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Abstract

Understanding the laminar brain structure is of great help in further developing our

knowledge of the functions of the brain. However, since most layer segmentation

methods are invasive, it is difficult to apply them to the human brain in vivo. To sys-

tematically explore the human brain's laminar structure noninvasively, the K-means

clustering algorithm was used to automatically segment the left hemisphere into two

layers, the superficial and deep layers, using a 7 Tesla (T) diffusion magnetic reso-

nance imaging (dMRI)open dataset. The obtained layer thickness was then compared

with the layer thickness of the BigBrain reference dataset, which segmented the neo-

cortex into six layers based on the von Economo atlas. The results show a significant

correlation not only between our automatically segmented superficial layer thickness

and the thickness of layers 1–3 from the reference histological data, but also

between our automatically segmented deep layer thickness and the thickness of

layers 4–6 from the reference histological data. Second, we constructed the laminar

connections between two pairs of unidirectional connected regions, which is consis-

tent with prior research. Finally, we conducted the laminar analysis of the working

memory, which was challenging to do in the past, and explained the conclusions of

the functional analysis. Our work successfully demonstrates that it is possible to seg-

ment the human cortex noninvasively into layers using dMRI data and further

explores the mechanisms of the human brain.
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1 | INTRODUCTION

According to cytoarchitecture, the cerebral cortex can be segmented

into different layers. The Brodmann atlas (Brodmann, 1909) dividesJie Zhang and Zhe Sun are Equally equally contributing authors.
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the isocortex into six layers. From the outermost to the innermost

layer, these include: the molecular layer, the external granular layer,

the external pyramidal layer, the internal granular layer, the internal

pyramidal layer and the polymorphic layer. The allocortex does not

have six layers, and the limbic cortex either lacks or has an incipient

layer IV (Ángel García-Cabezas et al., 2019). Recently, some

researchers used high-resolution functional magnetic resonance imag-

ing (fMRI) to detect the laminar specificity of the neural activity and

thus explore cognitive processing in the human brain noninvasively

(Finn et al., 2019). It was found that different layers are active in dif-

ferent time periods. This suggests that the functions of the different

layers are different even though the layers belong to the same region,

and that noninvasive approaches can detect differences between

layers. Thus, this leads to the need to study layer-specific structure in

living humans, which will help to understand the human brain struc-

ture on a deeper level. Diffusion magnetic resonance imaging (dMRI)

can noninvasively detect the brain tissue structure in vivo and is sensi-

tive to the brain myeloarchitecture. In previous studies, dMRI has

been mainly used for constructing fiber connections in white matter

(Donahue et al., 2016) and for studying brain diseases (Aganj

et al., 2020). Some studies (Assaf, 2018; Dhital et al., 2014;

Kleinnijenhuis et al., 2013; Trong-Kha et al., 2014) have shown that

dMRI parameters vary with grey matter depth and show significant

differences among layers, which makes it possible to segment the

cerebral cortex into layers based on the myeloarchitecture. A recent

study (Bastiani et al., 2016) shows that high-resolution ex vivo dMRI

can be used to segment the cerebral cortex into layers. These studies

encouraged us to segment cerebral layers and study layer specificity

using dMRI acquired in vivo.

On the other hand, depending on different cytoarchitectures and

functions, the cerebral cortex can be divided into different regions

that communicate with each other through nerve fibers. The study of

fiber connections, the "connectome," between different regions plays

an important role in understanding how the brain works (Sporns

et al., 2005). To study brain connections in more detail, it is very

important to take cortical layers into account. Tracer injections (Majka

et al., 2016), including anterograde and retrograde tracing, are often

used to study laminar connections in animals (Butler et al., 2016;

Gattass et al., 2014; Sakata et al., 2019). Recently, viral-genetic tracing

(Beier et al., 2019; Schwarz et al., 2015; Wood et al., 2019) has also

been used to explore laminar connections. However, since these

methods are invasive, their application on human brains is limited. On

the other hand, dMRI is very sensitive to the diffusion of water mole-

cules, and their diffusion along the fiber direction is apparent. In con-

trast, the diffusion perpendicular to the fiber direction is relatively

small. Based on this principle, tractography algorithms can use dMRI

data to estimate the three-dimensional trajectory of fibers within the

brain (Bastiani et al., 2012; Tournier et al., 2004). Due to its reliability

and noninvasiveness, dMRI technology is favoured by researchers

devoted to exploring brain structures. However, when constructing

brain connections using dMRI in previous studies, only the connec-

tions between different regions were investigated; meanwhile, the

connections between the regions' layers were not well-revealed. If

dMRI could be used to estimate the laminar connections, it would be

beneficial to further understand the brain connection structure, diag-

nose brain-related diseases and simulate the human brain.

Past research has shown that working memory is linked to the

dorsolateral prefrontal cortex (dlPFC) (Courtney et al., 1997; Courtney

et al., 1998; D'Esposito et al., 1995; Goldman-Rakic, 1995). Moreover,

recent works have shown that the superficial and deep layers of the

dlPFC of monkeys are responsible for different modes of the working

memory (Bastos et al., 2018; Markowitz et al., 2015). For humans, a

recent study on fMRI suggested that the superficial layer is mainly

responsible for the maintenance and manipulation of the working

memory, while the deep layer is mainly responsible for task response

(Finn et al., 2019). Therefore, it is necessary to study the laminar

structure of working memory-related regions.

In order to explore the living human brain deeply, dMRI of the

human brain acquired in vivo was used in this study to segment the

cortex into different laminar layers. We estimated the laminar connec-

tions between regions and analyzed the laminar structure of working

memory-related regions. First, the cortex was segmented using K-

means clustering in the space of the dMRI parameters, and was vali-

dated using histological data. Our analysis shows that segmenting the

cortex into the so-called superficial and deep layers worked best.

Then, the laminar connections between different human cerebral

regions were estimated using tractography, and the results were com-

pared with hierarchical laminar connection patterns found in a histo-

logical dataset. It turns out that using dMRI to estimate laminar

connections is valuable, and it provides an effective way to study lam-

inar connections in the human brain. Finally, the relationship between

working memory and layer thickness was analyzed, further enhancing

our understanding of the working memory-related brain structure.

2 | MATERIAL AND METHODS

Our method consists of the following steps: (1) Based on dMRI data,

31-dimensional features derived from the apparent diffusion coeffi-

cient (ADC) were extracted (Bastiani et al., 2016), and several cortical

regions were automatically segmented into layers using K-means clus-

tering. After that, the clustering results were evaluated. (2) The layer

thickness was calculated, and it was then compared with the layer

thickness acquired from the reference dataset (Wagstyl et al., 2020).

(3) Generalized fractional anisotropy (GFA) (Tuch, 2004) was added to

the features. Then, the new features were reclustered, and the result

was evaluated using the same method. Segmentation results before

and after adding GFA were compared, and the influence of GFA on

the clustering results was analyzed. (4) Two pairs of unidirectionally

connected regions were chosen; that is, those where only connections

from one region to the other were found. Then, the laminar connec-

tions were estimated using tractography. The proportion of laminar

connections per unit volume was calculated and evaluated using hier-

archical laminar connection patterns. (5) Layer thickness was used to

analyze the relationship between laminar structure and working mem-

ory. The framework of this work is shown in Figure 1.
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2.1 | dMRI dataset

We used the pre-processed 7T dMRI open dataset of 30 subjects ran-

domly selected from the WU-Minn Human Connectome Project

(HCP) (Essen et al., 2013). We have accepted the HCP Open Access

Data Use Terms. The subjects were all healthy adults, and included

15 females and 15 males aged from 26 to 35 years old. The data were

collected using spin-echo echo-planar imaging sequences. The data

resolution is 1.05 mm � 1.05 mm � 1.05 mm. The measurement

parameters were: field of view 210 � 210mm2, repetition time

700 ms, echo time 71.2 ms and flip angle 90�. Each gradient table

includes 65 diffusion weighting directions plus 6 b = 0 acquisitions

interspersed throughout each run. Diffusion weighting consisted of

two shells: b = 1000 s/mm2 and 2000 s/mm2. In our experiments, we

used dMRI data with b = 2000 s/mm2.

2.2 | Automatic layer segmentation

Grey matter regions and their perpendicular vectors were extracted

using FreeSurfer (Fischl, 2012). The ADC is a dMRI parameter reflect-

ing the diffusion of water molecules in the gradient field direction. For

every voxel, the ADC of the gradient field's direction is calculated

through the following formula:

ψ j ¼�1
b
ln

Sj
S0

� �
ð1Þ

where S0 is the signal when the gradient field is not applied; b is the

diffusion weighted factor, whose magnitude is related to the gradient

field; and Sj is the attenuated signal in the direction of the gradient

field j. After the calculation, each voxel's ADC profile is fitted by

spherical harmonics. According to previous works (Bastiani

et al., 2016; Nagy et al., 2013), the number of parameters used for

clustering and the data-fit rate are most appropriate when the spheri-

cal harmonic order is six. Therefore, sixth order spherical harmonics

were chosen for the task. Because the ADC profile is real and antipod-

ally symmetric, only the real even elements are computed. A total of

28 spherical harmonic coefficients are required to fit the ADC. To

make later calculations easier, we need to rotate the spherical har-

monics so that the Z-axis coincides with the cortical surface's normal

direction.Following previous works (Bastiani et al., 2016; Nagy

et al., 2013), four derived ADC features of each voxel were extracted:

(1) the mean ADC value (1 feature), (2) the ADC value of the cor-

tical normal direction (1 feature), (3) the mean ADC value in the corti-

cal tangential plane (1 feature), (4) the even spherical harmonic

coefficients used to fit the ADC (28 features). These sets of features

form a 31-dimensional vector. ADC spherical harmonic coefficients

were calculated using MRtrix v3.0-RC3 (Tournier et al., 2019), and the

rotation and feature extraction were performed using MATLAB

2021a (Politis, 2016). After that, Z-score was used to standardize the

features. Using the statistics tools in MATLAB, features were fed into

an unsupervised K-means clustering algorithm (Jain, 2010) with the

maximum number of iterations and with replicates equal to 100 to

cluster cortex voxels into different cortical layers.

Many studies have shown that in grey matter, the fiber orienta-

tion distribution (FOD) is mostly in the radial and tangential directions

(Dhital et al., 2014; Trong-Kha et al., 2014). Furthermore, the FOD

reveals significant differences in different layers (Assaf, 2018). A study

(Kleinnijenhuis et al., 2013) even manually segmented the cortex into

F IGURE 1 Flow chart of the method used. First, we used preprocessed diffusion magnetic resonance imaging (dMRI) data to extract features
for segmenting the cortex into layers. Then, we added generalized fractional anisotropy to the features and segmented again. The results
obtained before and after adding generalized fractional anisotropy were compared and analyzed. Furthermore, the results were compared with
histological data, with the superficial layer corresponding to Brodmann's layers 1–3 and the deep layer corresponding to layers 4–6. Finally, the
results were used for the estimation of laminar connections and for laminar analysis of the working memory.
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layers according to the FOD. These works provide an important basis

for selecting the above 31 features.

The Calinski-Harabaz Index (CH) (Lukasik et al., 2016; Wang &

Xu, 2019) was used to decide the number of clusters. CH is a com-

monly used index to judge the number of clusters, and combines the

aggregation and separation degree of the clustering results. The num-

ber of clusters is taken into account in the evaluation. CH is calculated

as follows:

CH kð Þ¼ BGSS
WGSS

� n�k
k�1

,with ð2Þ

BGSS¼1
2

k�1ð Þd2þ
Xk
i¼1

ni�1ð Þ d
2�d

2
i

� �" #
,

WGSS¼1
2

Xk
i¼1

ni�1ð Þd2i ,

where n represents the number of samples; ni is the number of sam-

ples in cluster i; k represents the number of clusters; �d2 is the mean

squared distance of all n(n � 1)/2 pairs samples; �di
2is the mean

square distance of all ni(ni � 1)/2 pairs samples in cluster i; between-

groups sum of squared error (BGSS) is used to measure the degree of

separation between clusters; finally, within-groups sum of squared

error (WGSS) is used to measure the degree of aggregation within the

clusters. The larger the CH value is, the better the clustering effect

will be.

To check the stability of the clustering results, 10% of the sam-

ples were randomly removed and the clustering process was repeated.

Then, the clustering results of the remaining samples were compared

with the original results. The larger the ratio of samples with the same

clustering result, the more stable the clustering will be. The above

steps were repeated 100 times, and the average ratio value was taken

as the evaluation index of the clustering stability.

The t-Distributed Stochastic Neighbor Embedding (t-SNE)

(Pezzotti et al., 2017) and the Uniform Manifold Approximation and

Projection (UMAP) (McInnes & Healy, 2018) algorithms are nonlinear

techniques for dimensionality reduction. They are particularly well-

suited for the visualization of high-dimensional datasets. As such, to

visually evaluate the clustering results, t-SNE and UMAP were used

for dimensionality reduction and visualization of high-dimensional

features.

Statistical methods were used to analyze the differences of the

parameters between different clusters' voxels. First, the one-sample

Kolmogorov-Smirnov test was used to determine whether the samples

in a cluster after the z-score came from a standard normal distribution.

Then, for those samples which did come from normal distributions, the

Welch's t-test with a significance level α equal to .05 was used to ana-

lyze the clusters' differences. Otherwise, the Wilcoxon rank sum test

with a significance level α equal to .05 was used. In addition to analyzing

the parameters in the clustering features, the commonly-used dMRI

parameter, fractional anisotropy, which is used to characterize the

degree of anisotropy, was also added. However, in our study, GFA was

used to replace fractional anisotropy, as discussed below.

2.2.1 | Adding GFA to the clustering features

Fractional anisotropy (Basser & Pierpaoli, 1996) is an essential dMRI

parameter. It was shown that in grey matter, fractional anisotropy is

correlated with fiber complexity (Assaf, 2018). Some studies

(Kleinnijenhuis et al., 2013; Trong-Kha et al., 2014) have also demon-

strated that fractional anisotropy varies with cortex depth. As a result,

we tried to add fractional anisotropy to the features.

Since spherical harmonics had been used to fit ADC, we decided

to use GFA (Tuch, 2004), which considers diffusion in all orientations

compared to fractional anisotropy. GFA is calculated as follows:

GFA¼ std ψð Þ
rms ψð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
Pm

j¼1 ψ j� ⟨ψ⟩
� �2

m�1ð ÞPm
j¼1ψ

2
j

vuut ð3Þ

where ψ j is the diffusion at orientation j, and ⟨ψ⟩¼ 1=mð ÞPm
j¼1ψ j is

the diffusion mean. The greater the GFA, the greater the degree of

anisotropy.

The same methods described above were used to segment and

analyze the cortex layer after adding the GFA feature.

2.3 | Histological verification of clustering

FreeSurfer v6.0.0 (Fischl, 2012) was used to calculate the thickness of

the regions (Tustison et al., 2014), while LAYNII v2.2.1 (Huber

et al., 2021) was used to calculate the thickness proportion of each

segmented layer. To verify the calculated thickness, we calculated cor-

relations with BigBrain (Wagstyl et al., 2020), von Economo

(v. Economo & Koskinas, 1925) and HCP's MRI cortical thickness

(Glasser et al., 2016). To verify the segmentation results, we compared

our results to the histological dataset layer thickness: BigBrain

(Wagstyl et al., 2020), which was derived from a 3D histological atlas

of the human brain at 20-micrometer isotropic resolution, and von

Economo (v. Economo & Koskinas, 1925). The allocortex was

excluded from the layer thickness analysis.

2.4 | Laminar connections between regions

After segmenting the grey matter into layers, laminar connections of the

brain regions were created using MRtrix v3.0-RC3 (Tournier et al., 2019).

First, the Tournier iterative algorithm (Tournier et al., 2013) was used to

estimate the response function. Then, the constrained spherical decon-

volution algorithm (Tournier et al., 2007) was used to estimate the FOD.

The maximum harmonic degree was 8, which is commonly used to esti-

mate the FOD (Tournier et al., 2004). It is more accurate than lower

degrees and is less affected by noise than higher degrees. Finally, based

on the FOD, the improved probabilistic streamlines tractography

approach (iFOD2) (Tournier et al., 2010) was used to reconstruct stream-

lines. The desired number of streamlines was set to 10,000,000 and the

step size was 0.5 times the voxel size. The maximum angle in degrees
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between successive steps was set to 45�. The minimum length of any

track was two times the voxel size, while the maximum length was

100 times the voxel size. The FOD amplitude cutoff for terminating

tracks was set to 0.1. The maximum number of sampling trials at each

point was set to 1000. Using the above method, whole-brain connec-

tions were estimated, and the laminar connections were then extracted

from the overall connections. The number of streamlines per unit volume

were used to calculate the average laminar connections of all subjects.

Finally, the laminar connection proportion in the two regions was

calculated.

2.5 | Laminar analysis of working memory

The HCP dataset used visual N-back tasks to assess the working

memory, including 2-back and 0-back tasks. The 2-back task is used

to determine whether the current image is the same as the one pre-

sented two images prior, while the 0-back task is used to determine

whether the current image is the same as the original cue image. The

reaction time and accuracy were used to evaluate the working mem-

ory. For a specific task flow, the reader may refer to the paper (Barch

et al., 2013). Past research (Krogsrud et al., 2021; Metzler-Baddeley

et al., 2016; Østby et al., 2011) has shown that the working memory

performance is correlated with the cortical thickness. Therefore, we

first analyzed the correlation between the cortical thickness and the

performance in working memory tasks using the Pearson correlation

coefficient (Schober et al., 2018). Furthermore, previous works

(Bastos et al., 2018; Finn et al., 2019; Markowitz et al., 2015) have

shown that the superficial and deep layers of the cortex are responsi-

ble for different patterns in working memory tasks. Therefore, to

explore the laminar brain structure of the working memory, the corre-

lation between different layers and the working memory performance

was also analysed. One of the subjects in the dataset did not do the

task, so we only used twenty-nine subjects in this analysis.

3 | RESULTS

3.1 | Layer clustering and analysis

The von Economo atlas (v. Economo & Koskinas, 1925; Scholtens,

d. Reus, d. Lange, Scholtens et al., 2018) is one of the most commonly

used in academia. The recently published BigBrain histological dataset

(Wagstyl et al., 2020) calculated the six layers' thickness of each

region based on the von Economo atlas. We divided the grey matter

of the left hemisphere of 30 subjects into 43 regions based on the

von Economo atlas by using FreeSurfer v6.0.0 (Scholtens et al., 2018;

Fischl, 2012). Then, we separately applied clustering to every subject's

regions. Figure 2 shows the four commonly used regions' segmenta-

tion results of a subject when the number of clusters ranges from 2 to

6. These four regions are the Area praecentralis (FA), Area parastriata

(OB), Area striata (OC) and Area postcentralis intermedia (PC), which

approximately represent the primary motor cortex, the second visual

cortex, the primary visual cortex and the primary sensory cortex,

respectively. Although the resolution is limited, the layer structure is

still seen in each clustering result.

Figure 3 shows the mean CH curves when the number of clusters is

from 2 to 15 of the four regions. Except for a few subjects' regions, usu-

ally when the number of clusters is equal to two, the CH is much higher

than that of the other number of clusters. This may be because the cor-

tex's total thickness is only about 2–3 times the resolution. Thus, when

the number of clusters is too large, the results are not ideal. Considering

the CH indexes and the image resolution, two was chosen as the optimal

number of clusters. When that is the case, the cortex can be segmented

into two layers: the superficial and deep layers.

Some subjects' regions were visually poorly segmented. Supple-

mentary Figure S1 shows some poor clustering examples where we

cannot distinguish the layer structure from the results. Most poorly

segmented regions are primarily located on the Limbic lobe, the orbital

frontal cortex, the insula and the anterior tip of the temporal lobe. For

Area parolfactoria + Area geniculata + Area praecommissuralis

(FLMN) and for area cingularis limitans posterior (LC3), all 30 subjects

had poor segmentation results. FLMN is located on the most caudoin-

ferior edge of the frontal cortex and belongs to the allocortex. LC3

occupies a portion of the gyrus intralimbicus and a small edge of the

limbic gyrus. Because these regions' layer structures are incomplete

and not obvious (Ángel García-Cabezas et al., 2019), it is challenging

to segment them accurately.

Figure 4 shows the boxplot of the stability of all the subjects for

all regions. For most regions, the stability was above 90% or even

close to 100%, and there was little variation among the different sub-

jects. However, for a few regions the stability was relatively low and

varied significantly from subject to subject. These regions were also

poorly segmented in some subjects. In the subsequent analysis, we

will remove these poorly segmented results.

Figure 5 shows the results of the t-SNE and UMAP algorithms for

a subject's four regions. It can be seen that after dimensionality reduc-

tion using both algorithms, the features of the two layers overlap to

some extent but can be roughly distinguished.

Figure 6 shows the boxplot of the dMRI parameters for all regions

within each cluster after removing poorly segmented results. Data from

all 30 subjects was put together. It can be seen that for most regions,

the ADC-related coefficient decreases from the superficial layer to the

deep layer, which is consistent with previous studies (Bastiani

et al., 2016; Trong-Kha et al., 2014). Similarly, GFA decreases from the

superficial layer to the deep layer due to the larger ADC in the superficial

layer. The significance of the Welch's t-test or the Wilcoxon rank-sum

test, which is used to analyze the differences between the two layers,

was labeled before every region's name. For most regions and parame-

ters, the differences between layers are strongly significant.

3.2 | Validation of layer clustering

Figure 7 shows the correlation between our average thickness and

the thickness of the reference data, and the correlation between the
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average layer thickness and the layer thickness of the reference data.

These reference data have all been used in (Wagstyl et al., 2020). The

mean thickness and the layer thickness of all the subjects are included

in the supplementary materials. We first divided the left cerebral cor-

tex into 180 regions based on the HCP atlas (Glasser et al., 2016). We

compared the calculated thickness with HCP's MRI cortical thickness

(r = 0.8174, p < .001) and BigBrain's thickness (r = 0.5578, p < .001)

of the left hemisphere. We then divided the left cortex according to

the von Economo atlas (v. Economo & Koskinas, 1925) and compared

the thickness with the BigBrian thickness (r = 0.6561, p < .001) and

the von Economo and Koskinas thickness (r = 0.6683, p < .001). The

thickness is significantly correlated with the reference data, which

proves the effectiveness of the obtained results. The layer thickness

was compared with BigBrain data (Wagstyl et al., 2020) and von Econ-

omo data. The allocortex was excluded. The superficial thickness was

positively correlated with the thickness of layers 1–3 in the reference

data (BigBrain: r = 0.4826, p = .0025; von Economo: r = 0.4216,

p = 0.0093), while the deep thickness was positively correlated with

the thickness of layers 4–6 in the reference data (BigBrain:

r = 0.7959, p < .001; von Economo: r = 0.5466, p < .001). The thick-

ness of layers two and four in some regions may equal zero in the von

Economo data. The correlation between deep thickness and the refer-

ence data is stronger, which may be because the superficial thickness

is relatively small on the whole and the data resolution used is large.

As a result, the superficial layer is more difficult to segment accurately

and the thickness error is larger.
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Regions
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F IGURE 2 Clustering results of some axial sections of a subject. The results of a section of regions FA, OB, OC, and PC are presented, from

top to bottom. The results when the number of clusters is 2–6 are shown from left to right. Different colours represent different categories
obtained by clustering. It can be seen that the clustering results have the effect of stratification
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F IGURE 3 Mean CH values of the 30 subjects when the number of clusters is from 2 to 15. The vertical bar at each data point represents the
standard deviation of the values. Results for regions FA, OB, OC, and PC are presented, from left to right. The CH value is largest when the
number of clusters is 2

u

F IGURE 4 The stability of all the subjects for all regions. On each box, the central mark indicates the median, and the bottom and top edges
of the box indicate the 25% and 75%, respectively. The whiskers extend to the most extreme data points which are not considered to be outliers.
The x-coordinate represents the abbreviated region names. The full region name can be found in Table S2. For some regions, the clustering
stability was close to 100 percent, and the stability was similar across subjects. However, some regions show a relatively small stability, and it
varies greatly among different subjects. At the same time, in some subject the segmentation results of these regions were poor

F IGURE 5 t-SNE and UMAP results of a subject when the number of clusters is two. Red represents the deep layer, while green corresponds
to the superficial layer. The two layers can be roughly distinguished
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3.3 | Reclustering and analysis after adding GFA as
a feature

Figure 8 shows a comparison of a subject's clustering results before

and after adding the GFA feature. It can be seen that the clustering

results are very similar both before and after its addition. Figure 9

shows the difference between the mean superficial thickness before

and after adding the feature. Once again, there is little thickness dif-

ference before and after the addition of the feature. In most subjects

and regions, the superficial thickness decreased slightly after adding

GFA, but the decrease was not significant. The superficial thickness of

the region HA increased by nearly 0.04 mm after adding GFA, which

is due to the region having been poorly segmented in most subjects.

Before adding GFA, only subjects 9,14, and 15 had a good

F IGURE 6 Analysis of the clustering results. Boxplots of the distribution of the voxel's parameters for all subjects are shown. From top to

bottom, they correspond to parameters mean ADC, radial ADC, tangential ADC and GFA, respectively. The x-coordinate represents the region
name. Green represents the superficial layer, and red corresponds to the deep layer. On the whole, the superficial value is larger than the deep
value for these four parameters. To analyze the differences between the voxel's parameters of two layers, the one-sample Kolmogorov–Smirnov
test was first used to determine whether the data came from a normal distribution. Then, the Welch's t-test was used for samples from normal
distributions to analyze the differences between the two layers. Otherwise, the Wilcoxon rank sum test was used. Additionally, the significance is
labeled before each region name on the x-coordinate. No label indicates p < .001; # indicates no significant difference between the two layers'
parameters (three cases for the GFA).
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segmentation result, so only three subjects were used for thickness

calculation. After adding the feature, subjects 6 and 16 were also used

to calculate the thickness in addition to these three subjects. Due to

the large superficial thickness of subject 6, the result of the average

thickness is also large. However, the superficial thickness of subjects

9 and 14 did in fact decrease after adding the feature. Finally, the

superficial thickness of subject 15 increased slightly. The analysis

results are similar to those above, and they are available in the supple-

mentary Figures S4–S6.

Figure 10 shows the correlation between the average layer thick-

ness after adding the GFA feature and the layer thickness of the refer-

ence data. The layer thickness after adding the GFA feature was in

the supplementary Table S2. The layer thickness was compared with

BigBrain and von Economo data. The allocortex was excluded. The

superficial thickness was positively correlated with the thickness of

layers 1–3 in the reference data (BigBrain: r = 0.4748, p = .0030; von

Economo: r = 0.4219, p = .0093), while the deep thickness was posi-

tively correlated with the thickness of layers 4–6 in the reference data

(BigBrain: r = 0.8063, p < .001; von Economo: r = 0.5679, p < .001).

After adding GFA, the correlation between the superficial thickness

and Bigbrain data decreased slightly. All other correlations increased.

3.4 | Laminar connections of brain regions

In previous works on laminar connections of macaque monkeys, con-

nections between most regions were found to be bidirectional. How-

ever, there was a reported lack of reciprocity in the projections from

F IGURE 7 The left cortex was divided into regions based on the HCP and the von Economo atlas, and the calculated cortical thickness was
compared to the reference data, which showed a significant correlation. The thickness of the superficial and deep layers was also significantly
correlated with BigBrain and Von Economo's layers 1–3 and 4–6, respectively. The deep layer thickness correlation between our result and
BigBrain's data is nearly 0.8
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V4t to the primary visual cortex (V1) and from the second visual area

(V2) to the FST (Felleman & Essen, 1991). That is to say, the connec-

tions between regions V4t and V1 only existed going from region V4t

to V1, whereas there was no connection going from region V1 to

V4T. Similarly, the connections between regions V2 and FST only

went from region V2 to FST. Hierarchical laminar connections showed

that the connection from V4t to V1 went from the deep layer of V4t

to region V1, while the connection from V2 to FST went from the

superficial layer of V2 to region FST. We suppose that the same holds

true for the human brain due to the similarities between human and

macaque brains. Because the connections obtained from the dMRI

data do not have directional information, these two pairs of regions

were selected as the experimental regions for the convenience of ver-

ification. Regions V1, V2, V4t and FST in the left hemisphere were

segmented using the HCP MMP 1.0 atlas (Glasser et al., 2016) in

FreeSurfer v6.0.0. Figure 11 shows the location of regions V1, V2,

V4t and FST. Table. 1 shows the proportion of the average laminar

connections per unit volume between V4t and V1 as well as V2 and

FST for all 30 subjects.

As can be observed in Table 1, although the result is not so obvi-

ous, the proportion of connections from the deep layer of V4t to the

superficial layer of V1 is the largest, along with the proportion of con-

nections from the superficial layer of V2 to the deep layer of FST. This

result is consistent with previous research on hierarchical laminar con-

nections (Felleman & Essen, 1991). For the dMRI data obtained

in vivo, these results are already promising. Connections between

deep layers are also large, while other laminar connections are less

than 10%.

3.5 | Laminar analysis of working memory

We divided the left hemisphere into 180 regions based on the HCP

atlas. For several regions, it was found that the accuracy or reaction

time of the working memory was correlated with their thickness.

Some regions are concentrated in the DorsoLateral Prefrontal Cortex

(dlPFC), which was found to be associated with working memory in a

previous study (Bastos et al., 2018; Finn et al., 2019). The HCP Atlas

divides the dlPFC into 13 regions, of which three regions' thickness

was correlated with the reaction time. Nevertheless, the surprise was

that the thickness of the dlPFC was positively correlated with the

reaction time. The three regions are 8Ad, 9p and 9a. Table 2 shows

the values of the correlation coefficient.

Finally, the correlation coefficient between the layer thickness

and the reaction time in the dlPFC region was calculated. Table 3

shows the correlation coefficient between the layer thickness and the

reaction time. It can be seen that the superficial thickness is mainly

related to the reaction time of the 2-back task, while the deep thick-

ness is related to the 0-back task.

4 | DISCUSSION

In order to segment the human cerebral cortex into layers using a

noninvasive method, we segmented the left hemisphere into two

layers using dMRI and proved the reliability of our results. Further-

more, the results were then applied to construct laminar connections

and to analyze the laminar structure of the working memory.

The segmentation results of some regions were generally unsatis-

factory in multiple subjects. These regions were mainly concentrated

in the Limbic lobe, the orbital frontal cortex, the insula and the ante-

rior tip of the temporal lobe. Their clustering stability results are also

F IGURE 8 Reclustering results of a subject before and after
adding the generalized fractional anisotropy feature for some axial
section when the number of clusters is 2. From top to bottom, the
results correspond to regions FA, OB, OC, and PC. Green represents
the superficial layer, while red corresponds to the deep layer
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F IGURE 9 Difference in superficial thickness before and after adding the GFA feature. In most subjects and regions, the superficial thickness
decreased slightly after adding GFA

F IGURE 10 Correlation between layer thickness and reference data after adding GFA. After this addition, the thickness of the superficial and
deep layers was significantly correlated with BigBrain and Von Economo's layers 1–3 and 4–6, respectively. Correlations with BigBrain's deep
thickness as well as von Economo's superficial and deep thickness increased

F IGURE 11 The location of brain regions V1, V2, V4t, and FST in a subject
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relatively poor. It is probably because these regions belong to or are

close to the limbic cortex, which has an incomplete or not obvious

layer structure (Ángel García-Cabezas et al., 2019). More detailed

analysis and results are presented in the supplementary material, in

particular in Figures 1–3.

Figure 6 shows that ADC-related parameters in the superficial

layer are larger than those in the deep layer in most regions, which is

consistent with previous studies (Assaf, 2018; Kleinnijenhuis

et al., 2013; Trong-Kha et al., 2014). These studies have also shown

that the fractional anisotropy dMRI parameter varies with the cortical

depth and that its value is related to the complexity of the myeloarchi-

tecture. When we segment the cortex into layers, regardless of

whether GFA is present in the clustering features, either the t-test or

the Wilcoxon rank sum test results show that the GFA parameter is

significantly different in the superficial layer compared to the deep

layer for most regions. In Figure 6 and in supplementary Figure S6,

the boxplot of the GFA parameter also shows the differences

between the two layers. We think a possible explanation for the fact

that layer segmentation does not change much after adding GFA

could be that the previously used features already encode the infor-

mation of the GFA; that is, GFA is not an independent feature from

these ADC-derived features. Therefore, the multiple linear regression

model was applied, and ADC-derived 31-dimensional features were

used to fit the GFA feature. We then used the F-test with a signifi-

cance level α equal to .05 to test the regression equation's signifi-

cance, with all p values being less than .001, that is, p < .001. This

result also proves what was suspected. However, after adding GFA

into the features, the superficial thickness decreased slightly for most

regions. Furthermore, in addition to the slight decrease in the correla-

tion with the BigBrain superficial thickness, the correlation with the

von Economo layer thickness and the one with the BigBrain deep

thickness have increased. Although the difference is slight compared

with the previous results, we think that adding GFA into the features

will make the results more accurate when using dMRI to segment the

cerebral cortex into layers.

The connections estimated using dMRI have no directional infor-

mation. That is, the origin and the end of each connection are

unknown. Therefore, two pairs of regions with known unidirectional

connections were selected for verification purposes. Referring to the

hierarchical laminar connection data from (Felleman & Essen, 1991),

the connections between regions V4t and V1 only originate from

V4t's deep layer to V1. In contrast, the connections between regions

V2 and FST only originate from V2's superficial layer to FST. How-

ever, it is unknown which specific layer the connections terminate

at. In hierarchical laminar connection patterns, projections that origi-

nate primarily from the superficial layer and terminate in layer four

are classified as “forward.” In contrast, projections that originate

mainly from the deep layer and terminate outside layer four, particu-

larly in the superficial layers, are classified as “backward.” Thus, the

connections from V4t to V1 are regarded as backward projections,

while the connections from V2 to FST are considered to be forward

projections. In our results, the connections between V4t's deep layer

and V1's superficial layer, as well as the connections between V2's

superficial layer and FST's deep layer, are the strongest. The results fit

the “forward” and “backward” projection patterns.

In addition, these conclusions on laminar connection patterns

come from experiments carried out on macaque monkey brains.

Because of their invasive nature, applying some histological experi-

ments to the human brain is challenging. In previous studies

(Mackey & Petrides, 2010; Petrides et al., 2012), some experiments

on the human brain have been based on conclusions from experi-

ments on the macaque monkey brain while achieving good results due

TABLE 1 Proportion of the average laminar connections per unit
volume of the 30 subjects

Laminar connections between V4t and V1

Regions V1 superficial layer V1 deep layer

V4t superficial layer 8.65% 9.61%

V4t deep layer 42.80% 38.94%

Laminar connections between V2 and FST

Regions FST superficial layer FST deep layer

V2 superficial layer 7.41% 47.12%

V2 deep layer 4.35% 41.12%

Note: The connections with the largest proportion are in bold.

TABLE 2 Correlation coefficient between region thickness and
reaction time of the working memory

Correlation coefficient(thickness)

Regions Median_RT 2bk_Median_RT 0bk_Median_RT

8Ad 0.546b 0.5565b 0.4772b

9p 0.3933a 0.3564 0.3839a

9a 0.4187a 0.4813b 0.3276

Note: Median_RT indicates average of median reaction time for all

conditions in the task; nbk indicates n-back task.
aIndicates p < .05.
bIndicates p < .01.

TABLE 3 Correlation coefficient between layer thickness and
reaction time of the working memory

Correlation coefficient of superficial thickness

Regions Median_RT 2bk_Median_RT 0bk_Median_RT

8Ad 0.3374 0.441a 0.2191

9p 0.4215a 0.4879b 0.3291

9-46d 0.375a 0.4992b 0.2393

9a 0.3718a 0.5031b 0.2336

Correlation coefficient of deep thickness

Regions Median_RT 2bk_Median_RT 0bk_Median_RT

8Ad 0.3696a 0.3155 0.371a

Note: Median_RT indicates average of median reaction time for all

conditions in the task; nbk indicates n-back task.
aIndicates p < .05.
bIndicates p < .01.
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to the similarities between the human and macaque brains. Therefore,

we think applying these conclusions to the human brain makes sense.

A recent study (Donahue et al., 2016) quantitatively compared

the dMRI tractography data with the tracer data. A correlation was

found between these two data, though the correlation was small. This

suggests that the dMRI tractography data is valuable yet far from per-

fect. In our study, the proportion of laminar connections per unit vol-

ume between V4t's deep layer and V1's superficial layer, as well as

between V2's superficial layer and FST's deep layer, are the strongest.

In addition, the laminar connections between deep layers are also

strong. It is probably because the deep layers are close to white mat-

ter, which is full of regularly distributed fibers. Moreover, using dMRI

to estimate the fibers in grey matter is not easy. Therefore, many con-

nections estimated by dMRI between deep layers should end at

superficial layers, and the connections between the deep layers

should have been overestimated. Thus, this result is good enough for

the dMRI. Considering the noninvasive nature of dMRI data, this

approach is still a good choice for studying laminar connections, espe-

cially for the human brain.

Our study on the correlation between the working memory and

the cortical thickness shows that dlPFC's thickness is positively corre-

lated with the reaction time. The median reaction time was negatively

correlated with the accuracy (r = �0.5932, p < .001). This suggests a

negative correlation between cortical thickness and working memory

performance, which may differ from popular perception. Neverthe-

less, some previous studies have found a negative correlation

between cortical thickness and working memory performance

(Krogsrud et al., 2021; Metzler-Baddeley et al., 2016; Østby

et al., 2011). This negative correlation also is found in other cognitive

tasks (Boen et al., 2021). Studies (Whitaker et al., 2016) have shown

that cortical thickness during adolescence is negatively correlated

with myelination, and more rapidly shrinking cortical thickness had

faster rates of myelination. Therefore, a better working memory per-

formance is probably associated with more myelination.

In dlPFC, the superficial thickness was only significantly corre-

lated with the 2-back task but not with the 0-back task. The deep

thickness, however, was correlated with the 0-back task. Past

research (Bastos et al., 2018; Markowitz et al., 2015) has shown that

the prefrontal cortex's different layers are responsible for different

patterns of the working memory. Furthermore, recent studies (Finn

et al., 2019) on fMRI have demonstrated that during maintenance in

the dlPFC, superficial layers are preferentially active, especially when

the task requires much more manipulation. On the other hand, during

the response, deep layers are preferentially active. Compared with the

0-back task, the 2-back task requires more maintenance and manipu-

lation, which explains the correlation between superficial thickness

and the 2-back task but not the 0-back task. However, both the

2-back and 0-back tasks require responses, and 0-back tasks are more

affected by the response, which may explain why the deep layer is

mainly correlated with these tasks. Since the subjects were all adults

between 26 and 35 years old and there was little age difference, the

age influence was not considered.

In the future, we will try to combine structural MRI and dMRI

with higher resolution to investigate the cortical laminar structure.

Meanwhile, the functional MRI will be used to further validate the

laminar structure and to explain the relationship between laminar

structure and function.

5 | CONCLUSIONS

Most methods used to study the cortex laminar structure are inva-

sive, so it is not easy to experiment on living humans. Therefore,

finding a noninvasive way to learn more about the laminar structure

is vital to understanding the human brain. Our research provides a

noninvasive method to segment the whole left human hemisphere

into layers. This provides a basis for further exploring and simulating

the human brain in the future. Additionally, it offers new ideas for

further understanding and treating brain-related diseases. In the

future, we hope to segment the brain with higher resolution data to

improve the accuracy of the results. Furthermore, we hope to use a

more accurate method to construct laminar connections and further

analyze the relationship between laminar structure and human

cognition.
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Ángel García-Cabezas, M., Zikopoulos, B., & Barbas, H. (2019). The struc-

tural model: A theory linking connections, plasticity, pathology, devel-

opment and evolution of the cerebral cortex. Brain Structure &

Function, 224(3), 985–1008. https://doi.org/10.1007/s00429-019-

01841-9

Assaf, Y. (2018). Imaging laminar structures in the gray matter with diffu-

sion MRI. NeuroImage, 197, 677–688. https://doi.org/10.1016/J.

NEUROIMAGE.2017.12.096

Barch, D. M., Burgess, G. C., Harms, M. P., Petersen, S. E., Schlaggar, B. L.,

Corbetta, M., … Van Essen, D. C. (2013). Function in the human con-

nectome: Task-fmri and individual differences in behavior. NeuroImage,

80, 169–189. https://doi.org/10.1016/j.neuroimage.2013.05.033

Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological fea-

tures of tissues elucidated by quantitative-diffusion-tensor mri. Journal

of Magnetic Resonance, Series B, 111(3), 209–219. https://doi.org/10.
1006/jmrb.1996.0086

Bastiani, M., Oros-Peusquens, A.-M., Seehaus, A., Brenner, D. A.,

Möllenhoff, K., Celik, A., … Roebroeck, A. (2016). Automatic segmenta-

tion of human cortical layer-complexes and architectural areas using

ex vivo diffusion MRI and its validation. Frontiers in Neuroscience, 10,

487. https://doi.org/10.3389/FNINS.2016.00487

Bastiani, M., Shah, N. J., Goebel, R., & Roebroeck, A. (2012). Human corti-

cal connectome reconstruction from diffusion weighted MRI: The

effect of tractography algorithm. NeuroImage, 62(3), 1732–1749.
https://doi.org/10.1016/J.NEUROIMAGE.2012.06.002

Bastos, A. M., Loonis, R., Kornblith, S., Lundqvist, M., & Miller, E. K. (2018).

Laminar recordings in frontal cortex suggest distinct layers for mainte-

nance and control of working memory. Proceedings of the National

Academy of Sciences of the United States of America, 115(5), 1117–
1122. https://doi.org/10.1073/PNAS.1710323115

Beier, K. T., Gao, X. J., Xie, S., DeLoach, K. E., Malenka, R. C., & Luo, L.

(2019). Topological organization of ventral tegmental area connectivity

revealed by viral-genetic dissection of input-output relations. Cell

Reports, 26(1), 159–167.e6. https://doi.org/10.1016/J.CELREP.2018.
12.040

Boen, R., Ferschmann, L., Vijayakumar, N., Overbye, K., Fjell, A. M.,

Espeseth, T., & Tamnes, C. K. (2021). Development of attention net-

works from childhood to young adulthood: A study of performance,

intraindividual variability and cortical thickness. Cortex, 138, 138–151.
https://doi.org/10.1016/J.CORTEX.2021.01.018

Brodmann, K. (1909). "vergleichende lokalisationslehre der grosshirnrinde

in ihren prinzipien dargestellt auf grund des zellenbaues". Barth.
Butler, B. E., Chabot, N., & Lomber, S. G. (2016). A quantitative comparison

of the hemispheric, areal, and laminar origins of sensory and motor

cortical projections to the superior colliculus of the cat. The Journal of

Comparative Neurology, 524, 2623–2642. https://doi.org/10.1002/

CNE.23980

Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G., & Haxby, J. V.

(1998). An area specialized for spatial working memory in human fron-

tal cortex. Science, 279(5355), 1347–1351. https://doi.org/10.1126/
SCIENCE.279.5355.1347

Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1997). Transient

and sustained activity in a distributed neural system for human work-

ing memory. Nature, 386(6625), 608–611. https://doi.org/10.1038/
386608A0

D'Esposito, M., Detre, J. A., Alsop, D. C., Shin, R. K., Atlas, S., &

Grossman, M. (1995). The neural basis of the central executive system

of working memory. Nature, 378(6554), 279–281. https://doi.org/10.
1038/378279A0

Dhital, B., Stuber, C., Turner, S. G. R., Bazin, P. L., Reimann, K.,

Leuze, C. W. U., & Anwer, A. (2014). Layer-specific intracortical con-

nectivity revealed with diffusion MRI. Cerebral Cortex, 24, 328–339.
https://doi.org/10.1093/CERCOR/BHS311

Donahue, C. J., Sotiropoulos, S. N., Jbabdi, S., Hernandez-Fernandez, M.,

Behrens, T. E., Dyrby, T. B., … Glasser, M. F. (2016). Using diffusion

tractography to predict cortical connection strength and distance: A

quantitative comparison with tracers in the monkey. The Journal of

Neuroscience, 36(25), 6758–6770. https://doi.org/10.1523/

JNEUROSCI.0493-16.2016

Economo, C. V., & Koskinas, G. N. (1925). Die cytoarchitektonik der hirn-

rinde des erwachsenen menschen. (the cyto-architectonics of the

cerebral cortex of adult man.). Springer.

Essen, D. C. V., Smith, S. M., Deanna, M., Behrens, T. E. J., Yacoub, E., &

Ugurbil, K. (2013). The WU-Minn human connectome project: An

overview. NeuroImage, 80, 62–79. https://doi.org/10.1016/J.

NEUROIMAGE.2013.05.041

Felleman, D. J., & Essen, D. C. V. (1991). Distributed hierarchical proces-

sing in the primate cerebral cortex. Cerebral Cortex, 1(1), 1–47. https://
doi.org/10.1093/CERCOR/1.1.1

Finn, E. S., Huber, L., Jangraw, D. C., Molfese, P. J., & Bandettini, P. A.

(2019). Layer-dependent activity in human prefrontal cortex during

working memory. Nature Neuroscience, 22(10), 1687–1695. https://
doi.org/10.1038/S41593-019-0487-Z

Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774–781. https://doi.org/
10.1016/j.neuroimage.2012.01.021

Gattass, R., Galkin, T. W., Desimone, R., & Ungerleider, L. G. (2014). Sub-

cortical connections of area V4 in the macaque. The Journal of Compar-

ative Neurology, 522(8), 1941–1965. https://doi.org/10.1002/CNE.

23513

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J. W.,

Yacoub, E., … Essen, D. C. V. (2016). A multi-modal parcellation of

human cerebral cortex. Nature, 536(7615), 171–178. https://doi.org/
10.1038/NATURE18933

Goldman-Rakic, P. (1995). Cellular basis of working memory. Neuron,

14(3), 477–485. https://doi.org/10.1016/0896-6273(95)90304-6
Huber, L. R., Poser, B. A., Bandettini, P. A., Arora, K., Wagstyl, K., Cho, S.,

… Gulban, O. F. (2021). Laynii: A software suite for layer-fmri. Neuro-

Image, 237, 118091. https://doi.org/10.1016/J.NEUROIMAGE.2021.

118091

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. International

Conference On Pattern Recognition, 31(8), 651–666. https://doi.org/10.
1016/J.PATREC.2009.09.011

Kleinnijenhuis, M., Zerbi, V., Küsters, B., Slump, C. H., Barth, M., & van

Walsum, A. M. V. C. (2013). Layer-specific diffusion weighted imaging

in human primary visual cortex in vitro. Cortex, 49(9), 2569–2582.
https://doi.org/10.1016/J.CORTEX.2012.11.015

Krogsrud, S. K., Mowinckel, A. M., Sederevicius, D., Vidal-Piñeiro, D.,

Amlien, I. K., Wang, Y., … Fjell, A. M. (2021). Relationships between

apparent cortical thickness and working memory across the lifespan -

effects of genetics and socioeconomic status. Developmental Cognitive

Neuroscience, 51, 100997. https://doi.org/10.1016/J.DCN.2021.

100997

Lukasik, S., Kowalski, P. A., Charytanowicz, M., & Kulczycki, P. (2016).

Clustering using flower pollination algorithm and Calinski-Harabasz

index. IEEE Congress On Evolutionary Computation (CEC), 2724–2728.
https://doi.org/10.1109/CEC.2016.7744132

ZHANG ET AL. 5233

https://orcid.org/0000-0002-2179-2460
https://orcid.org/0000-0002-2179-2460
https://orcid.org/0000-0003-1979-4659
https://orcid.org/0000-0003-1979-4659
https://orcid.org/0000-0003-4087-6544
https://orcid.org/0000-0003-4087-6544
https://orcid.org/0000-0002-6534-1979
https://orcid.org/0000-0002-6534-1979
https://orcid.org/0000-0001-5437-6095
https://orcid.org/0000-0001-5437-6095
https://doi.org/10.1109/ISBI45749.2020.9098440
https://doi.org/10.1109/ISBI45749.2020.9098440
https://doi.org/10.1007/s00429-019-01841-9
https://doi.org/10.1007/s00429-019-01841-9
https://doi.org/10.1016/J.NEUROIMAGE.2017.12.096
https://doi.org/10.1016/J.NEUROIMAGE.2017.12.096
https://doi.org/10.1016/j.neuroimage.2013.05.033
https://doi.org/10.1006/jmrb.1996.0086
https://doi.org/10.1006/jmrb.1996.0086
https://doi.org/10.3389/FNINS.2016.00487
https://doi.org/10.1016/J.NEUROIMAGE.2012.06.002
https://doi.org/10.1073/PNAS.1710323115
https://doi.org/10.1016/J.CELREP.2018.12.040
https://doi.org/10.1016/J.CELREP.2018.12.040
https://doi.org/10.1016/J.CORTEX.2021.01.018
https://doi.org/10.1002/CNE.23980
https://doi.org/10.1002/CNE.23980
https://doi.org/10.1126/SCIENCE.279.5355.1347
https://doi.org/10.1126/SCIENCE.279.5355.1347
https://doi.org/10.1038/386608A0
https://doi.org/10.1038/386608A0
https://doi.org/10.1038/378279A0
https://doi.org/10.1038/378279A0
https://doi.org/10.1093/CERCOR/BHS311
https://doi.org/10.1523/JNEUROSCI.0493-16.2016
https://doi.org/10.1523/JNEUROSCI.0493-16.2016
https://doi.org/10.1016/J.NEUROIMAGE.2013.05.041
https://doi.org/10.1016/J.NEUROIMAGE.2013.05.041
https://doi.org/10.1093/CERCOR/1.1.1
https://doi.org/10.1093/CERCOR/1.1.1
https://doi.org/10.1038/S41593-019-0487-Z
https://doi.org/10.1038/S41593-019-0487-Z
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1002/CNE.23513
https://doi.org/10.1002/CNE.23513
https://doi.org/10.1038/NATURE18933
https://doi.org/10.1038/NATURE18933
https://doi.org/10.1016/0896-6273(95)90304-6
https://doi.org/10.1016/J.NEUROIMAGE.2021.118091
https://doi.org/10.1016/J.NEUROIMAGE.2021.118091
https://doi.org/10.1016/J.PATREC.2009.09.011
https://doi.org/10.1016/J.PATREC.2009.09.011
https://doi.org/10.1016/J.CORTEX.2012.11.015
https://doi.org/10.1016/J.DCN.2021.100997
https://doi.org/10.1016/J.DCN.2021.100997
https://doi.org/10.1109/CEC.2016.7744132


Mackey, S., & Petrides, M. (2010). Quantitative demonstration of compa-

rable architectonic areas within the ventromedial and lateral orbital

frontal cortex in the human and the macaque monkey brains. The

European Journal of Neuroscience, 32(11), 1940–1950. https://doi.org/
10.1111/J.1460-9568.2010.07465.X

Majka, P., Chaplin, T. A., Yu, H.-H., Tolpygo, A., Mitra, P. P.,

W�ojcik, D. K., & Rosa, M. G. P. (2016). Towards a comprehensive atlas

of cortical connections in a primate brain: Mapping tracer injection

studies of the common marmoset into a reference digital template.

The Journal of Comparative Neurology, 524(11), 2161–2181. https://
doi.org/10.1002/CNE.24023

Markowitz, D. A., Curtis, C. E., & Pesaran, B. (2015). Multiple component

networks support working memory in prefrontalcortex. Proceedings of

the National Academy of Sciences of the United States of America,

112(35), 11084–11089. https://doi.org/10.1073/PNAS.1504172112

McInnes, L., & Healy, J. (2018). Umap: Uniform manifold approximation

and projection for dimension reduction. arXiv, 1802.03426. https://

doi.org/10.48550/arXiv.1802.03426

Metzler-Baddeley, C., Caeyenberghs, K., Foley, S., & Jones, D. K. (2016). Task

complexity and location specific changes of cortical thickness in executive

and salience networks after working memory training. NeuroImage, 130,

48–62. https://doi.org/10.1016/J.NEUROIMAGE.2016.01.007

Nagy, Z., Alexander, D. C., Thomas, D. L., Weiskopf, N., & Sereno, M. I.

(2013). Using high angular resolution diffusion imaging data to discrim-

inate cortical regions. PLoS One, 8(5), e63842. https://doi.org/10.

1371/JOURNAL.PONE.0063842

Østby, Y., Tamnes, C. K., Fjell, A. M., & Walhovd, K. B. (2011). Morphome-

try and connectivity of the fronto-parietal verbal working memory net-

work in development. Neuropsychologia, 49(14), 3854–3862. https://
doi.org/10.1016/J.NEUROPSYCHOLOGIA.2011.10.001

Petrides, M., Tomaiuolo, F., Yeterian, E. H., & Pandya, D. N. (2012). The

prefrontal cortex: Comparative architectonic organization in the

human and the macaque monkey brains. Cortex, 48(1), 46–57. https://
doi.org/10.1016/J.CORTEX.2011.07.002

Pezzotti, N., Lelieveldt, B. P. F., Maaten, L. V. D., Hollt, T., Eisemann, E., &

Vilanova, A. (2017). Approximated and user steerable tSNE for progressive

visual analytics. IEEE Transactions on Visualization and Computer Graphics,

23(7), 1739–1752. https://doi.org/10.1109/TVCG.2016.2570755
Politis, A. (2016). Microphone array processing for parametric spatial audio

techniques (doctoral thesis), School of Electrical Engineering http://

urn.fi/URN:ISBN:978-952-60-7037-7.

Sakata, H., Kim, Y., Nejime, M., Konoike, N., & Nakamura, K. (2019). Lami-

nar pattern of projections indicates the hierarchical organization of the

anterior cingulate-temporal lobe emotion system. Frontiers in Neuro-

anatomy, 13, 74. https://doi.org/10.3389/FNANA.2019.00074

Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients:

Appropriate use and interpretation. Anesthesia & Analgesia, 126(5),

1763–1768. https://doi.org/10.1213/ANE.0000000000002864

Scholtens, L. H., Reus, M. A., Lange, S. C., Schmidt, R., & Heuvel, M. P. V.

(2018). An MRI von Economo–koskinas atlas. NeuroImage, 170, 249–
256. https://doi.org/10.1016/J.NEUROIMAGE.2016.12.069

Schwarz, L. A., Miyamichi, K., Gao, X. J., Beier, K. T., Weissbourd, B.,

DeLoach, K. E., … Luo, L. (2015). Viral-genetic tracing of the input-

output organization of a central noradrenaline circuit. Nature,

524(7563), 88–92. https://doi.org/10.1038/NATURE14600

Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: A

structural description of the human brain. PLoS Computational Biology,

1(4), e42. https://doi.org/10.1371/JOURNAL.PCBI.0010042

Tournier, J. D., Calamante, F., & Connelly, A. (2007). Robust determination

of the fibre orientation distribution in diffusion MRI: Non-negativity

constrained super-resolved spherical deconvolution. NeuroImage,

35(4), 1459–1472. https://doi.org/10.1016/J.NEUROIMAGE.2007.

02.016

Tournier, J. D., Calamante, F., & Connelly, A. (2010). Improved probabilistic

streamlines tractography by 2nd order integration over fibre orienta-

tion distributions. Journal of Magnetic Resonance Imaging Magnetic Res-

onance in Medicine, 1670.

Tournier, J.-D., Calamante, F., & Connelly, A. (2013). Determination of the

appropriate b value and number of gradient directions for high-angu-

lar-resolution diffusion-weighted imaging. NMR in Biomedicine, 26(12),

1775–1786. https://doi.org/10.1002/NBM.3017

Tournier, J.-D., Calamante, F., Gadian, D. G., & Connelly, A. (2004). Direct

estimation of the fiber orientation density function from diffusion-

weighted MRI data using spherical deconvolution. NeuroImage, 23(3),

1176–1185. https://doi.org/10.1016/J.NEUROIMAGE.2004.07.037

Tournier, J.-D., Smith, R. E., Raffelt, D., Tabbara, R., Dhollander, T.,

Pietsch, M., … Connelly, A. (2019). MRtrix3: A fast, flexible and open

software framework for medical image processing and visualisation.

NeuroImage, 202, 116137. https://doi.org/10.1016/J.NEUROIMAGE.

2019.116137

Trong-Kha, T., Arnaud, G., Song, A. W., & Christian, B. (2014). Cortical

depth dependence of the diffusion anisotropy in the human cortical

gray matter in vivo. PLoS One, 9(3), e91424. https://doi.org/10.1371/

JOURNAL.PONE.0091424

Tuch, D. S. (2004). Q-ball imaging. Magnetic Resonance in Medicine, 52(6),

1358–1372. https://doi.org/10.1002/MRM.20279

Tustison, N. J., Cook, P. A., Klein, A., Song, G., Das, S. R., Duda, J. T., …
Avants, B. B. (2014). Large-scale evaluation of ants and freesurfer cor-

tical thickness measurements. NeuroImage, 99, 166–179. https://doi.
org/10.1016/J.NEUROIMAGE.2014.05.044

Wagstyl, K., Larocque, S., Cucurull, G., Lepage, C., Cohen, J. P., Bludau, S.,

… Evans, A. C. (2020). BigBrain 3D atlas of cortical layers: Cortical and

laminar thickness gradients diverge in sensory and motor cortices.

PLoS Biology, 18(4), e3000678. https://doi.org/10.1371/JOURNAL.

PBIO.3000678

Wang, X., & Xu, Y. (2019). An improved index for clustering validation

based on Silhouette index and Calinski-Harabasz index. IOP Conference

Series: Materials Science and Engineering, 569(5), 52024. https://doi.

org/10.1088/1757-899X/569/5/052024

Whitaker, K. J., Vértes, P. E., Romero-Garcia, R., Váša, F., Moutoussis, M.,

Prabhu, G., … Bullmore, E. T. (2016). Adolescence is associated with

genomically patterned consolidation of the hubs of the human brain

connectome. Proceedings of the National Academy of Sciences of the

United States of America, 113(32), 9105–9110. https://doi.org/10.

1073/PNAS.1601745113

Wood, M., Adil, O., Wallace, T., Fourman, S. M., Wilson, S. P.,

Herman, J. P., & Myers, B. (2019). Infralimbic prefrontal cortex struc-

tural and functional connectivity with the limbic forebrain: A combined

viral genetic and optogenetic analysis. Brain Structure & Function,

224(1), 73–97. https://doi.org/10.1007/S00429-018-1762-6

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Zhang, J., Sun, Z., Duan, F., Shi, L.,

Zhang, Y., Solé-Casals, J., & Caiafa, C. F. (2022). Cerebral

cortex layer segmentation using diffusion magnetic resonance

imaging in vivo with applications to laminar connections and

working memory analysis. Human Brain Mapping, 43(17),

5220–5234. https://doi.org/10.1002/hbm.25998

5234 ZHANG ET AL.

https://doi.org/10.1111/J.1460-9568.2010.07465.X
https://doi.org/10.1111/J.1460-9568.2010.07465.X
https://doi.org/10.1002/CNE.24023
https://doi.org/10.1002/CNE.24023
https://doi.org/10.1073/PNAS.1504172112
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.1016/J.NEUROIMAGE.2016.01.007
https://doi.org/10.1371/JOURNAL.PONE.0063842
https://doi.org/10.1371/JOURNAL.PONE.0063842
https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2011.10.001
https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2011.10.001
https://doi.org/10.1016/J.CORTEX.2011.07.002
https://doi.org/10.1016/J.CORTEX.2011.07.002
https://doi.org/10.1109/TVCG.2016.2570755
http://urn.fi/URN:ISBN:978-952-60-7037-7
http://urn.fi/URN:ISBN:978-952-60-7037-7
https://doi.org/10.3389/FNANA.2019.00074
https://doi.org/10.1213/ANE.0000000000002864
https://doi.org/10.1016/J.NEUROIMAGE.2016.12.069
https://doi.org/10.1038/NATURE14600
https://doi.org/10.1371/JOURNAL.PCBI.0010042
https://doi.org/10.1016/J.NEUROIMAGE.2007.02.016
https://doi.org/10.1016/J.NEUROIMAGE.2007.02.016
https://doi.org/10.1002/NBM.3017
https://doi.org/10.1016/J.NEUROIMAGE.2004.07.037
https://doi.org/10.1016/J.NEUROIMAGE.2019.116137
https://doi.org/10.1016/J.NEUROIMAGE.2019.116137
https://doi.org/10.1371/JOURNAL.PONE.0091424
https://doi.org/10.1371/JOURNAL.PONE.0091424
https://doi.org/10.1002/MRM.20279
https://doi.org/10.1016/J.NEUROIMAGE.2014.05.044
https://doi.org/10.1016/J.NEUROIMAGE.2014.05.044
https://doi.org/10.1371/JOURNAL.PBIO.3000678
https://doi.org/10.1371/JOURNAL.PBIO.3000678
https://doi.org/10.1088/1757-899X/569/5/052024
https://doi.org/10.1088/1757-899X/569/5/052024
https://doi.org/10.1073/PNAS.1601745113
https://doi.org/10.1073/PNAS.1601745113
https://doi.org/10.1007/S00429-018-1762-6
https://doi.org/10.1002/hbm.25998

	Cerebral cortex layer segmentation using diffusion magnetic resonance imaging in vivo with applications to laminar connecti...
	1  INTRODUCTION
	2  MATERIAL AND METHODS
	2.1  dMRI dataset
	2.2  Automatic layer segmentation
	2.2.1  Adding GFA to the clustering features

	2.3  Histological verification of clustering
	2.4  Laminar connections between regions
	2.5  Laminar analysis of working memory

	3  RESULTS
	3.1  Layer clustering and analysis
	3.2  Validation of layer clustering
	3.3  Reclustering and analysis after adding GFA as a feature
	3.4  Laminar connections of brain regions
	3.5  Laminar analysis of working memory

	4  DISCUSSION
	5  CONCLUSIONS
	ACKNOWLEDGMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


