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Takifugu rubripes is commonly subjected to the disease-causing bacterium, Vibrio

harveyi. However, the mechanism involved in the immune response of T. rubripes to

V. harveyi infection is unclear. We conducted a transcriptomic analysis of the spleen and

gill from T. rubripes infected with V. harveyi. We obtained 60,981,357 and 60,760,550

clean reads from the control and infected spleens, and 57,407,586 and 57,536,651

clean reads from the control and infected gills, respectively. We also identified 1,560 and

1,213 differentially expressed genes in the spleen and gill, respectively. Gene ontology

analysis revealed that the most enriched biological process in both the spleen and gill was

“immune response”. The most enriched Kyoto Encyclopedia of Genes and Genomes

immune response–related pathways were the NOD-like receptor signaling pathway in

the spleen and cytokine–cytokine receptor interaction in the gill. We found 10 candidate

immune-related genes in the spleen and gill. These putative immune pathways and

candidate genes will provide insight into the immune response mechanisms of T. rubripes

against V. harveyi.
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INTRODUCTION

Takifugu rubripes is becoming one of the most economic aquatic fish species in East Asia (1–3).
The total aquacultural yield of T. rubripes in China reached 17,473 tons in 2019 (4). In Japan,
these aquacultural species is considered one of the most valuable commercial finfish in recent
decades (5). However, the aquacultural industry for T. rubripes is restricted by several serious
aquatic diseases (6, 7). Specifically, high mortality resulting from Vibrio harveyi infections leads to
enormous economic losses (8, 9). V. harveyi is an important luminous marine bacterium (10, 11)
that is pathogenic to many aquatic animals (12, 13).

Fish immunology has received much attention for its important and unique role in
understanding the evolution of immune system. Investigating the effects of bacterial infections on
fish immune organs is important for understanding the immune response mechanisms to bacterial
diseases (14, 15). The spleen and gill are important immune organs in fish. The spleen is the primary
hematopoietic and peripheral lymphoid organ (16, 17) and is important for antigen (e.g., bacteria)
presentation and initiation of adaptive immune responses (18, 19). The gill is a type of mucosal
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surface and a mucosal immune organ in fish (14, 20), and
is an important site of bacterial exposure and host defense
mechanisms (14).

Sequencing technology is widely applied in aquaculture (21–
24). RNA-sequencing technology can effectively reveal genes that
are engaged in immune responses and expressed in response
to the presence of toxicants or infection (25–27). Many studies
have focused on the transcriptomic changes in different fish
tissues after bacterial infection (15, 28). However, few studies
have reported the combined analysis of RNA-sequencing in the
spleen and gill of T. rubripes after V. harveyi infection.

Here, we used RNA-sequencing technology to detect genome-
wide transcriptional changes in the spleen and gill of V.
harveyi–infected T. rubripes. These results may help identify
the immune-relevant genes and mechanisms during V. harveyi
infection. Our study provides a novel strategy for understanding
the mechanisms of action of V. harveyi–induced aquacultural
diseases in fish and developing genetic markers for V. harveyi
disease resistance.

MATERIALS AND METHODS

Experimental Animals and Tissue
Collection
The Animal Care and Use Committee of the Key Laboratory
of Mariculture and Stock Enhancement in North China’s Sea
at Dalian Ocean University approved all fish-related procedures
in this study. T. rubripes (weighing 118 ± 7.5 g) were obtained
from a local supplier (Tianzheng Industrial, Dalian, China) and
acclimated for approximately 7 days in seawater at 19± 1◦C.

Fish were challenged in six seawater tanks with three control
and three treatment groups. The identified V. harveyi were
reisolated from a symptomatic T. rubripes with skin and visceral
lesions. Fifteen fish were put into each tank with 2.5 × 107

colony-forming units per milliliter of V. harveyi, exposed to
the bacteria for 12 h, then transferred to clean seawater and
maintained for 7 days. The same number of fish was used as
controls. Fish in the control group stayed in clean seawater
throughout the experiment. One-third of the seawater was
replaced every 2 days throughout the experiment. On day
7 post-challenge, some fish in the treatment group showed
slow movement, decreased vitality, and cell necrosis in their
spleens and gills. The control fish displayed no abnormalities
in their movement, vitality, or visceral organs [see more details
in Supplementary Figure 1; (29)]. The spleen and gill were
collected from both the symptomatic V. harveyi–treated fish and
control fish on day 7. Samples were frozen in liquid nitrogen prior
to RNA extraction.

Library Preparation for Transcriptome
Sequencing
Sequencing analysis was performed to evaluate the effects of
V. harveyi on global transcription in the spleen and gill. In
both the control and treatment groups, the fish from the three
tanks were firstly mixed, and then the four fish were randomly
selected from the mixed fish. The selected samples were taken

for sequencing analysis. RNA-sequencing and library preparation
were performed by Novo Genomic Services Lab (Qingdao,
Shandong, China). RNA (3 µg per sample) was used as the input
material for the RNA sample preparation. Sequencing libraries
were generated using the NEBNext Ultra RNA Library Prep Kit
for Illumina (NEB, Ipswich, MA, USA) per the manufacturer’s
recommendations, and index codes were added to attribute
sequences to each sample.

The index-coded samples were clustered using a cBot Cluster
Generation System with a TruSeq PE Cluster Kit v3-cBot-
HS (Illumina; NEB) per the manufacturer’s instructions. After
cluster generation, the library preparations were sequenced on
an Illumina HiSeq platform, and 125/150-bp paired-end reads
were generated.

RNA Extraction and Reverse Transcription
Total RNA was extracted from the spleens and gills using TRIzol
reagent (Invitrogen, Carlsbad, CA, USA) per the manufacturer’s
protocol. First-strand cDNA was synthesized from 1 µg of total
RNA using a MonScript RTIII All-in-One Mix kit (Monad,
Shanghai, China) per the manufacturer’s protocol.

Real-Time Quantitative PCR
Real-time quantitative (RT-q) PCR was performed to validate
the sequencing analysis results on a StepOnePlus Real-Time
PCR system (ABI, USA) using SYBR green I fluorescent dye.
Gene expression levels were normalized to T. rubripes β-actin
(30). Relative gene expression was calculated using the 2−11CT

method (31). The primer sequences were designed using software
Primers Premier 5.0 (Supplementary Table 1). Eight genes were
randomly selected for RT-qPCR verification.

Data Analysis
High-quality clean reads were obtained from raw reads. The
reference genome and gene model annotation files were
directly downloaded from the genome website (ftp.ensembl.
org/pub/release-92/fasta/takifugu_rubripes/). Hisat2 v2.0.5 was
used to build the index of the reference genome and
align the paired-end clean reads to the reference genome
(Takifugu_rubripes_Ensemble_92) (32). FeatureCounts v1.5.0-p3
was used to count the read numbers mapped to each gene
(33). The fragments per kilobase of transcript sequence per
millions base pairs sequenced of each gene was then calculated
based on the gene length, and read counts were mapped to
the gene. Differential expression analysis of two conditions
was performed using the DESeq2 R package (1.16.1) (34),
which provides statistical routines for determining differential
expression in digital gene expression data using a model based
on the negative binomial distribution. The resulting p-values
were adjusted using the Benjamini and Hochberg approach for
controlling the false discovery rate. Genes with an adjusted p-
value < 0.05 in DESeq2 were assigned as differentially expressed
genes (DEGs). Gene ontology (GO) enrichment analysis of the
DEGs was implemented by the clusterProfiler R package, which
corrects for gene length bias. GO terms with corrected p <

0.05 were considered significantly enriched by DEGs (35). The
Kyoto Encyclopedia of Genes and Genomes (KEGG) database
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enables understanding high-level functions and utilities of
biological systems, such as cells, organisms, and ecosystems, from
molecular-level information, especially large-scale molecular
datasets generated via genome sequencing and other high-
throughput experimental technologies (http://www.genome.jp/
kegg/).We used clusterProfiler R to test the statistical enrichment
of the DEGs in the KEGG pathways (36). The top GO categories
and KEGG pathways were selected according to their p-values.

RESULTS

Differential Gene Expression in the Spleen
After V. harveyi Infection
The RNA-sequencing data were submitted to Gene Expression
Omnibus (accession number: GSE155911). The four control
spleens (CS1–4) yielded 60,298,712; 59,160,768; 61,669,660 and
62,796,286 clean reads, respectively. The fourV. harveyi–infected
spleens (VhS1–4) yielded 61,129,742; 67,177,292; 55,859,620;
and 58,875,544 clean reads, respectively. The mapping rates
were 88.94%, 87.47%, 88.88%, and 88.87% for the four
control spleens (CS1–4), respectively. The mapping rates were
89.50%, 89.24%, 89.29%, and 89.61% for the four infected
spleens (VhS1–4), respectively. Compared with the controls,
the spleens of the V. harveyi–infected fish contained 1,560
DEGs (p < 0.05, fold difference >1). Of these, 726 genes
were significantly upregulated, and 834 were significantly
downregulated (Figure 1A). Figure 1B shows the volcano plot of
the DEG distribution.

GO analysis results for the spleen tissue showed that these
DEGs were clustered into predicted functional groups. The
effects of V. harveyi were demonstrated in 1,939 groups,
including 1,344 biological process (BP) terms (69.31%),
205 cellular component (CC) terms (10.57%), and 390
molecular function (MF) terms (20.12%). In the BP category,
“immune response” (GO:0006955), “response to external
biotic stimulus” (GO:0043207), and “regulation of immune
response” (GO:0050776) were most noteworthy. The most highly
represented CC term was “extracellular region” (GO:0005576).
The most highly enriched MF terms were “enzyme regulator
activity” (GO:0030234) and “enzyme inhibitor activity”
(GO:0004857; Figure 2A).

Using KEGG functional annotations, the 1,560 DEGs were
classified to identify the pathways in which they participate.
The DEGs were mapped to 115 KEGG pathways, and the top
20 most common pathways were identified, among which, the
most significant and highly enriched pathway was the NOD-like
receptor signaling pathway (Figure 2B).

Differential Gene Expression in the Gill
After V. harveyi Infection
The four control gills (CG1–4) yielded 57,172,556; 58,742,866;
57,255,304; and 56,459,618 clean reads, with mapping rates of
88.04%, 88.13%, 88.65%, and 88.09%, respectively. The four V.
harveyi–infected gills (VhG1–4) yielded 58,236,430; 63,555,364;
54,010,958; and 54,343,850 clean reads, with mapping rates
of 88.34%, 88.58%, 88.69%, and 88.41%, respectively. The

RNA-sequencing results yielded 1,213 DEGs, including 602
upregulated and 611 downregulated genes (p < 0.05, fold
difference >1) in the gills after V. harveyi treatment relative to
the controls (Figure 3A). These 1,213 genes were hierarchically
clustered to produce a volcano plot (Figure 3B).

V. harveyi significantly altered the GO analysis results
for the gills, yielding 1,743 GO terms, including 1,235 BP
terms (70.85%), 159 CC terms (9.12%), and 349 MF terms
(20.03%). In the GO term for BP, much more attention
was paid to “immune response” (GO:0006955), “immune
system process” (GO:0002376), “regulation of immune system
process” (GO:0002682), “regulation of immune response”
(GO:0050776), and “positive regulation of immune system
process” (GO:0002684). The most enriched CC term was
“integrin complex” (GO:0008305); the most enriched MF term
was “extracellular matrix structural constituent” (GO:0005201;
Figure 4A).

In the gills, the DEGs were mapped to 116 KEGG pathways,
and the top 20 representative enriched KEGG pathways were
identified. Cytokine–cytokine receptor interaction, which is
related to immune response, was highly enriched (Figure 4B).

Combined RNA-Sequencing Analysis of
the Spleen and Gill
To investigate the effects of V. harveyi infection in both the
spleen and gill, we constructed a Venn diagram to find the
common genes from significant DEGs in the spleen and gill (with
p < 0.05, fold change > 1). We found 288 overlapping genes
in these organs (Figure 5A), which were then assigned to 619
GO terms: 413 BP terms (66.72%), 66 CC terms (10.66%), and
140 MF terms (22.62%). For the BP terms, “immune system
process” (GO:0002376), “immune response” (GO:0006955), and
“immune effector process” (GO:0002252) were highly enriched.
“Integral component of plasma membrane” (GO:0005887) was
the most significantly enriched CC term, and “transferase
activity, transferring glycosyl groups” (GO:0016757) was the
most significantly enriched MF term (Figure 5B). Overlapping
DEGs were mapped to 29 KEGG pathways. In the top 20
representative enriched KEGG pathways, much more attention
was paid to the C-type lectin receptor signaling pathway and
the Cellular senescence which were related to immune response
(Figure 5C). These findings indicate that V. harveyi infection
could lead to abnormal gene expression and trigger immune
responses in both the spleen and gill.

To better understand the mechanisms of action of V. harveyi–
induced disease in T. rubripes, we analyzed 23 immune-related
DEGs from our transcriptomic dataset of the spleen and gill. Ten
of these 23 DEGs were found in both the spleen and gill (Table 1).

DEG Validation via RT-qPCR
Constitutive changes in the DEGs identified via RNA-sequencing
were consistent with the RT-qPCR results from the spleen and
gill samples. The RNA-sequencing data for the spleen showed
thatV. harveyi infection significantly upregulated the expressions
of IL-1b (by 4.05-fold) and nppc (by 10.46-fold) compared
with those of the controls. The expression changes of IL-1b
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FIGURE 1 | DEGs identified in the spleen infected by V. harveyi. The number of DEGs in spleen is shown in (A), and the volcano plot of DEGs in spleen is shown in (B).

FIGURE 2 | Enrichment GO and KEGG annotation in the spleen infected by V. harveyi. Top GO categories in the spleen are shown in (A). KEGG category of DEGs in

the spleen infected by V. harveyi is shown in (B).

(by 2.68-fold) and nppc (by 1.81-fold) were confirmed via RT-
qPCR (Figure 6A). The significantly downregulated genes, cd74
(by 1.48-fold) and IL-2 (by 2.43-fold), were also validated via
RT-qPCR (downregulated by 3.42- and 3.12-fold, respectively;
Figure 6A). The RNA-sequencing data for the gill showed that
V. harveyi infection significantly upregulated the expressions of
scpp3b (by 14.54-fold) and IL-8 (by 6.39-fold) compared with
those of the controls. The expression changes in scpp3b (by
3.91-fold) and IL-8 (by 1.89-fold) were confirmed via RT-qPCR
(Figure 6B). The significantly downregulated genes, IL-21 (by

1.93-fold) and b3gat1 (by 5.02-fold), were also validated via
RT-qPCR (downregulated by 1.68- and 3.60-fold, respectively;
Figure 6B).

DISCUSSION

T. rubripes is becoming a very important economic aquacultural
species. Large-scale breeding of T. rubripes can easily result in
disease outbreaks, which would thus reduce the food quality and
economic benefits. Therefore, researchers should determine the
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FIGURE 3 | DEGs identified in the gill infected by V. harveyi. The number of DEGs in gill is shown in (A), and the volcano plot of DEGs in gill is shown in (B).

FIGURE 4 | Enrichment GO and KEGG annotation in the gill infected by V. harveyi. Top GO categories in the gill are shown in (A). KEGG category of DEGs in the gill

infected by V. harveyi is shown in (B).

molecular mechanisms of disease resistance in T. rubripes. Here,
we performed RNA-sequencing analysis of T. rubripes spleen
and gill responding to V. harveyi infection. Peng et al. (30)
demonstrated that V. harveyi can alter the splenic transcriptome
of T. rubripes; however, the effect of V. harveyi on the T. rubripes
gill transcriptome remains unknown. Our study is the first to
report the changes in the T. rubripes gill transcriptome after V.

harveyi infection. The results of this study enrich our knowledge
of the T. rubripes transcriptome.

Several studies have identified immune-related genes in T.
rubripes spleen and gill (6, 37). However, few studies have
reported combined analysis of immune-related DEGs in T.
rubripes spleen and gill after V. harveyi infection. Our analysis
yielded 1,560 and 1,213 DEGs in the spleen and gill, respectively.
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FIGURE 5 | Combined RNA-sequencing analysis of the spleen and gill. The overlapping DEGs in spleen and gill are shown in (A). Top GO categories of overlapping

DEGs are shown in (B). The KEGG analysis of overlapping DEGs is shown in (C).

We performed functional enrichment analysis to further study
the role of DEGs in immune-related disorders. GO and KEGG
pathway analyses showed that many immune-related terms
and pathways were highly enriched in the spleen and gill
(Figures 2, 4, 5). To determine the common GO terms, KEGG

pathways and target DEGs in the spleen and gill after V. harveyi
infection, we conducted the first reported combined analysis
of the transcriptomic changes in the spleen and gill. In the
common GO category, three immune-related BP terms were
highly enriched: immune system process, immune response,
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TABLE 1 | Partial differentially expressed immune-related genes in T. rubripes after V. harveyi infection.

Gene catalog Organ Fold change

Interleukin Interleukin-1b Spleen 4.05

interleukin-2 Spleen −2.43

interleukin-6 Spleen/gill 2.44/5.16

Interleukin-8 Spleen/gill 2.37/6.39

Interleukin-16 Gill −1.33

interleukin-21 Gill −1.93

Complement component complement component 7a Spleen/gill −1.97/−1.96

complement component 7b Spleen/gill 34.82/258.31

complement component 6 Gill 3.38

Toll-like receptor toll-like receptor 5 Spleen −3.83

toll-like receptor 7 Spleen/gill −1.97/−1.43

toll-like receptor 2 Gill −1.66

Interferon regulatory factor interferon regulatory factor 7 Spleen −2.09

interferon regulatory factor 1b Spleen/gill −1.59/−1.53

interferon regulatory factor 8 Gill −1.37

Other genes related to immune response NK-lysin tandem duplicate 4 Spleen/gill −2.79/−1.94

carnitine palmitoyltransferase 1B (muscle) Spleen 2.09

isocitrate dehydrogenase 1 Gill 1.35

coagulation factor II (thrombin) receptor Spleen/gill 2.09

transcription factor 7 Spleen/gill −1.68

tryptophan hydroxylase 1 Gill 3.25

wingless-type MMTV integration site family, member 4a Gill −2.10

SATB homeobox 1b Spleen/gill −2.32

FIGURE 6 | DEGs validated by RT-qPCR. (A) spleen; (B) gill. Gene expression analysis from RNA-sequencing results and RT-qPCR validation results (n = 4).

and immune effector process (Figure 5B). Two immune-related
pathways were significantly enriched among the common
KEGG annotations.

The GO and KEGG analyses revealed several important
immune-related genes in the transcriptome, including genes for
interleukin (IL), complement components, toll-like receptors
(TLRs), interferon regulatory factors (IRFs), and others (Table 1).
IL-6, IL-8, c7a, c7b, tlr7, irf1b, NK-lysin tandem duplicate 4,
coagulation factor II (thrombin) receptor, transcription factor 7,

and SATB homeobox 1b were differentially expressed in both the
spleen and gill. Of these, IL-6, IL-8, c7a, c7b, tlr7, and irf1b caught
our attention.

IL is an important cytokine involved in inflammatory
and immune responses. IL-6 is among the most important
multifunctional cytokines owing to its essential roles in both
innate and adaptive immune responses, and in defending against
pathogenic microbial invasion (38, 39). IL-8 plays a key role
in the inflammatory responses toward bacterial infections in
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some fish [e.g., Cynoglossus semilaevis (40), Ictalurus punctatus
(41), and Siniperca chuatsi (42)]. RNA-sequencing analysis results
suggested that the IL-6 and IL-8 expression levels were highly
upregulated after V. harveyi infection in both the spleen and
gill, indicating that IL-6 and IL-8 are involved in anti-V. harveyi
defenses. The complement system, activated by bacteria, is part of
the innate immune system and can be recruited and activated by
the adaptive immune system (26, 43). Complement component 7
(c7) plays a significant role in assembling the cytolytically active
membrane attack complex within target cell membranes and
performs its main function in host defenses against pathogens
and promoting inflammation (44, 45). Although the complement
system has been studied extensively in mammals, considerably
less is known about complement in teleost fish (45–47). In
addition, the functions of c7a and c7b (c7 subtypes) in teleosts
remain unclear, particularly in T. rubripes (48–50). Our data
revealed that c7a was significantly downregulated, and c7b
was significantly upregulated in both the spleen and gill.
c7a and c7b were differentially expressed suggesting that the
complement system might play an important role in response
to V. harveyi infection. Why these two complement components
were differentially altered remains uncertain. However, our
findings may help reveal the molecular function of c7. TLRs are
a group of pattern-recognition receptors in the innate immune
system (51). Here, we identified DEGs mapped to the TLR
signaling pathway, including tlr7 in both the spleen and gill.
tlr7, a member of the TLR family, plays an essential role in
fish antibacterial immunity (52). Here, tlr7 was significantly
downregulated in both the spleen and gill, implying that innate
immune genes could be altered at 7 days after V. harveyi
infection. IRFsmediate host responses against pathogen infection
and other important biological processes. Zhan et al. (53) showed
that irf1 plays an important role in defending blunt snout bream
against Aeromonas hydrophila infection. Here, irf1b expression
was downregulated after V. harveyi challenge in the spleen
and gill, indicating that irf1b is involved in V. harveyi–induced
immune regulation.

In this study, we performed the first reported combined RNA-

sequencing analysis of the spleen and gill in T. rubripes infected

with V. harveyi and screened many immune-related DEGs, GO

terms, and KEGG pathways. Several immune-related genes were

altered in both the spleen and gill and might play important roles

in the immune response of T. rubripes to V. harveyi infection.
Our results provide an important basis for further studies on the
mechanisms of action of V. harveyi–induced aquacultural fish
disease and enable better understanding this severe disease.
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