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Abstract: Background/Objectives: Lipid metabolism plays a crucial role in uterine cor-
pus endometrial carcinoma (UCEC); however, its specific mechanisms remain to be fully
elucidated. This study aimed to construct a lipid-metabolism-related prognostic model
and explore its association with the tumor immune microenvironment. Methods: A to-
tal of 552 UCEC and 35 normal tissue samples from The Cancer Genome Atlas (TCGA)
database were analyzed to identify differentially expressed lipid-metabolism-related genes
(DE-LMRGs). A prognostic risk model was established using univariate Cox analysis,
least absolute shrinkage and selection operator (LASSO) regression, and multivariate Cox
regression, and its clinical utility was assessed through nomogram construction. Functional
enrichment analysis was performed to explore the biological pathways involved. Tumor
immune infiltration patterns were evaluated using single-sample Gene Set Enrichment
Analysis (ssGSEA), Estimation of Stromal and Immune Cells in Malignant Tumors using
Expression Data (ESTIMATE), and Tumor Immune Dysfunction and Exclusion (TIDE)
algorithms. Results: Multivariate analysis indicated that the prognostic model had robust
predictive value, with AUCs of 0.701, 0.746, and 0.790 for 1-, 3-, and 5-year overall sur-
vival predictions. High-risk patients exhibited a suppressed immune microenvironment
characterized by reduced immune cell infiltration, lower tumor mutation burden (TMB),
and elevated TIDE scores, suggesting potential resistance to immunotherapy. Furthermore,
LIPG was identified as a key hub gene through the intersection of nine machine learning
algorithms, demonstrating strong associations with both cancer progression and immune
infiltration. Functional validation using Cell Counting Kit-8 (CCK-8), wound healing,
and transwell migration assays following small interfering RNA (siRNA) transfection
demonstrated that LIPG promotes UCEC cell proliferation and migration in vitro. Conclu-
sions: These findings highlight the critical role of lipid metabolism in UCEC progression
and immune modulation, with LIPG emerging as a potential prognostic biomarker. The
identified lipid-metabolism-related gene signature may provide new insights into tumor
microenvironment interactions.
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1. Introduction
Endometrial cancer (EC), the sixth most common cancer type among women world-

wide, accounts for approximately 97,000 deaths and 417,000 new cases annually according
to the World Health Organization (WHO) [1,2]. The relative 5-year survival rate is approxi-
mately 96% for early-stage EC patients, but it drastically declines to about 18% for those
with distant metastases [3]. This stark contrast underscores the urgent need for reliable
prognostic biomarkers to predict outcomes and guide personalized therapeutic strategies.

Obesity stands out as a major contributor to EC risk, and each 5 kg/m2 increase in body
mass index (BMI) is linked to a 54% higher risk of cancer. Conversely, successful treatment
of obesity significantly reduces cancer risk [4]. Metabolic profiling of cervicovaginal lavage
samples has revealed a considerable upregulation of lipids, particularly sphingolipids,
fatty acids, and glycerophospholipids, in EC patients compared to benign participants [5].
Furthermore, serum lipid/lipoprotein levels, such as triglycerides, are positively correlated
with EC risk, and cholesterol-lowering statin therapy has been shown to improve disease-
specific survival in type 2 EC patients [6]. Inhibition of the sterol regulatory element-
binding protein (SREBP) pathway by fatostatin has been reported to diminish human EC
cell proliferation, trigger cell cycle arrest, and facilitate apoptosis [7]. Collectively, these
findings highlight the critical role of lipid metabolism in the development and progression
of endometrial cancer.

Within cancer cells, lipid metabolism is reconfigured to enhance lipid oxidation and
support energy requirements. Simultaneously, lipid metabolism in immune cells residing in
the tumor microenvironment is restructured, exhibiting notable features such as excessive
lipid accumulation and upregulation of fatty acid oxidation (FAO). Although this initially
enhances cytotoxic function, dysregulation of lipid homeostasis ultimately impairs the
anti-tumor immune response [8]. Notably, CD8+ tumor-infiltrated lymphocytes (TILs) are
vital for anti-tumor defense in EC, yet their infiltration and functionality are suppressed in
obese mice and humans [9,10].

Leveraging data from The Cancer Genome Atlas (TCGA), this study pinpointed lipid-
metabolism-related genes (LMRGs) with differential expression between EC and normal
tissues. A weighted risk model was subsequently developed based on 15 prognostic
genes, which was validated through univariate and multivariate analyses. The high-risk
group exhibited reduced immune scores, decreased tumor mutational burden (TMB), and
elevated tumor immune dysfunction and exclusion (TIDE) indices, collectively indicating
an immunosuppressive microenvironment. Furthermore, cellular-level assays confirmed
that LIPG, a central node within the protein–protein interaction network, substantially
contributes to enhancing the proliferative and migratory capacities of EC cells.

2. Materials and Methods
2.1. Data Collection and Preprocessing

RNA sequencing (RNA-seq) expression and clinicopathological data for 552 EC tis-
sue samples and 35 normal tissue samples were obtained from the TCGA UCEC dataset
via the Genomic Data Commons (GDC) Data Portal (https://portal.gdc.cancer.gov/, as-
sessed on 1 January 2024). Gene expression data were annotated to map probes to Entrez
gene identifiers. LMRGs were curated from four gene sets in the Molecular Signatures
Database (MSigDB v7.0): glycerolipid metabolism, phospholipid metabolism, general lipid
metabolism, and fatty acid metabolism (Table 1). Figure 1 outlines the workflow from data
acquisition to the identification of LMRGs for subsequent analyses.

https://portal.gdc.cancer.gov/
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Table 1. Pathways related to lipid metabolism.

Pathways Database Gene Count

HALLMARK_FATTY_ACID_METABOLISM HALLMARK 158
KEGG_GLYCEROLIPID_METABOLISM KEGG 49
REACTOME_METABOLISM_OF_LIPIDS Reactome 741

REACTOME_PHOSPHOLIPID_METABOLISM Reactome 211
Sum 1159 (unique: 865)
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Figure 1. Flowchart of the 15-gene signature model construction. TCGA, The Cancer Genome
Atlas; DE-LMRGs, differentially expressed lipid-metabolism-related genes; LASSO regression, least
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2.2. Construction and Validation of a Lipid Metabolism Risk Model

Expression matrices of LMRGs were obtained, and for genes mapped to multiple
probes, the average expression values were computed using the DESeq2 package in R.
To uncover candidate LMRGs potentially implicated in EC pathogenesis, differentially
expressed LMRGs (DE-LMRGs) between malignant and normal endometrial tissues were
identified, using a threshold of adjusted false discovery rate (FDR) < 0.05 and absolute log2

fold change (|log2FC|) > 2.
To further refine genes with prognostic significance, univariate Cox proportional haz-

ards regression was conducted, resulting in 22 gene candidates. Their mutation landscapes
were visualized through OncoPrint plots generated via the cBioportal platform, while
their interaction architecture was elucidated by constructing a protein–protein interaction
(PPI) network using the String Database (http://string-db.org, assessed on 1 January 2024).
In order to mitigate model overfitting, least absolute shrinkage and selection operator
(LASSO) regression was implemented with 1000 permutations via the “glmnet” package in
R, ultimately identifying a 15-gene LMRG signature.

A prognostic risk model was then formulated by integrating normalized gene expres-
sion values (xi) and their corresponding regression coefficients (Coefi) using the following
equation: Risk score = ∑(Coefi × xi).

http://string-db.org
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To assess the predictive performance of this model, Kaplan–Meier curves and log-rank
tests were applied using the median score as the stratification threshold. Additionally,
the area under the ROC curve (AUC) was computed with the “survivalROC” R package.
Principal component analysis (PCA) was performed to visualize group separation.

2.3. Prognostic Significance and Nomogram Development

To assess the prognostic significance of the constructed risk model in conjunction with
clinical variables, both univariate and multivariate Cox proportional hazards analyses were
performed, leading to the identification of independent indicators of patient survival. A
nomogram integrating these predictors was subsequently established, and its predictive
accuracy was verified through calibration curves generated using the “rms” R package.

2.4. Functional and Pathway Enrichment Analysis

Differential expression analysis between high- and low-risk patient cohorts was per-
formed under the criteria of |log2FC| > 2 and an FDR of <0.05. To explore the functional
divergence between the groups, Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses were carried out utilizing the “cluster-
Profiler” R package. In addition, Gene Set Enrichment Analysis (GSEA) was subsequently
employed to identify survival-related signaling pathways, considering statistical thresholds
of p < 0.05 and FDR < 0.25.

To identify robust prognostic biomarkers, nine distinct machine learning models, in-
cluding Elastic Net, GBM (Gradient Boosting Machine), GLM (Generalized Linear Model),
KNN (K-Nearest Neighbors), Logit (Logistic Regression), PLS (Partial Least Squares Re-
gression), RF (Random Forest), stepLDA (Stepwise Linear Discriminant Analysis), and
SVM (Support Vector Machine), were implemented. The top 10 genes prioritized by each
algorithm were cross-compared to detect overlapping candidates.

2.5. Tumor Mutational Burden and Immune Infiltration Analysis

TMB was quantified using maftools as mutations per megabase (mut/Mb) according
to the formula

TMB =

(
total mutant bases
total covered bases

)
× 106

To investigate immune landscape variations between subgroups, a suite of computa-
tional tools, including ESTIMATE, ssGSEA (single-sample gene set enrichment analysis),
and the TIDE algorithm, was employed.

1. Immune and stromal infiltration levels were inferred using the ESTIMATE algorithm
via the “estimate” R package, providing immune and stromal scores for each tumor
sample. These scores reflect both the content and spatial composition of tumor-
infiltrating immune cells, offering an overview of immune infiltration.

2. The “GSVA” R package was utilized to execute ssGSEA, 24 distinct immune cell
populations were profiled within individual tumor samples. Enrichment scores from
ssGSEA were compared across risk groups to elucidate immune cell composition
patterns related to prognostic stratification.

3. We explored the correlations between the risk score and the levels of immunological
checkpoint molecules. These analyses offer insights into the potential role of the risk
model in guiding immune checkpoint blockade (ICB) therapies.

4. The TIDE algorithm was applied to estimate ICB therapy responsiveness by modeling
immune evasion. It integrated two key mechanisms: T-cell dysfunction in tumors
with high cytotoxic T lymphocyte (CTL) infiltration and T-cell exclusion in tumors
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with low CTL presence. The resulting TIDE scores provide individualized predictions
of immunotherapeutic efficacy.

2.6. Validation of LMRG Protein Expression Using HPA

To validate the protein expression levels of LMRGs identified in this study, data from
the Human Protein Atlas (HPA) were employed. By cross-referencing gene expression
data with available protein expression profiles from the HPA, the translational relevance of
identified LMRGs was confirmed. Immunohistochemical findings from the HPA database
were pivotal in corroborating the biological significance of these genes, thereby enhancing
our understanding of lipid metabolism in EC.

2.7. Cell Culture and Patient Sample Collection

Normal endometrial epithelial cells, Ishikawa cells (RRID: CVCL_2529), and HEC-1-B
cells (RRID: CVCL_0294) were purchased from Meisen CTCC (Zhejiang, China). Normal
endometrial epithelial cells were cultured in complete medium (Meisen CTCC-008-0014-
CM). Ishikawa and HEC-1-B were cultured in DMEM (Gibco, Grand Island, NY, USA)
supplemented with 10% fetal bovine serum (Biological Industries, Kibbutz Beit Ha’emek,
Israel) and 1% penicillin/streptomycin (Gibco, Grand Island, NY, USA) under standard
conditions (37 ◦C, 5% CO2).

Tumors and paired adjacent normal tissues were collected from 11 EC patients at
Peking University Third Hospital (Beijing, China). Written informed consent was obtained
from all participants, and the study was approved by the ethics committee of Peking
University Third Hospital.

2.8. Real-Time PCR (RT-PCR) Analysis

Total RNA was extracted using an RNAeasy kit (Tiangen, Beijing, China) followed by
reverse transcription using a reverse transcription kit and SYBR qPCR master mix (Tiangen,
Beijing, China). GAPDH was used as an internal control, and relative mRNA expression
levels were calculated using the 2−∆∆CT method. Primer sequences are provided in Table S1.

2.9. Gene Silencing via siRNA

Small interfering RNAs (siRNAs) targeting LIPG were synthesized by Sangon Biotech
(Shanghai, China). siRNAs transfections were performed using Hieff Trans® Liposomal
Transfection reagent (Yeasen Biotechnology, Shanghai, China) and opti-MEM medium
(Gibco, Grand Island, NY, USA). Cells were harvested after 48–72 h post-transfection for
downstream experiments. Transfection efficiency was assessed using RT-PCR and Western
blotting. The siRNA sequences are listed in Table S2.

2.10. Western Blot Analysis

Cells were lysed in RIPA lysis buffer (Applygen, Beijing, China) supplemented with 1%
phenylmethanesulfonylfluoride (PMSF) (ABclonal, Wuhan, China). Protein concentrations
were quantified using a BCA kit (Thermo Fisher Scientific, Waltham, MA, USA). Equal
protein amounts (20 µg) were separated via 10% SDS-PAGE and transferred to PVDF
membranes (Millipore, Burlington, MA, USA). Membranes were blocked with 5% non-fat
milk for 1 h, incubated overnight at 4 ◦C with primary antibodies (Table S3) and then
with HRP-conjugated secondary antibodies for 1.5 h. Proteins were visualized using ECL
reagents (NCM Biotech, Suzhou, China).
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2.11. Cell Viability and Migration Assays

1. CCK-8 Viability Assay: Transfected Ishikawa and HEC-1-B cells were seeded in
96-well plates (2 × 103 cells/well). After incubation with 10% CCK-8 solution (Ap-
plygen, Beijing, China) for 1 h, the absorbance at 462 nm was measured using a
microplate reader (BioTek Instruments, Winooski, VT, USA).

2. Wound Healing Assay: Confluent monolayers of transfected cells were scratched with
a sterile pipette tip, and wound closure was monitored and photographed at 0 and 24 h.

3. Transwell Migration Assay: Transfected cells (3 × 104) were seeded in the upper
chambers of transwell inserts (8.0-µm, Corning, Shanghai, China) with serum-free
medium, while the lower chambers contained DMEM with 10% fetal bovine serum.
After 16 h of incubation, migrated cells were fixed, stained with crystal violet, and
visualized under a microscope.

2.12. Immune-Related Analysis of LIPG Expression

We performed Spearman correlation analysis to evaluate the expression of LIPG in
relation to various immune-infiltrating cells in UCEC. Immune infiltration data for all TCGA
samples were obtained from the TIMER2.0 database to ensure consistency and accuracy.

Correlation coefficients were calculated using multiple algorithms and visualized
as a heatmap, providing a comprehensive overview of the relationships between LIPG
expression and immune cell types across different computational methods.

2.13. Statistical Analysis

All statistical analyses were conducted using the R software (v3.6.2) and GraphPad
Prism 9. Gene expression differences between groups were evaluated using Student’s
t-test, while categorical variables were assessed with the chi-square test. Ranked data
were analyzed using the Wilcoxon rank-sum test, and comparisons across multiple groups
were made using one-way ANOVA. The Benjamini–Hochberg (BH) method was applied to
control the FDR for multiple testing corrections using a statistical level of p < 0.05.

3. Results
3.1. Identification of Prognostic LMRGs in UCEC

Among 865 LMRGs, 71 were identified as differentially expressed between UCEC
and adjacent normal tissues (q-value < 0.05, |log2FC| > 2). Further univariate Cox regres-
sion analysis revealed 167 LMRGs significantly associated with overall survival (OS). By
intersecting these genes, 22 hub genes with prognostic value and differential expression
were identified (Figure 2A). A heatmap depicts their expression patterns across samples
(Figure 2B), and their prognostic significance is illustrated in Figure 2C.

Using LASSO regression with a one-standard-error margin, 15 key prognostic LM-
RGs were further selected from the 22 hub genes: PTGIS, DGKB, HSD17B13, INMT,
ACACB, LIPH, PLAAT1, TRIB3, PLA2G10, DGAT2, MOGAT2, GRHL1, PLA2G2D, LIPG, and
PLA2G4F. These genes were incorporated into a predictive signature specific to UCEC. Fig-
ure 2D,E highlight the LASSO regression process, including the tuning parameter selection
and coefficient profiles of the 15 genes.
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Figure 2. The development of a prognostic LMRG signature. (A) Venn diagram depicting the
prognostic DEGs. (B) Heatmap of the 22 prognostic DEGs, with red representing upregulation and
blue indicating downregulation. (C) Forest plot showing HRs derived from the univariate Cox
regression analysis with gene expression levels as variables. (D) LASSO coefficient profiles of the
22 genes in the EC samples. (E) Partial likelihood deviance of the LASSO model across different
penalty parameter (λ) values. The solid line represents the mean, the shaded band represents ±1
standard error (SE), and the dashed vertical line indicates the λ value at which the model error is
minimized. (F) Principal component analysis plot. (G) Kaplan–Meier survival curves illustrating OS
in patients from the two risk groups. (H) AUC of time-dependent ROC curves verifying the prognostic
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accuracy of the risk model. (I) Distribution and median of the risk scores. (J) Univariate and multi-
variate Cox regression analysis evaluating the associations between risk scores, clinical parameters,
and the patient OS. DE-LMRGs, differentially expressed lipid-metabolism-related genes; HR, hazard
ratio; CI, confidence interval; TPR, true positive rate; FPR, false positive rate; AUC, area under the
curve; BMI, body mass index.

3.2. Construction of a Prognostic LMRG Signature

A risk score was calculated for each patient by summing the expression levels of the
15 selected genes, each weighted by its corresponding LASSO-derived coefficients:

Risk score = ∑(Gene expression × Coefficient)

Risk score = (PTGIS expr.) × 0.0622 + (DGKB expr.) × 0.1840 +
(HSD17B13 expr.) × 0.6817 + (INMT expr.) × −0.1530 + (ACACB expr.) ×

0.4221 + (LIPH expr.) × 0.1873 + (PLAAT1 expr.) × 0.0291 + (TRIB3 expr.) ×
0.0428 + (PLA2G10 expr.) × −0.2927 + (DGAT2 expr.) × 0.1740 + (MOGAT2
expr.) × 0.2245 + (GRHL1 expr.) × 0.0623 + (PLA2G2D expr.) × −0.1179 +

(LIPG expr.) × 0.0991 + (PLA2G4F expr.) × 0.2004

PCA revealed distinct clustering of high- and low-risk groups, supporting the robust-
ness of the signature (Figure 2F). Figure 2I illustrates the distribution of risk scores in the
TCGA dataset, showing an inverse correlation with overall survival, where higher risk
scores are associated with shorter survival times and increased mortality. Notably, patients
categorized in the high-risk group succumbed to the disease at a significantly younger age
than those in the low-risk group.

Kaplan–Meier survival analysis revealed a markedly poorer survival outcome in the
high-risk group (Figure 2G). Time-dependent ROC curve analysis yielded AUC values
of 0.701, 0.746, and 0.790 for 1-, 3-, and 5-year OS predictions, respectively, indicating the
prognostic model’s potential for long-term survival estimation (Figure 2H).

Our study cohort comprised 552 individuals who presented with a diverse array
of clinicopathological features. The prognostic relevance of the risk score was assessed
alongside various clinicopathological factors, including age, BMI, histological grade, clinical
stage, and primary therapeutic outcomes. Univariate Cox regression analysis identified
multiple variables that were significantly associated with OS. However, after adjusting for
confounding variables in multivariate analysis, the risk score retained its robust prognostic
value, independent of clinical stage, histological grade, and therapeutic outcomes.

The results highlight the independent predictive power of the risk model, as further
evidenced by the Kaplan–Meier survival plots (Figure 2J) and comprehensive statistical
summaries provided in Table 2, highlighting its critical role in prognostic assessment for
EC patients.

3.3. Development and Validation of an OS Prediction Nomogram

To estimate 1-, 3-, and 5-year overall survival (OS) in patients with uterine corpus
endometrial carcinoma (UCEC), a nomogram was constructed by incorporating both clini-
copathological variables and the derived risk score. (Figure 3A). Calibration curves showed
high concordance between predicted and observed survival probabilities (Figure 3B), un-
derscoring the nomogram’s reliability as a tool for individualized survival prediction.
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Table 2. Univariable and multivariable analyses for each clinical feature.

Clinical Feature Number
Univariate Analysis Multivariate Analysis

HR 95% CI p Value HR 95% CI p Value

DE-LMG Risk Parameter
(high-risk/low-risk) 271/273 4.353 2.666–7.107 <0.001 2.312 1.215–4.401 0.011

Age (≥60/<60) 364/178 1.931 1.176–3.172 0.009 1.164 0.627–2.160 0.631
BMI (≥30/<30) 304/208 0.993 0.650–1.516 0.972

Hypertension (YES/NO) 232/161 1.144 0.699–1.873 0.592
Diabetes (YES/NO) 100/267 1.117 0.653–1.909 0.687
Stage (III–IV/I–II) 155/389 3.705 2.451–5.600 <0.001 2.846 1.684–4.810 <0.001
Grade (G2.G3/G1) 446/98 12.169 2.996–49.4320 <0.001 7.604 1.013–57.078 0.049

Disease type
(Serous/Endometrioid) 141/401 2.818 1.866–4.254 <0.001 1.555 0.914–2.647 0.104

Primary therapy outcome
(CR/not CR) 386/33 7.204 4.224–12.286 <0.001 4.216 2.403–7.399 <0.001

The nomogram demonstrated high predictive accuracy for overall survival in UCEC
patients, as evidenced by the close alignment of the calibration curves with the ideal
line, suggesting minimal bias in the survival predictions. This model holds promise as a
clinically applicable instrument for generating individualized survival projections, thereby
supporting therapeutic decision making and facilitating personalized patient counseling.

3.4. Functional Enrichment Analyses of LMRGs

To investigate the interactions among the identified genes, a PPI network was con-
structed, excluding isolated nodes with no connections. This analysis revealed a densely
interconnected network, with LIPG serving as a central hub due to its having the highest
number of connections, suggesting its potentially critical role in the pathogenesis of UCEC
(Figure 3C).

We also examined mutational data, which revealed amplifications and deletions as
the most common mutation types among LMRGs. Notably, LIPH exhibited the highest
mutation rate, exceeding 4%, which was significantly higher than the six other LMRGs
with mutation rates above 4% (Figure 3D).

To elucidate the functional implications of the risk score, enrichment analyses of GO
and KEGG pathways were performed using DEGs associated with the prognostic model.
GO enrichment revealed significant overrepresentation in biological processes such as
synapse organization, collagen-containing extracellular matrix, and carbohydrate-binding
functions (Figure 3F–H). KEGG pathway analysis further indicated enrichment in cell
adhesion molecules, cytokine–cytokine receptor interactions, and GABAergic synaptic
signaling (Figure 3I).

Additionally, GSEA revealed significant correlations between high-risk status and the
activation of several pivotal signaling pathways, such as the Notch, Myc, Jak-Stat, Wnt,
and P53 pathways (Figure 3E). In contrast, low-risk tissues were enriched in the PI3K and
TGF-β pathways.

3.5. TMB and Lipid-Metabolism-Related Risk Score

Recent studies have identified tumor mutational burden (TMB) as a predictive
biomarker for immunotherapy response across various malignancies. The lipid-metabolism-
related gene signature score may show either a positive or negative correlation with TMB
depending on the cancer type [11,12]. In our study, patients with higher TMB demonstrated
improved prognosis (Figure 4A). Furthermore, we observed a significant negative corre-
lation between TMB and the lipid-metabolism-related risk score (p < 0.001), as shown in
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Figure 4B. This inverse relationship suggests that elevated TMB levels correspond to lower
risk scores, potentially reflecting enhanced lipid homeostasis in EC patients.
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Figure 3. Nomograms and functional enrichment analyses. (A) Predictive nomogram estimating 1-,
3-, and 5-year overall survival probabilities in UCEC patients. (B) Calibration curves demonstrating
the agreement between predicted and observed OS at 1, 3, and 5 years. (C) Protein–protein interaction
network illustrating interactions among the 22 identified genes. Each node color indicates a cluster
determined by k-means clustering. (D) Alteration of the 22 candidate genes in clinical samples.
(E) The enriched biological pathways. (F–H) Gene Ontology enrichment results showing overrepre-
sented biological processes (BP), cellular components (CC), and molecular functions (MF) among
DEGs. (I) KEGG pathway analysis of DEGs. BMI, body mass index; NES, normalized enrichment
score; FDR, false discovery rate; ECM, extracellular matrix. * p < 0.05.
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(C) Lower TMB levels are correlated with the high-risk group (p < 0.001). (D–F) Immunoscore.
(G) Immune cell infiltration. (H) The expression of key immune checkpoint genes. (I–M) Correlations
between immune checkpoint gene expression and the calculated risk score. (N,O) Response to
immunotherapy. TMB, tumor mutational burden; HR, hazard ratio; TIDE, tumor immune dysfunction
and exclusion. p values are shown as follows: ns, not significant; * p < 0.05; ** p < 0.01; *** p < 0.001.

Furthermore, individuals classified within the low-risk group displayed significantly
elevated TMB levels (p < 0.001), as depicted in Figure 4C. This association between TMB
and risk score may inform patient stratification for immunotherapeutic interventions and
underscores the need for further investigation into the role of TMB in the prognosis and
treatment of endometrial cancer.

3.6. Connections Between Distinct Immune Cell Infiltration, Immune Checkpoint Genes, and
Lipid-Metabolism-Related Risk Score

To investigate the association between LMRGs and the immune landscape in UCEC,
we evaluated the immunoscore and immune infiltration levels in relation to the risk score.
Our analysis revealed that high-risk patients exhibited significantly lower stromal, im-
mune, and ESTIMATE scores (Figure 4D–F), suggesting an immunosuppressive tumor
microenvironment in this subgroup.

To further delineate the immunological landscape in UCEC, we employed ssGSEA to
quantify immune cell infiltration. Notably, the low-risk group demonstrated significantly
higher enrichment scores for multiple immune cell types, including T cells, B cells, CD8
T cells, cytotoxic cells, dendritic cells (DCs), eosinophils, immature dendritic cells (iDCs),
neutrophils, plasmacytoid dendritic cells (pDCs), regulatory T cells (Tregs), Th17 cells, Th1
cells, and follicular helper T (TFH) cells (adjusted p < 0.05; Figure 4G). These results indicate
that patients in the low-risk group may exhibit a more active and effective anti-tumor
immune response.

We next analyzed the expression patterns of several immune checkpoint molecules,
including CTLA4 (Cytotoxic T-Lymphocyte-Associated protein 4), HAVCR2 (Human Ac-
tivating Vascular Cell Receptor 2), PD1 (programmed cell death protein 1), and TIGIT (T
cell immunoglobulin and mucin domain containing). High-risk patients exhibited lower
expression levels of these genes, while PD-L1 expression was elevated (Figure 4H). Correla-
tion analyses further demonstrated negative associations between the risk score and the
expression of CTLA4, HAVCR2, PD1, and TIGIT, while a positive correlation was observed
between the risk score and PD-L1 expression (Figure 4I–M).

Furthermore, we utilized the TIDE algorithm to predict immunotherapy response.
Low-risk patients had significantly lower TIDE scores, indicating a greater likelihood of
benefiting from immune checkpoint blockade (Figure 4N,O). These findings collectively
highlight the prognostic and therapeutic implications of lipid-metabolism-related immune
dysregulation in UCEC.

3.7. Expression of Key Genes in Clinical Samples

To validate our findings, expression profiles of the 15 prognostic LMRGs were ex-
amined using data from the HPA database. Among these, 11 genes exhibited expression
patterns consistent with those observed in the TCGA dataset, thereby reinforcing the re-
liability of our findings (Figure 5A). However, protein expression data for DGKB, INMT,
DGAT2, and PLA2G2D were unavailable in the HPA database.
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Figure 5. Validation of the LMRGs in EC. (A) Representative immunohistochemistry of 11 LMRGs
between endometrial cancer and normal tissues in the Human Protein Atlas database. (B) Relative
mRNA expression levels of LMRGs, normalized to GAPDH, in 11 matched pairs of EC and adjacent
non-tumorous tissues. EC, endometrial cancer. p values are shown as follows: ns, not significant;
* p < 0.05; ** p < 0.01; *** p < 0.001.

The transcript levels of the 15 LMRGs were subsequently examined in both EC cell
lines and clinical samples. Compared to adjacent normal tissues, tumor tissues exhibited
significantly reduced expression of PTGIS, DGKB, HSD17B13, INMT, and ACACB, while
PLA2G10, GRHL1, LIPG, and PLA2G4F were markedly upregulated (Figure 5B). In EC cell
lines (Ishikawa and HEC-1-B), INMT expression was notably lower than in endometrial ep-
ithelial cells, whereas PLAAT1, TRIB3, GRHL1, LIPG, PLA2G10, and LIPH were significantly
overexpressed (Figure S1).

3.8. The Role of LIPG in EC

To identify key prognostic genes among the 22 LMRGs, we applied nine machine
learning models, namely, Elastic Net, GBM, GLM, KNN, Logit, PLS, RF, stepLDA, and
SVM. Among these LMRGs, LIPG, PTGIS, and ACBD7 were consistently identified as key
prognostic markers across all nine models (Figure 6A). Notably, LIPG exhibited significant
upregulation in EC tissues and TCGA datasets, demonstrating a substantial fold change and
a correlation with poor prognosis, suggesting its potential role as an oncogene. Additionally,
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PPI network analysis identified LIPG as a central hub with the highest degree of connectivity,
further emphasizing its functional significance in EC. Based on these findings, we next
explored the functional significance of LIPG in EC cell lines.

Biomedicines 2025, 13, x FOR PEER REVIEW  14  of  21 
 

 

Figure 6. In vitro role of LIPG in endometrial cancer. (A) Venn diagram illustrating the overlap of 

key genes identified by nine distinct machine learning algorithms. (B) The effect of LIPG siRNAs in 

Ishikawa and HEC-1-B cells was evaluated via qRT-PCR and Western blotting. si LIPG #1 and si 

LIPG #2 denote two distinct siRNA sequences targeting LIPG. (C) Proliferative capacities of Ishi-

kawa cells and HEC-1-B cells between  the siRNA-transfected group and negative control group 

were quantified using CCK-8 viability assays. (D,E) Migrative abilities of Ishikawa and HEC-1-B 

Figure 6. In vitro role of LIPG in endometrial cancer. (A) Venn diagram illustrating the overlap of
key genes identified by nine distinct machine learning algorithms. (B) The effect of LIPG siRNAs in
Ishikawa and HEC-1-B cells was evaluated via qRT-PCR and Western blotting. si LIPG #1 and si LIPG
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#2 denote two distinct siRNA sequences targeting LIPG. (C) Proliferative capacities of Ishikawa cells
and HEC-1-B cells between the siRNA-transfected group and negative control group were quantified
using CCK-8 viability assays. (D,E) Migrative abilities of Ishikawa and HEC-1-B cells between the
siRNA-transfected group and negative control group were assessed using wound healing assays
and transwell migration assays, respectively, at 10× magnification. (F) Key fatty acid metabolism
enzymes in LIPG siRNA-transfected cells compared to control cells were determined using Western
blotting. (G) Illustration of the correlation between immune infiltrating cells in UCEC and LIPG
mRNA expression, as determined by various computational algorithms. FASN, fatty acid synthase;
ACC, acetyl-CoA carboxylase; CPT1a, carnitine palmitoyltransferase 1a; FABP5, fatty acid binding
protein 5; ACOX1, acyl-CoA oxidase 1; LIPG, endothelial lipase; NC, negative control. p values are
shown as follows: * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

To investigate the potential oncogenic function of LIPG, we silenced its expression
in EC cell lines (Ishikawa and HEC-1-B) using specific siRNAs. Successful knockdown
of LIPG was confirmed using qRT-PCR and Western blotting analysis (Figure 6B). LIPG
suppression significantly inhibited cell proliferation (Figure 6C) and attenuated migration
capacity, as evidenced by wound healing assays (Figure 6D) and transwell migration assays
(Figure 6E). These results imply a contributory role for LIPG in promoting EC progression.

LIPG, a crucial lipase involved in lipid and lipoprotein metabolism, predominantly
catalyzes the conversion of phospholipids within high-density lipoprotein (HDL) into
lysophosphatidylcholine and free fatty acids [13,14]. Upregulation of LIPG in tumor cells
has been shown to elevate fatty acid levels and promote lipid storage, supporting cell
proliferation [15–17]. Consistent with this, LIPG knockdown led to a marked decrease in
FASN protein levels in both Ishikawa and HEC-1-B cell lines (Figure 6F), implicating LIPG
in fatty acid metabolism regulation.

To examine the association between LIPG expression and the immune landscape in
EC, we analyzed immune molecules and cells in EC patients by LIPG expression levels.
Multi-algorithm analyses identified an inverse correlation between LIPG expression and
the infiltration levels of CD8+ T cells, macrophages, and regulatory T cells, as well as the
overall immune score (Figure 6G), suggesting an immunosuppressive TME in high-LIPG-
expressing EC.

4. Discussion
Lipids, encompassing fatty acids, sphingolipids, phospholipids, and triglycerides [15],

are biologically diverse molecules that are essential for intracellular signaling, energy stor-
age, and cellular structure [16]. Dysregulation of lipid metabolism has been increasingly
linked to metabolic disorders and cancer progression [17,18]. Notably, lipid synthesis
inhibitors have demonstrated anticancer effects in preclinical and clinical studies [19–21].
While the association between lipid metabolism and various cancers has been well docu-
mented, its role in UCEC remains underexplored [22–24].

This study focused on evaluating the prognostic relevance of DE-LMRGs in UCEC.
We identified 71 DE-LMRGs that were significantly altered between UCEC and adjacent
normal tissue samples. Using LASSO and multivariate regression analysis, we constructed
a 15-gene lipid-metabolism-based risk signature, comprising PTGIS, DGKB, HSD17B13,
INMT, ACACB, LIPH, PLAAT1, TRIB3, PLA2G10, DGAT2, MOGAT2, GRHL1, PLA2G2D,
LIPG, and PLA2G4F.

Among these genes, TRIB3, a tumor suppressor, modulates the AKT pathway to inhibit
UCEC cell growth and promote apoptosis [25]. PTGIS, associated with poor OS in various
cancers, may enhance tumor-associated macrophage infiltration and regulatory T cell (Treg)
proliferation within the TME [26]. HSD17B13 suppresses the Warburg effect, reducing hep-
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atocellular carcinoma (HCC) tumor growth [27]. ACACB promotes lipogenesis, supporting
rapid cancer cell proliferation [28,29]. LIPH enhances breast cancer cell mobility, potentially
facilitating metastasis [30]. DGAT2 is critical for tumor metastasis and progression in
gastric cancer [31]. GRHL1, a transcriptional repressor, is epigenetically regulated by the
chromatin-modifying agent histone deacetylase 3 (HDAC3) in collaboration with the onco-
genic protein MYCN [32]. LIPG, implicated in breast cancer, elevates interferon-stimulated
genes (ISGs) expression, potentially by enhancing interferon signaling [33].

In our analysis, PTGIS, DGKB, HSD17B13, INMT, and ACACB exhibited reduced
expression in UCEC tissues relative to their normal counterparts, whereas the other ten
genes were upregulated. High expression of INMT, PLA2G10, and PLA2G2D was correlated
with poor prognosis, whereas the other twelve genes were associated with favorable
outcomes, suggesting their complex role in UCEC pathogenesis.

GSEA revealed that the high-risk UCEC patients exhibited activation of the Notch,
Myc, Jak-Stat, Wnt, and P53 pathways, while low-risk patients were associated with the
PI3K and TGF-β pathways. The Notch pathway regulates cell proliferation, differentiation,
and apoptosis, potentially influencing UCEC by regulating the expression of cell cycle
proteins (such as cyclin D1) and cell cycle inhibitory proteins (such as p21) [34]. Dysregula-
tion of the Wnt pathway contributes to endometrial hyperplasia, which may proceed to
endometrial cancer [35]. Enhanced activity of both the Wnt and JAK–STAT3 pathways has
been strongly associated with epithelial–mesenchymal transition (EMT), a fundamental
biological process that facilitates tumor progression by promoting invasion, metastasis, and
cellular survival [36].

In vitro experiments suggested that LIPG suppression could inhibit the prolifera-
tion and migration of EC cells, indicating its role in tumor progression. Tumor cells are
able to maintain viability through metabolic reprogramming, and LIPG upregulation
has previously been associated with enhanced proliferation in leukemia [14] and breast
cancer [37–39]. LIPG may facilitate EC tumor cell growth by increasing lipid utilization.
Further experimental studies are needed to elucidate the role of LIPG in EC progression.

Lipid metabolism also influences immune system function through various mech-
anisms, including signal transduction, energy metabolism, membrane structure, and in-
flammatory responses [37,39,40]. Aberrant lipid metabolism in the TME leads to immuno-
suppression, affecting the number and function of tumor-associated macrophages, T cells,
dendritic cells, and myeloid-derived suppressor cells [41–43]. Consistent with this, high-
risk UCEC patients exhibited reduced ESTIMATE scores and decreased infiltration of T
cells, B cells, CD8+ T cells, DC, eosinophils, iDC, neutrophils, pDC, Treg, Th17 cells, Th1
cells, and TFH cells, underscoring the correlation between lipid metabolism and immune
suppression in UCEC.

We further explored the predictive value of the lipid-metabolism-based risk signature
for immunotherapy and chemotherapy responses. Previous studies have demonstrated
that targeting lipid metabolic pathways can potentiate the effectiveness of immune-based
treatments, including anti-PD-1/PD-L1 blockade and adoptive T cell therapy [43,44]. In
our study, low-risk patients exhibited a lower expression of immune checkpoint proteins
(CTLA4, HAVCR2, PD1, and TIGIT) and a more favorable response to immunotherapy com-
pared to high-risk patients, suggesting that lipid metabolism may influence immunotherapy
outcomes in UCEC.

Compared with a previous study that also investigated lipid-metabolism-related gene
signatures in EC [45], our study differs in several key aspects. We incorporated a broader
set of 1159 LMRGs from multiple MSigDB gene sets (HALLMARK, KEGG, and Reactome),
applied more stringent criteria for DEG identification (|log2FC| > 2), and combined
machine learning with PPI network analysis to identify LIPG as a hub gene. Furthermore,
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we validated its biological role through in vitro experiments, providing deeper insights
beyond prognostic modeling. Although the specific DE-LMRGs included in the risk
models differed, both studies observed that the low-risk group exhibited significantly
higher TMB and potentially greater sensitivity to immunotherapy. This finding emphasizes
the importance of lipid metabolism reprogramming in modulating anti-tumor immune
responses and warrants further investigation.

Our study has several limitations. Firstly, our analysis was confined to LMRGs and did
not encompass a broader spectrum of cancer-related genes, which could offer additional
insights into UCEC biology. Secondly, the findings are based on bioinformatic analysis of
publicly available datasets. Experimental validation and large-scale clinical studies are
needed to confirm the prognostic and therapeutic relevance of the identified risk signature
in UCEC.

5. Conclusions
The present study concentrated on the analysis of 15 LMRGs to construct a prognostic

risk score derived from their gene expression profiles. This risk score was designed to
prognosticate the clinical outcomes of patients with UCEC, demonstrating accuracy in
outcome prediction. Notably, patients classified with a low-risk profile according to the
developed score exhibited more favorable prognoses. Furthermore, LIPG may contribute
to the advancement of EC, with its high expression potentially reflecting an immunosup-
pressive TME in EC. Future research should prioritize experimental and clinical validation
of this risk signature to confirm its predictive power and ensure its applicability across
diverse patient populations.
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