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Accumulating evidence demonstrated the crucial role of gut microbiota in many human
diseases, including cancer. Checkpoint inhibitor therapy has emerged as a novel
treatment and has been clinically accepted as a major therapeutic strategy for cancer.
Gut microbiota is related to cancer and the effect of immune checkpoint inhibitors (ICIs),
and supplement with specific bacterial species can restore or enhance the responses to
the ICIs. Namely, specified bacteria can serve as the biomarkers for distinguishing the
patient who will respond to ICIs and determine the effectiveness of ICIs, as well as
predicting the efficacy of checkpoint inhibitor immunotherapy. Regardless of the
significant findings, the relationship between gut microbiota and the effect of ICIs
treatment needs a more thorough understanding to provide more effective therapeutic
plans and reduce treatment complication. In this review, we summarized the role of gut
microbiota played in immune system and cancer. We mainly focus on the relationship
between gut microbiota and the checkpoint inhibitor immunotherapy.
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INTRODUCTION

Microbes have been on earth for billions of years, they nearly occupy every corner of the earth,
including the human body. The majority of microbes in our body resides in the gut (1). Gut
microbiota consists of bacteria, fungi, virus, and other microbial and eukaryotic species and they
mainly located in small intestinal and colon (1, 2). Gut microbiota colonized our body when we
were born (3), and it has a great variety between different individuals (4). Based on previous
research, gut microbiota has a close relation with various pathological conditions, including obesity
(5), diabetes (6), neurodegenerative diseases (7), and cancers (8–11). Cancer is a major threat to
human’s health with high fatality rate. At present, the major therapeutic strategy of cancer includes
surgery, radiotherapy, chemotherapy, and immunotherapy (12). Cancer immunotherapy is a new
therapeutic strategy emerging in recent years. Of note, cancer immunotherapy targeting immune
checkpoints has achieved a great success. Antibody drugs targeting cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) or its ligands
programmed cell death protein ligand 1 (PD-L1) and 2 (PD-L2) arise in these years (13). The
relevant antibody drugs like nivolumab, pembrolizumab were approved in clinical application by
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the United States Food and Drug Administration (FDA) (14).
Most patients receiving ICIs treatment can achieve long-term
suppression (13). But there still exist some limitations of ICIs, the
response rates of patients treated with anti-PD-1 antibody are
relatively low in several types of cancer (approximately 20 to 25%
in non–small-cell lung cancer, melanoma, or renal-cell cancer)
(15). What ’s more, small number of patients gained
hyperprogression after treating with ICIs (16), and
approximately one third of patients relapse after treating with
ICIs (13).

Recent studies reveal that the abundance and composition of
gut microbiota can influence the effect of ICIs treatment (17).
The relevant bacteria such as Bifidobacterium (18), Bacteroides
fragilis (19), Akkermansia muciniphia (20) are found to be
related to the clinical outcomes of cancer immunotherapy. Gut
microbiota might serve as a potential factor affecting the
effectiveness of checkpoint blockade immunotherapy. In this
review, we summarized the role that gut microbiota played in
immune system and in cancer genesis and development, we
mainly focus on the relationship between gut microbiota and the
effect of ICIs treatment.
GUT MICROBIOTA AND IMMUNE SYSTEM

Gut Microbiota and Innate Immunity
The innate immune system has physiological functions
protecting our body. The innate immune system in intestinal
consists of epithelial cells, myeloid cells, innate lymphoid cells,
and other types of cells (21). Gut microbiota has broader effects
on innate immunity (22). The immune system inside the
intestinal plays a vital role in preventing external bacterial
invasion and infection (22). Gut mucus is the first barrier
providing the underlying epithelium from bacteria, to some
extent, gut mucus is shaped by microbiota. The penetrability of
gut mucus of germ-free mice and conventionally raised mice is
different, the small intestine mucus become normally detached
and colonic inner mucus become impenetrable after gavaged
with microbiota from conventionally raised mice (23). In
addition, immunoglobulin A (IgA) is an antibody isotype
existing in intestinal lumen (24), mucosal IgA is binding to the
polymeric immunoglobulin receptor and secreted across the
epithelium (25), and it has a close relationship with Bacteroides
fragilis. A research found that Bacteroides fragilis can take
advantage of the immune system to settle down in the
intestine of mice (Figure 1), however, it is difficult for
Bacteroides fragilis to settle on the surface of the intestine and
maintain long-term stability once the mice lack IgA, indicating
that the immune system has a close relationship with commensal
bacteria (26).

Gut Microbiota and Adaptive Immunity
Gut microbiota has a close relation with adaptive immunity,
especially T cells. A research found that in mice lamina propria,
Th17 cells can be induced by Segment filamentous bacteria (SFB).
Transplantation of SFB in mice induces the appearance of CD4+
Frontiers in Immunology | www.frontiersin.org 2
T helper cells, increases level of IL-17 and IL-22 in lamina
propria (Figure 1) (27). This research reveals that certain
bacteria can cause changes in the number of specific cells in
the immune system and expression of immune-related genes in
vitro. However, how SFB affects Th17 cells remains unclear.
Another research found that Indigenous Clostridium species
promote the accumulation of CD4+ T regulatory cells (Tregs)
in colonic mucosa. They found clusters IV and XIVa of the genus
Clostridium is associated with Tregs accumulation in the colon
(Figure 1) (28). Tregs plays an important role in maintenance of
immune homeostasis, so this finding might offer a new
therapeutic method to autoimmunity disease and allergy (28,
29). Gut microbiota influences immune system mainly through
metabolites such as short-chain fatty acids (SCFAs). SCFAs are
considered as the most abundant metabolites produced by gut
microbiota in gut lumen, and they are produced by various types
of bacteria including Faecalibacterium prausnitzii, Roseburia
intestinalis, and Anaerostipes butyraticus (30, 31). SCFAs
consist of acetate, propionate, and butyrate, they have an
extensive influence on immune system. Studies have shown
that butyrate can induce Treg cell differentiation in vivo or in
vitro (32). Further research found that butyrate regulates Foxp3,
which demonstrates that butyrate plays a role in inhibiting the
activation and proliferation of T cells (32, 33). Butyrate also has
an impact on Th17 cells through controlling the cytokine
production by dentritic cells (DCs) (Figure 1). Butyrate
produced by gut microbiota increases the level of GPR109a
and induces expressing of IL-10 and Aldh1a1 in colonic
macrophage and DCs, result in suppressing of development of
Th17 cells (34). Feeding mice with Bifidobacterium infantis
increased the production of retinoic acid in dendritic cells
(DCs), result in increasing of TGF-b production and Treg
expansion (35). Studies with gnotobiotic mice reveals an
immunomodulatory effect of secreted microbial metabolites. In
mice, Bacteroides fragilis secreted polysaccharide A binding to
Toll-like receptor 2 (TLR2) on Treg cells, which can enhance the
expansion of Tregs while suppressing the proinflammatory Th17
response (Figure 1), this indicated that polysaccharide A
secreted by Bacteroides fragilis is able to prevent and cure
experimental colitis in animals (36, 37). Through reading all of
these researches, we can conclude that gut microbiota is
indispensable for maintaining the immune homeostasis in
animals and in human.
GUT MICROBIOTA AND CANCER

Gut Microbiota and Gastrointestinal
Cancer
Gut microbiota has a great influence on gastrointestinal cancer
(38, 39). The colonization of Helicobacter pylori (H. pylori)
causes a persistent inflammatory response, which can lead to
cancers of the stomach (38). Infected individuals with low
abundance of H. pylori have a lower risk of gastric cancer,
proving that H. pylori is associated with gastric carcinogenesis
(40). Further studies revealed that H. pylori might promote
June 2021 | Volume 12 | Article 669150
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cancer through b-catenin signal pathway (38). Colorectal
cancer (CRC) is associated with specific bacteria including
Bacteroides fragilis, Fusobacterium nucleatum, Porphyromonas
asaccharolytica, Parvimonas micra, Prevotella intermedia,
Alistipes finegoldii, and Thermanaerovibrio acidaminovorans,
which can serve as potential diagnostic markers across
population (41). Certain types of gut microbes might promote
CRC. Sunny H. Wong et al. feed conventional and germ-free
mice with stool samples from CRC patients and healthy
individuals, then they found mice feeding with stool samples
from CRC patients developed high-grade dysplasia (P <.05) and
macroscopic polyps (P <.01) than mice feeding with stool
samples from healthy individuals (42). Shaoguang W et al.
found that Enterotoxigenic Bacteroides fragilis (ETBF)
promotes colon tumorigenesis by stimulating immune
response via Th17 cells in mouse CRC model, ETBF stimulates
rapid colitis and colon tumors in multiple intestinal neoplasia
(Min) mice and induce activation of transcription-3 (Stat3) in
the colon of Min mice, Stat3 signaling is necessary for the
Frontiers in Immunology | www.frontiersin.org 3
generation of TH17 cells, and IL-17 produced by CD4+ Th17
is sufficient to induce tumorigenesis in the absence of gd T cells
(43). Gut microbiota also has a direct role in the occurrence of
oncogenic mutations in colorectal cancer, a research reveals that
colibactin—a compound generated by Escherichia coli—is
believed to alkylate DNA on adenine residues and cause DNA
double-strand breaks, which is related to the generation of
colorectal cancer (44). Tumor promoting effects are mostly
related to depletion or dysbiosis of gut-microbiota. After
killing some bacteria with antibiotics (ATBs) in mice, the
development of the tumor in the liver and the colon can be
reduced (45, 46). Dianne H. Dapito et al. feed mice with ATBs
which can eliminates commensal bacteria and reduce systemic
lipopolysaccharide levels, then they can be found in DEN plus
CCl4 HCC model, the tumor size was reduced (45).

Gut Microbiota and Liver Cancer
Liver does not have direct contact with microbiota, but it has tight
anatomic links to the gut (47, 48). In most of the studies, liver
FIGURE 1 | The interaction between gut microbiota and immune system (1). Bacteroides fragilis takes advantage of IgA to settle down in the intestine of mice (2); SFB
induces the appearance of CD4+ T helper cells in lamina propria (3); Clusters IV and XIVa of the genus Clostridium are associated with Tregs accumulation in colon (4);
SCFAs regulate Foxp3 in Tregs, inhibit immune response of T cells (5); SCFAs induce expressing of IL-10 and Aldh1a1 in DCs, result in inhibiting the development of
Th17 cell (6); Polysaccharide A secreted by Bacteroides fragilis binds to TLR2 in Tregs, enhances Tregs and suppresses the proinflammatory Th17 response.
June 2021 | Volume 12 | Article 669150
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cirrhosis is a major potential risk of liver cancer (49). In 2016,
people noticed that gut microbiota might associate with HCC
progression in cirrhotic patients (50). Until now, there is no
clinical evidence showing that a specific bacteria is associated
with HCC (51). But experiments on gut-sterilized mice or germ-
free mice showed that the development of HCC might associate
with microbiota or microbially activated pathways, microbial
metabolites, or microbiota-associated molecular patterns
(MAMPs) also associate with the development of HCC (51). Gut
microbiota and Toll-like receptors (TLRs) are required for HCC
promotion but not required for HCC initiation (45). One research
revealed that gut microbiota is associated with cholangiocarcinoma.
According to the study which included 60 patients with
cholangiocarcinoma, there existed a distinct, tissue-specific
microbiome in bile duct tissues. Compared with normal samples
(non-neoplastic liver), the patients with cholangiocarcinoma
(CCA) tumors had a significant increase in Stenotrophomonas
species in bile duct tissues (52).

Gut Microbiota and Other Types of Cancer
There are also several studies focused on the gut microbiota and
breast cancer. In 2015, Bard and his colleagues observed that gut
microbiota was associated with clinical stages of breast cancer.
They collected fecal samples from different stages of breast cancer
patients, and performed 16S rRNA sequencing, they found that
stage I patients had a lower absolute number of Blautia sp. than
stage III, several other bacterial species (Bifidobacterium, Blautia,
F. Prausnitzii, and Blautia) were different according to different
clinical stages of breast cancer (53). Another research also found
that gut microbiota was associated with different stages of breast
cancer, compared to patients in stage 0/I, the number of
Bacteroidetes, Clostridium coccoides cluster, Clostridium leptum
cluster, Faecalibacterium prausnitzii, and Blautia sp. are increased
in stage II/III patients. In addition, the absolute numbers of total
bacteria are different according to the patient’s body mass index,
which illustrated that obesity is associated with gut microbiota
(54). Gut microbiota and lung has an essential cross-talk called
“gut-lung axis” (55). In lung cancer patients, the level of
Enterococcus sp. was decreased and the levels of Actinobacteria
sp. and Bifidobacterium sp. were increased (56), indicating that
lung cancer had an impact on the composition of gut microbiota.

Metabolite of Gut Microbiota and Cancer
Metabolites of gut microbiota are known to induce
proinflammatory cytokines and mediate tumor-associated
inflammation in colon cancer (57, 58). The short chain fatty
acids (SCFAs) secreted by bacteria (especially propionic acid and
butyric acid) can mediate anti-inflammatory response and
reduce the occurrence of colorectal cancer (59). Besides, SCFAs
mediate p21 gene expression through modulation of microRNA,
which will in turn influence colonic carcinogenesis (60).
Bacteroides fragilis in the intestines of patients with colorectal
cancer produce a variety of toxic metabolites such as b-
glucuronidase, spermine oxidase, reactive oxygen species,
reactive nitrogen species, and nitroso compounds, which can
induce DNA damage and promote colorectal cancer (61, 62). Bile
acid is an important component synthesized by the liver to
Frontiers in Immunology | www.frontiersin.org 4
regulate fat metabolism. Some anaerobic bacteria in intestine
such as Bacteroides metabolize bile acids into secondary bile
acids, which can cause DNA damage, stimulate EGFR or wnt/b-
cantenin pathway, inducing colorectal cancer or liver cancer (46,
63, 64). Dietary or genetic obesity induces alterations of gut
microbiota. Fed mice with high-fat diet resulting in the increase
of Gram-positive bacteria (46). High-fat diet also increases the
levels of bacterially generated deoxycholic acid (DCA). DCA is
an intestinal bacterial metabolite which can cause DNA damage
(65). Accumulating of DCA can facilitate obesity-associated
HCC development in mice (46). In liver cancer, bile acid
metabolism changes caused by gut microbiota regulates the
expression of CXCL16 and recruits CXCL16-mediated natural
killer T (NKT) cells, which could control the liver tumor growth
(66). NKT cells can kill tumor cells in a CD1d-dependent
manner (51). Recent study revealed that inosine—a purine
nucleoside molecule produced by gut microbiota—can enhance
cancer immunotherapy response in mice (67).
GUT MICROBIOTA IS ASSOCIATED WITH
THE EFFECT OF ICI IMMUNOTHERAPY

Bifidobacterium
In 2015, Thomas and his colleagues first noticed that there were
correlations between gut microbiota and ICI immunotherapy
(18). They used mice which were harbored with different
commensal microbiota, then compared the melanoma growth
of these mice. They also found that different microbiota might
relate to different spontaneous antitumor immunity. Of which,
they found that Bifidobacterium could facilitate antitumor effect
of PD-L1 blockade (Table 1). Commensal Bifidobacterium
controlled the growth of melanoma tumor in mice, oral
administration of Bifidobacterium was an effective way to
block tumor growth. Bifidobacterium treated mice showed a
better antitumor effect compared to non-Bifidobacterium
treated mice and this tumor control effect was related to
tumor-specific T cells in periphery and accumulation of
antigen-specific CD8+ T cells within the tumor (18). This
study demonstrated that commensal Bifidobacterium can
enhance antitumor immunity in vivo with an antigen-
independent manner and it has a synergistic effect with PD-L1
blockade (18). In 2020, another team found that Bifidobacterium
enhanced antitumor immunity through production of
metabolite inosine (68). In this research, they found three
bacterial species—Bifidobacterium pseudolongum, Lactobacillus
johnsonii, and Olsenella species, these three bacterial species can
significantly enhance the efficacy of ICIs in mouse models of
CRC (Table 1) (68). They found that Bifidobacterium
pseudolongum can enhance the antitumor effect through
metabolite inosine, and this effect was dependent on
adenosine 2A receptor (A2AR) signaling specifically in T cells.
They also found that the antitumor effect of Akkermansia
muciniphia in human also relies on inosine-A2AR signal
(Figure 2). Recent research found that Bifidobacterium can
enhance local anti-CD47 immunotherapy in tumor (71). The
June 2021 | Volume 12 | Article 669150
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researchers used wild type (WT) mice, ATB-fed mice, and sterile
mice to test the ant i tumor effects of CD47-based
immunotherapy. The result showed that intestinal microbes
outside the gastrointestinal tract are effective in promoting
CD47 tumor immunotherapy. The results of Bifidobacterium
injection experiments show that Bifidobacterium has antitumor
effects in mice that do not respond to CD47 inhibition (71). This
study reveals that the tumor-targeting ability of Bifidobacterium
might be a possible mechanism that gut microbiota affect the
antitumor response.

Bacteroide
In 2015, another group published a research article focused on
the gut microbiota and the treatment of CTLA-4 blockade (19).
They find that the effect of CTLA-4 blockade treatment is related
to distinct Bacteroides species (Bacteroides fragilis and/or
Bacteroides thetaiotaomicron and Burkholderiales) (Table 1). If
gut microbiota was removed or destroyed in mice, then CTLA-4
blockade has no effect on tumors. Transplant with B. fragilis can
benefit for antitumor effect of CTLA-4 blockade. They found that
Bacteroides thetaiotaomicron or Bacteroides fragilis cause T cell
response, which is associated with antitumor efficacy of CTLA-4
blockade (19). Treatment of anti-CTLA-4 blockade also
influence the abundance of immunogenic Bacteroides spp. in
the gut, which would in turn affect the antitumor efficacy of ICIs.
Further research revealed that CTLA-4 blockade influences the
composition of microbiota, oral feeding of Bacteroides fragilis
induce Th1 immune response, promoting the maturation of
dendritic cell, which facilitate tumor control in mice and
patients (Figure 2) (19). However, a research focused on the
PD-1 immunotherapy of melanoma patients revealed that
responders have a lower abundance of Bacteroidales than the
Frontiers in Immunology | www.frontiersin.org 5
non-responders (17). They collected 112 melanoma patients who
were undergoing anti-PD-1 immunotherapy, then they
examined the gut microbiome of these patients, and they
found the diversity and composition of gut microbiota are
different between the responders and non-responders:
Clostridiales order and Ruminococcaceae family are enriched in
responders while Bacteroidales order are enriched in non-
responders. The abundance of Bacteroidales were positively
related to the frequency of Treg cells and myeloid-derived
suppressor cells (17). This study revealed that the microbiome
composi t ion might have an impact on ant i -PD-1
immunotherapy, patients with favorable gut microbiome like
Ruminococcaceae or Faecalibacterium might have an enhancing
antitumor immune response, and this antitumor immune
response was related to more antigen presentation in the
periphery and improved effector T cell function in the tumor
microenvironment. On the contrary, patients with a high
abundance of Bacteroidales might have a limited response to
anti-PD-1 immunotherapy (17).

Akkermansia muciniphila
PD-1-based immunotherapy is also associated with gut
microbiota. Analyzing of stool samples from renal cell
carcinoma (RCC) and non-small cell lung cancer (NSCLC)
patients after treating with PD-1 blockade revealed that clinical
outcomes were associated with the abundance of Akkermansia
muciniphia, oral supplementation with Akkermansia muciniphia
to non-responders restored the efficacy of PD-1 blockade, which
demonstrated that the Akkermansia muciniphia can enhance the
effect of PD-1 inhibitor (Table 1) (20). They also found that
treating with ATB in mice inhibited the antitumor effect of PD-1
blockade, which demonstrated that dysbiosis of gut microbiome
TABLE 1 | Modulatory function of gut microbiome in ICIs therapy.

Bacteria Model Treatment Cancer Modulatory function in ICI therapy Author/Year Ref

Bifidobacterium Mouse PD-L1 blockade Melanoma a) Improve antitumor immunity Ayelet Sivan 2015
(18)b) Enhancing dendritic

cell function
c) Enhancing local anti-CD47
immunotherapy in tumor

Bifidobacterium
pseudolongum

Mouse Immune
checkpoint
blockade

CRC Increasing metabolite inosine
production

Lukas F. Mager 2020
(68)

Lactobacillus johnsonii
Olsenella species
Akkermansia muciniphia Human/

Mouse
PD-1 blockade Epithelial

tumors
Enhancing the antitumor effect of PD-1
blockade

Bertrand Routy 2018
(20)

Bacteroides fragilis Human/
Mouse

CTLA-4
blockade

Melanoma/
colon cancer

Influence interleukin 12 (IL-12)-
dependent TH1 immune responses

Marie Vétizou 2015
(19)Bacteroides thetaiotaomicron

Burkholderiales
Uminococcaceae family Human/

Mouse
PD-1 blockade Melanoma Promote the infiltration of CD8+ T cells

in tumors
Gopalakrishnan V 2018

(17)Clostridiales order
Faecalibacterium genus
Ratio of Prevotella and Bacteroides Human PD-1/PD-L1

blockade
Gastrointestinal
cancer

Related to nucleoside and nucleotide
biosynthesis, lipid biosynthesis, sugar
metabolism, and fermentation to
short-chain fatty acids

Zhi Peng 2020
(69)

Bifidobacterium longum, Collinsella
aerofaciens, and Enterococcus faecium

Human PD-L1 blockade Melanoma a) Decreasing regulatory T cell Vyara Matson 2018
(70)b) Increasing Batf3 dendritic cells

c) Enhancing Th1 responses
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system is another factor affecting results of ICIs (20). Fecal
microbiota transplantation (FMT) from patients who respond
to ICIs to mice can enhance the antitumor effect of PD-1
blockades in mice, while FMT from non-responders failed to
do so. Oral supplementation with Akkermansia muciniphia to
non-responders can enhance the efficacy of PD-1 blockade,
besides, a higher incidence of E. hirae was found in responders
of NSCLC patients than in non-responders (20). Another
research consisting of 31 metastatic renal cell carcinoma
(mRCC) patients also found that the abundance of
Akkermansia muciniphila is positively correlated with the
outcomes of checkpoint inhibitors. After treating with
nivolumab or nivolumab plus ipilimumab, stool samples were
collected and analyzed from mRCC patients, the result revealed
that several bacteria are related to clinical benefit. They also
found that a better treatment outcome is associated with high
microbial diversity (72). The mechanism of Akkermansia
muciniphila which promotes the effect of ICIs might be related
to inosine (Figure 2), Akkermansia muciniphila can produce
inosine in vitro in ICIs-treated tumors. Anti-CTLA-4
immunotherapy combined with monocolonization of
Akkermansia muciniphila increased antitumor immunity, and
this was associated with T cell expression of A2AR (68). In HCC
Frontiers in Immunology | www.frontiersin.org 6
patients, Akkermansia muciniphila increased in responders after
PD-1 immunotherapy. Besides, Ruminococcaceae spp. and other
18 species of bacteria were also increased in responders. In non-
responders, the level of Proteobacteria increased (73).
Faecalibacterium, Clostridiales, and
Ruminococcaceae
Gopalakrishnan V et al. examined gut microbiome of melanoma
patients who were treating with anti-PD-1 immunotherapy, they
found the composition and diversity of responders are different
from those of non-responders. Clostridiales order and
Ruminococcaceae family and Faecalibacterium genus were
enriched in responders and Bacteroidales order was enriched in
non-responders (17). The existence of Ruminococcaceae family,
Clostridiales order, and Faecalibacterium genus can promote the
infiltration of CD8+ T cells in tumors (Table 1). Patients rich in
Clostridiales, Faecalibacterium, or Ruminococcaceae in gut have a
higher frequency of CD4+ and CD8+ T cells. Besides, patients
with high abundance of Faecalibacterium had better antigen
processing and presenting ability and a relatively high density of
immune cells compared to patients with high abundance of
Bacteroidales in the gut (17).
FIGURE 2 | The potential mechanism of gut microbiota modulating the efficacy of ICIs (1). Bacteroides thetaiotaomicron or Bacteroides fragilis enhances T cell
response, treatment of anti-CTLA-4 blockade influences the abundance of immunogenic Bacteroides spp., which will in turn enhance immune response of T cells (2);
Bacteroides fragilis induces Th1 immune response, promotes the maturation of dendritic cell (3); Bifidobacterium improves function of DC, results in activating of
CD8+ T cell and enhancing anti-PD-L1 antitumor effect (4); The metabolite inosine of gut microbiota activates Th1 cell and increases level of IFN-g, which can
enhance antitumor effect in vivo (5); Microbiota composition affects IL-12-independent Th1 cell immune response (6); CTLA-4 blockade induces the inactivation of
CTLA-4+ Treg cells, leads to activating of effector T cell and enhancing antitumor effect.
June 2021 | Volume 12 | Article 669150
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Prevotella/Bacteroides
Since gut microbiota is a whole system, a small change in
one species of bacteria may have an impact on others. A
recent research reveals that after immunotherapy, the ratio of
Prevotella and Bacteroides will be elevated (Table 1) (69). In a
research which included 74 patients with advanced-stage
gastrointestinal cancer, after anti-PD-1/PD-L1 treatment, they
observed an elevation of Prevotella/Bacteroides ratio in patients
with a preferred response to anti-PD-1/PD-L1 treatment and
a particular responder harboring a significantly higher
abundance of Prevotella, Ruminococcaceae, and Lachnospiraceae.
Ruminococcaceae is also associated with a favorable objective
response rate in NSCLC after treatment of immune checkpoint
inhibitors (74). Besides, gut bacteria which are capable
of SCFAs, were positively associated with anti-PD-1/PD-L1
response (69).

Composition of Gut Microbiota
As we discussed before, gut microbiota is a complex system. The
alteration of whole system not just specific bacteria also plays an
important role which can influence the effect of ICIs. Lisa Derosa
et al. analyzed fecal samples from RCC patients treated with
nivolumab, they found the patients who had used ATBs recently
reduced objective response by 19% compared to the patients who
had not used ATBs, and the composition of gut microbiota was
significantly changed in these patients (75). This research
indicates that ATBs shift the composition of gut microbiota,
resulting in decreased efficacy of ICIs. Bertrand Routy et al.
studied the impact of ATBs on NSCLC, RCC, and urothelial
patients who were received anti PD-1/PD-L1 blockade, and they
found that progression-free survival (PFS) and overall survival
(OS) were significantly shorter in the ATB-treated group,
demonstrating that dysbiosis has an impact on therapeutic
efficacy of ICIs (20). Besides, alpha diversity is also important
factor in the composition of gut microbiota. Gopalakrishnan V
et al. analyzed fecal microbiome samples from 43 melanoma
patients who were undergoing PD-1 blockade immunotherapy,
and they found responding patients have a higher alpha diversity
of bacteria than the non-responders, they also found that
patients with higher alpha diversity in their fecal samples had
significantly prolonged PFS than the patients in low alpha
diversity (17).
ONGOING CLINICAL TRIALS OF GUT
MICROBIOTA IN ICIs

Using bacteria as a new method for cancer therapy aroused
people’s attention since bacteria were first applied in tumor
therapy in 1991 (76). To date, there are three major ways in
which the gut microbiota is used in tumor treatment: oral
probiotics, diet intervention, and FMT. Several researches
reported that probiotics have antitumor effects, especially in
CRC. The antitumor effects of probiotics Clostridium
butyricum and Bacillus subtilis on CRC progression had been
proved in mice (77). A clinical research found that oral
Frontiers in Immunology | www.frontiersin.org 7
Lactobacillus johnsonii can significantly reduce the tumor
recurrence rate of colon cancer patients after surgery (78).
Another 12-year prospective clinical study showed that long-
term intake of high-dose yogurt (containing Streptococcus
thermophilus and Lactobacillus bulgaricus) has a significantly
reduced risk of colorectal cancer (79). However, although
probiotics were proved to be beneficial with antitumor effects,
probiotic supplementation with ICIs might generate conflicting
results (80). Probiotic use after ATBs could have opposite effect
and delay restoration of the gut microbiota (81). One study
focused on melanoma patients reported that the effect of
immunotherapy might be negatively influenced by probiotics
(82). Thus, it is necessary to find out the relation and inner
mechanism between probiotics and the effect of ICIs in other
kind of tumors. Altered diet can rapidly change the composition
of gut microbiome (83). Which means it might be a simple and
safe way to modulate gut microbiome in ICI patients (84).
Patients with advanced bowel cancer intake inulin rich in
oligofructose can enhance the effect of chemotherapy (85).
Some studies are ongoing to investigate the association of
dietary intervention with ICIs (NCT03700437, NCT03595540).

To date, FMT had been widely used in many diseases
including cancer treatment. Previous animal experiments
showed that fed mice with specific bacteria or FMT can
enhance the sensitivity of immunotherapy. Thus, make several
specific bacteria into medicine might be a new clinical adjuvant
treatment of immunotherapy to cancer. FMT had been already
applied in clinical trials, Robert and his colleagues successfully
treated immune checkpoint inhibitors-associated colitis using
FMT, transplant of fecal microbiota reconstruct the gut
microbiome of patients and increase the proportion of
regulatory T-cells in the colonic mucosa. This trial
demonstrated that reshaping of gut microbiome might
abrogate ICI-associated colitis (86). Recently, there were two
studies using FMT to promote response in ICI-refractory
patients (87, 88). A phase I clinical trial (NCT03353402) was
performed in patients with anti-PD-1 refractory metastatic
melanoma, in these patients, 3 of 10 patients were responded
after intervention of FMT (88). Another research also focused on
anti-PD-1 therapy in advanced melanoma, and they found that
FMT and anti-PD-1 changed tumor microenvironment and gut
microbiome which led to overcoming resistance of anti-PD-1
immunotherapy (87). In consideration of the relationship
between the gut microbiota and ICIs, formulating a
personalized treatment plan for patients based on the
characteristics of the gut microbiota may become a new plan
to optimize ICIs in tumor. Until now, several clinical trials are
proceeding (Table 2). Most of clinical trials focused on the FMT
combined with ICIs (NCT04163289, NCT04130763,
NCT04130763, NCT04056026, NCT03341143, NCT04116775),
a phase I trial (NCT03686202) using a new treatment approach
named microbial ecosystem therapeutics (MET), which can also
achieve FMT.

Several trials (NCT04208958, NCT03341143, NCT04116775)
had preferable primary outcomes and moved to phase II trial. All
of these clinical trials indicate that gut microbiota might be an
auxiliary method for ICIs antitumor therapy.
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TABLE 2 | Clinical trials on gut microbiota and ICIs.

Title No. of
enrolled
patients

Location Phase
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ility Study of Microbial Ecosystem Therapeutics (MET-4) to
te Effects of Fecal Microbiome in Patients on ImmunOtherapy
-IO)

65 Canada Phase I

ting Toxicity in Renal Cancer Patients Treated With
otherapy Using Fecal Microbiota Transplantation (PERFORM)

20 Canada Phase I

Microbiota Transplant (FMT) Capsule for Improving the
y of Anti- PD-1

5 China Phase I

Microbiota Transplantation (FMT) in Metastatic Melanoma
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40 Israel Phase I
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tatic Mesothelioma

1 USA Phase I

of VE800 and Nivolumab in Patients With Selected Types of
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111 USA Phase I/II

Microbiota Transplant (FMT) in Melanoma Patients 20 USA Phase II
Microbiota Transplant and Pembrolizumab for Men With
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32 USA Phase II

te Technology for in Silico Identification of Candidates for a
icrobiome-based Therapeutics and Diagnostics

130 Poland Discovery

Microbiome Map 1160 Poland Discovery
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CONCLUSIONS AND FUTURE
DIRECTIONS

Both of the gut microbiota and the immune system are quite
complex systems in our body, the currently proven relationship
between them is only the tip of the iceberg. According to the
existing research reports, the gut microbiota has a considerable
relationship with the effect of tumor immunotherapy. We have
summarized the abundance and composition changes of gut
microbiota during immunotherapy of ICIs. Most of these
bacteria are associated with immune system especially T cells.
Some bacteria can significantly enhance the antitumor effect of
ICIs, whichmay give us a hint that we can use gut microbiota as an
aid to immunotherapy. In addition, specific intestinal bacteria can
be used as a biomarker for immunotherapy. Although most of the
mechanisms of antitumor effect of bacteria remain unknown, so
the next step might be exploring the inner mechanism of gut
microbiota and checkpoint inhibitor immunotherapy.

There still exist some limitations of previous research, we know
that gut microbiota is a homeostatic ecosystem. Although
regulating one certain flora can regulate the efficacy of ICIs
immunotherapy, it also causes unbalance of the whole system,
which might have some potential risks to human body. At present,
the classification of intestinal flora is mostly done by 16s rRNA
sequencing. 16s rRNA is highly conserved in many different kinds
of bacteria, so the classification of flora based on 16s rRNA
sequencing is relatively inaccurate. What’s more, present analysis
was mainly based on the fecal sample, but the microbes in the fecal
Frontiers in Immunology | www.frontiersin.org 9
sample do not completely reflect the real ecosystem inside the
intestine, so how to detect the dynamic change of gut microbiota
after ICIs treatment in the human body remains a problem.

In conclusion, linking intestinal flora with tumor
immunotherapy is a new attempt, and based on the existing
research, the gut microbiota has a significant impact on the effect
of tumor immunotherapy. Which prove that the various systems
of the human body influence each other.
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