNT catalysts show the opened structure of as-synthesized beads.

Ca-Pd@CNT beads catalysts with controlled macroscopic
shaping was prepared with around 0.9 wt.% Pd loading which
was confirmed through ICP-OES analysis (Table 1). As shown
in Figure 2, the uniform spherical beads with homogeneous
diameter around 1.5mm could be formed successfully through
the in-situ gel process. Compared to the initial CNT powder,
the apparent volume of the shaped catalyst is smaller due to
the shrinkage during the drying process (the inset digital photo
of Figure 2a). The energy-dispersive X-ray (EDX) elemental
mapping images of Ca-Pd@CNT beads (Figures 2c–g) showed
that the Pd and Ca are uniformly dispersed on the Ca-Pd@CNT
beads, and only few of them are aggregated in the macroscale.
The element composition Ca-Pd@CNT beads derived from EDS
spectra is 0.45 at% (Ca) and 0.09 at% (Pd) in atomic percentage,
which is a little lower compared to the actual mass loading
from the ICP-OES results (vide infra). The medium and high-
resolution SEM images clearly show that CNT in the composites

entangled highly to form a large porosity dense network and the
microscopic filamentous structure of CNT can be seen at high
magnification. The above results indicated that highly dispersed
particle could be obtained on the surface of CNT with a special
macroscale structure through a simple preparation method.

TEM image of as-synthesized Ca-Pd@CNT beads reveals that
the Pd NPs anchored on the surface of CNT with relatively
homogeneous size (Figure 3a). The particle size distribution
of Ca-Pd@CNT beads is centered at around 4.7 nm, while the
comparative sample, Pd NPs supported on powdered CNT
(Pd/CNT), displays an average particle size of 5.5 nm with a
broaden size distribution (Figure 3). Such relative homogeneous
Pd particle size on the Ca-Pd@CNT beads could be directly
attribute to the strong interaction between the metal NPs with
Ca species as well as the graphitic layers of support surface.

The chemoselective hydrogenation of cinnamaldehyde (CAL)
to produce hydrocinnamaldehyde (HCAL) is selected as a probe
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FIGURE 3 | TEM images and Pd particle size distributions of (a,b) Ca-Pd@CNT beads and (c,d) Pd/CNT.

FIGURE 4 | (A) Reaction scheme for the CAL hydrogenation. (B) CAL conversion and HCAL selectivity over Ca-Pd@CNT beads catalysts. Reaction conditions:

10 bar H2, 80
◦C, catalyst 30mg, 5ml 0.45 mol/L reaction mixture, dioxane as solvent, o-xylene as internal standard, reaction time: 120min.

reaction to investigate the structure-activity of the as-synthesized
Ca-Pd@CNT beads catalysts (Figure 4A). For comparison,
Pd/CNT beads, Pd/AC and Pd/CNT were also synthesized by

impregnation method by using as-synthesized CNT beads, AC,
and original CNT as support, respectively (see experimental
section). Specially, Pd/AC sample presents the largest Pd average
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FIGURE 5 | (a–e) EDS elemental mapping and (f,g) high resolution SEM images of Ca-Pd@CNTHCl−2h catalysts.

particle size at around 11.9 nm, which may be due to the
weaken interaction between Pd NPs and active carbon (Jiang
et al., 2016). The catalytic performances of CAL hydrogenation
reaction and the correspondingHCAL selectivity over the various
of supported Pd catalysts were displayed in Figure 4B. The
selectivity of CAL to HCAL on Ca-Pd@CNT beads and Pd/CNT
beads was relatively close (83.5 and 90.4%, respectively) under
the same reaction conditions, whereas the CAL conversion
on Ca-Pd@CNT beads (99.9%) was significantly higher than
that of Pd/CNT beads (13.7%). It is obvious that the superior
activity is obtained through the in-situ one-pot gel process.
For Pd/AC and Pd/CNT catalysts, a lower HCAL selectivity
was presented, 69.5 vs. 74.2%. Such lower selectively could be
attributed to the bigger Pd particle size on Pd/AC catalyst (Xu
et al., 2019). However, the possible reason for the relatively high
HCAL selectivity compare to Pd/CNT catalyst could be that the
presence of the additive Ca2+ ion during the catalyst preparation
process (vide infra).

In order to identify the detailed role of the Ca2+ ion in
this chemoselective hydrogenation process, the acid etching
experiment was conducted over Ca-Pd@ CNT catalyst. To leach
the different amount of Ca2+ ion, the diluted hydrochloric acid
(HCl) with 1.0 mol/L is used and the etching time is fixed at 2 and
4 h, respectively. As shown in Table 1, the Ca mass concentration
is amount to 4.33, 0.28, and 0.06 wt.% for Ca-Pd@CNT, Ca-
Pd@CNTHCl−2h, and Ca-Pd@CNTHCl−4h, respectively, from the
ICP-OES analysis. It is worth noting that the Pd mass weight is
maintained at the similar value, c.a. 0.9 wt.% (Table 1), after acid
etching. It means that the residual of Ca could be removed by the
diluted HCl solution. The high-resolution SEM images and EDS

element mapping of Ca-Pd@CNTHCl−2h beads (Figure 5) show
themorphology of the sample have not been destroyed during the
acid treatment and the relative low Ca concentration is appeared
by EDS elemental mapping.

The particle size distribution of Ca-Pd@CNT beads with acid
etching for 2 and 4 h was shown in Figure 6. As expected,
the Ca-Pd@CNTHCl−2h and Ca-Pd@CNTHCl−4h had similar
particle sizes distribution and particle shapes compared to that
of untreated Ca-Pd@CNT beads (Figure 6), indicating that acid
treatment has no significant influence on the Pd microstructure.
The typical Ca-Pd@CNTHCl−2h catalyst was further performed
by atomic resolution STEM-HAADF for the microstructure
analysis of calcium promoted Pd NPs (Figure 7). The EDS
element mappings of Ca-Pd@CNTHCl−2h catalyst reveal that the
Ca species are anchored on the surface of CNT and interacted
with Pd NPs. The lattice of Pd nanoparticle 0.211 nm, which is
related to the (111) facet of Pd (Figure 7f). It is suggested that
that the Ca does not enter the lattice of Pd nanoparticles.

The Ca-Pd@CNTHCl−2h and Ca-Pd@CNT beadsHCl−4h

catalyst are reduced at 200◦C under H2 flow for CAL
hydrogenation reaction. Compared to initial Ca-Pd@CNT
catalyst, the CAL conversion of Ca-Pd@CNTHCl−2h increases
significantly from 63.8% reach to 99.9%, and the HCAL
selectivity remains approximately (c.a. 86.5%). It can be clearly
seen that a lower concentration of calcium ion could be beneficial
for the enhancement of catalytic activity. When the content of
Ca2+ further declined to 0.06 wt.%, the CAL conversion of Ca-
Pd@CNTHCl−4h is decreased to 92.1% with the similar HCAL
selectivity 86.5%, which still presents superior catalytic activities
compare to the Pd/CNT beads, Pd/CNT and Pd/AC catalysts. In
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FIGURE 6 | TEM images and Pd particle size distributions of (a,b) Ca-Pd@CNTHCl−2h, (c,d) Pd @CNTHCl−4h catalysts.

FIGURE 7 | (a–e) HAADF-STEM image and EDS elemental mapping of C, Pd, and Ca on Ca-Pd@CNTHCl−2h catalyst. (f) Atomic resolution HAADF-STEM image of

typical Pd nanoparticles with defective structure on Ca-Pd@CNTHCl−2h catalyst.

addition, residual sodium could also plays the promotion role for
noble metal nanoparticles in the hydrogenation reactions (King
and Kelly, 2002; Kosydar et al., 2011; Long et al., 2019), where
the sodium was also introduced during the synthesis process by

using alginate as gel source. However, the Na concentration of the
initial Ca-Pd@CNT remained extremely low, i.e., 0.0308 wt.%,
and cannot be accurately detected by ICP-OES technique for the
further acid treated sample (Ca-Pd@CNTHCl-2h). It could be
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FIGURE 8 | (A) XPS survey spectra and high-resolution Pd 3d spectra of reduced Pd/CNT powder, Ca-Pd@CNT beads, and Ca-Pd@CNTHCl−2h beads. (B) The

deconvoluted Pd 3d spectrum of reduced Pd/CNT powder, Ca-Pd@CNT beads, and Ca-Pd@CNTHCl-2h beads.

TABLE 2 | Elemental analysis of Pd 3d5/2 XPS spectra on monolithic Pd/CNT,

Ca-Pd@CNT, and Ca-Pd@CNTHCl−2h catalysts.

Sample Pd 3d5/2

Pd0 Pdσ+ Pd0/Pdδ+

BE/eV at% BE/eV at%

Pd/CNT 335.1 9.9 336.0 22.0 0.45

Ca-Pd@CNT 334.9 8.7 336.0 25.0 0.35

Ca-Pd@CNTHCl−2h 334.9 6.2 336.0 26.7 0.23

revealed that Na could not affects the catalytic performance in
this catalyst system. Thus, the results clearly demonstrate that
in presence of Ca promoter can significantly increase the CAL
hydrogenation activity, and the various Ca concentration could
induce the different CAL hydrogenation ability. The extra Ca
species covered on the surface of Pd NP could be etched during
the moderate acid treatment process that result highly Pd active
site exploration.

XPS survey spectra of Pd-decorated CNT are shown in
Figure 8A. For the Pd/CNT sample, the XPS spectral show that
distinct C 1s, O 1s, and Pd 3d peaks, and no other elements
peaks are detected. The strong Pd 3d peaks are detected
over the sample, suggesting that the formation of numerous
Pd nanoparticles loaded on CNT carrier. In addition to the
strong C 1s, O 1s, and Pd 3d peaks of Ca-Pd@CNT and
Ca-Pd@CNTHCl−2h beads, which also has a strong Ca 2p
and Ca 2s peak. The XPS analyses were conducted to reveal
the electronic structure of the Pd species with or without the
interaction of Ca ion (Rao et al., 2017). The XPS survey spectra
of all samples show the expected elements (i.e., C, O. Pd) as
well as the Ca that are derived from the cross-linking process
for spherical Ca-Pd@CNT beads and Ca-Pd@CNTHCl−2h

catalysts (Figure 8A). The deconvoluted Pd3d XPS spectra of
Pd supported catalyst (Figure 8B) present two main peaks

at about 335.35 and 340.35 eV, corresponding to the doublet
of Pd 3d5/2 and 3d3/2, respectively (Rao et al., 2017). The
deconvolution of core level Pd3d5/2 revealed the presence of
predominant metallic phase (Pd0, 335.1 eV), oxide state metal
(Pd2+, 337.0 eV) and a satellite peak (338.3 eV) (Pillo et al.,
1997; Zhao et al., 2015; Arrigo et al., 2016). The oxide state Pd2+

was ascribed to the oxidation occurs on the surface of Pd NPs
during the passivation process by diluted oxygen gas mixture (0.5
vol.% O2 in helium). Furthermore, there was an apparent peak
between Pd0 and Pd2+ attribute to the electron transfer from
Pd to the support, and then to produce the electron-depleted
palladium species (Pdδ+) (Cárdenas-Lizana et al., 2013; Arrigo
et al., 2016). As shown in Table 2, the lowest molar ratio of
Pd0/Pdδ+ is presented in Ca-Pd@CNTHCl−2h sample indicating
that a certain amount of Ca promoter is in favor of forming
Pdδ+ species which may in presence of electron transfer from
Pd to Ca (Song et al., 2006), and thus accounts for the superior
hydrogenation activity.

CONCLUSION

In conclusion, the in-situ gel process is employed successfully to

prepare a controllable macroscopic shaped nanocarbon material

containing Pd nanoparticle for chemoselective hydrogenation of

CAL. The Ca promoter in the Ca-Pd@CNT beads is introduced
by the interaction between Ca2+ ions and the hydroxyl and

carboxyl groups of alginates during the cross-linking of alginate
chains. As a result, the CAL hydrogenation activity is significantly
enhanced in presence of Ca species through modifying the
electron structure of Pd species. Compared to other prepared
carbon-supported catalysts, the Ca-Pd@CNTHCl−2h with the
moderate Ca loading displays the superior CAL hydrogenation
activity as well as the HCAL selectivity which could be attributed
to the lower Pd0/Pdδ+ ratio in the catalyst. Besides, the
controllable monolithic structure could endow the carbon-based
catalyst easy handling during the reaction and recovery process
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in the liquid-phase reaction.Moreover, suchmacroscopic process
with in-situ introduced active metal species may also be applied
in gas-phase reaction systems which could reduce the overall
pressure drop across the packed bed comparing with the powered
carbon-based catalysts.
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